REVIEW ARTICLE

Towards Cr(VI)-free anodization of aluminum alloys for aerospace adhesive bonding applications: A review

  • Shoshan T. Abrahami 1,2 ,
  • John M. M. de Kok 3 ,
  • Herman Terryn 2,4 ,
  • Johannes M. C. Mol , 2
Expand
  • 1. Materials innovation institute (M2i), 2628 XG, Delft, The Netherlands
  • 2. Delft University of Technology, Department of Materials Science and Engineering, 2628 CD, Delft, The Netherlands
  • 3. Fokker Aerostructures BV, 3351 LB, Papendrecht, The Netherlands
  • 4. Department of Materials and Chemistry, Research Group Electrochemical and Surface Engineering (SURF), Vrije Universiteit Brussel, 1050 Brussels, Belgium

Received date: 15 Sep 2016

Accepted date: 02 Mar 2017

Published date: 23 Aug 2017

Copyright

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

For more than six decades, chromic acid anodizing (CAA) has been the central process in the surface pre-treatment of aluminum for adhesively bonded aircraft structures. Unfortunately, this electrolyte contains hexavalent chromium (Cr(VI)), a compound known for its toxicity and carcinogenic properties. To comply with the new strict international regulations, the Cr(VI)-era will soon have to come to an end. Anodizing aluminum in acid electrolytes produces a self-ordered porous oxide layer. Although different acids can be used to create this type of structure, the excellent adhesion and corrosion resistance that is currently achieved by the complete Cr(VI)-based process is not easily matched. This paper provides a critical overview and appraisal of proposed alternatives to CAA, including combinations of multiple anodizing steps, pre- and post anodizing treatments. The work is presented in terms of the modifications to the oxide properties, such as morphological features (e.g., pore size, barrier layer thickness) and surface chemistry, in order to evaluate the link between fundamental principles of adhesion and bond performance.

Cite this article

Shoshan T. Abrahami , John M. M. de Kok , Herman Terryn , Johannes M. C. Mol . Towards Cr(VI)-free anodization of aluminum alloys for aerospace adhesive bonding applications: A review[J]. Frontiers of Chemical Science and Engineering, 2017 , 11(3) : 465 -482 . DOI: 10.1007/s11705-017-1641-3

1
Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for Chromium, U.S. Department of Health and Human Services, Public Health Service, 2012

2
Sueker J K. 5-Chromium A2-Morrison, Robert D. In: Murphy B L, ed. Environmental Forensics. Burlington: Academic Press, 1964, 81–95

3
Royle H. Toxicity of chromic acid in the chromium plating industry (1). Environmental Research, 1975, 10(1): 39–53

DOI

4
Murray R. Health of workers in chromate producing industry. British Journal of Industrial Medicine, 1957, 14(2): 140–141

5
Alexander B H ,  Checkoway H ,  Wechsler L ,  Heyer N J ,  Muhm J M ,  O’Keeffe T P . Lung cancer in chromate-exposed aerospace workers. Journal of Occupational and Environmental Medicine, 1996, 38(12): 1253–1258

DOI

6
Vallero D. Chapter 11: Cancer and Air Pollutants. Fundamentals of Air Pollution (Fifth Edition). Boston: Academic Press, 2014, 271–311

7
Occupational Safety and Health Administration (OSHA) 1910: Toxic and Hazardous Substances Occupational Exposure to Hexavalent Chromium, 2006

8
Ebnesajjad S. Introduction and Adhesion Theories. In: Ebnesajjad S, ed. Handbook of Adhesives and Surface Preparation. Oxford: William Andrew Publishing, 2011, 3–13

9
Brockmann W, Geiß  P L, Klingen  J, Schröder B. Adhesive Bonding. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2009: 1–28

10
Marshall S J, Bayne  S C, Baier  R, Tomsia A P ,  Marshall G W . A review of adhesion science. Dental Materials, 2010, 26(2): e11–e16

DOI

11
Bishopp J. Adhesives for Aerospace Structures. In: Ebnesajjad S, ed. Handbook of Adhesives and Surface Preparation. Oxford: William Andrew Publishing, 2011, 301–344

12
Higgins A. Adhesive bonding of aircraft structures. International Journal of Adhesion and Adhesives, 2000, 20(5): 367–376

DOI

13
Sargent J P. Durability studies for aerospace applications using peel and wedge tests. International Journal of Adhesion and Adhesives, 2005, 25(3): 247–256

DOI

14
Zanni-Deffarges M P ,  Shanahan M E R . Diffusion of water into an epoxy adhesive: Comparison between bulk behaviour and adhesive joints. International Journal of Adhesion and Adhesives, 1995, 15(3): 137–142

DOI

15
Posner R, Ozcan  O, Grundmeier G . Water and Ions at Polymer/Metal Interfaces. In: Silva M L F, Sato C, eds. Design of Adhesive Joints under Humid Conditions. Berlin: Springer Berlin Heidelberg, 2013, 21–52

16
Sheasby P G, Pinner  R. Surface Treatment and Finishing of Aluminium and its Alloys. 6th ed. England: Finishing Publications Ltd., 2001, 5–8

17
Sukiman N L, Zhou  X, Birbilis N ,  Hughes A E ,  Mol J M C ,  Garcia S J ,  Zhou X, Thompson  G E. Durability and Corrosion of Aluminium and Its Alloys: Overview, Property Space, Techniques and Developments. Aluminium Alloys—New Trends in Fabrication and Applications: InTech, 2012, 47–97

18
Lyle J P, Granger  D A, Sanders  R E. Aluminum Alloys. Ullmann’s Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2000, 1–47

19
Boag A, Hughes  A E, Glenn  A M, Muster  T H, McCulloch  D. Corrosion of AA2024-T3 Part I: Localised corrosion of isolated IM particles. Corrosion Science, 2011, 53(1): 17–26

DOI

20
Hughes A E, Boag  A, Glenn A M ,  McCulloch D ,  Muster T H ,  Ryan C, Luo  C, Zhou X ,  Thompson G E . Corrosion of AA2024-T3 Part II: Co-operative corrosion. Corrosion Science, 2011, 53(1): 27–39

DOI

21
Glenn A M, Muster  T H, Luo  C, Zhou X ,  Thompson G E ,  Boag A, Hughes  A E. Corrosion of AA2024-T3 Part III: Propagation. Corrosion Science, 2011, 53(1): 40–50

DOI

22
Afseth A. Metallurgical control of filiform corrosion of aluminium alloys. Dissertation for the Doctoral Degree. Trondheim: Norwegian University of Science and Technology, 1999: 173

23
Zhou X, Liu  Y, Thompson G E ,  Scamans G M ,  Skeldon P ,  Hunter J A . Near-surface deformed layers on rolled aluminum alloys. Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science, 2011, 42(5): 1373–1385

DOI

24
Critchlow G W ,  Brewis D M . Review of surface pretreatments for aluminium alloys. International Journal of Adhesion and Adhesives, 1996, 16(4): 255–275

DOI

25
Wegman R F, Van Twisk  J. Aluminum and Aluminum Alloys. In: Wegman R F, Twisk J V, eds. Surface Preparation Techniques for Adhesive Bonding, 2nd ed. New York: William Andrew Publishing, 2013, 9–37

26
Pocius A V. The electrochemistry of the FPL (Forest Products Laboratory) process and its relationship to the durability of structural adhesive bonds. Journal of Adhesion, 1992, 39(2-3): 101–121

DOI

27
Venables J D, McNamara  D K, Chen  J M, Sun  T S, Hopping  R L. Oxide morphologies on aluminum prepared for adhesive bonding. Applications of Surface Science, 1979, 3(1): 88–98

DOI

28
Thompson G E. Porous anodic alumina: Fabrication, characterization and applications. Thin Solid Films, 1997, 297(1-2): 192–201

DOI

29
Su Z, Zhou  W. Porous anodic metal oxides. Science Foundation in China, 2009, 16(1): 36–53

DOI

30
Aerts T. Study of the influence of temperature and heat transfer during anodic oxide growth on aluminium. Dissertation for the Doctoral Degree. Brussels: Vrije Universiteit Brussel, 2009, 9–22

31
Keller F, Hunter  M S, Robinson  D L. Structural features of oxide coatings on aluminum. Journal of the Electrochemical Society, 1953, 100(9): 411–419

DOI

32
O’Sullivan J P ,  Wood G C . The morphology and mechanism of formation of porous anodic films on aluminium. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1970, 317(1531): 511–543

33
Critchlow G W ,  Yendall K A ,  Bahrani D ,  Quinn A ,  Andrews F . Strategies for the replacement of chromic acid anodising for the structural bonding of aluminium alloys. International Journal of Adhesion and Adhesives, 2006, 26(6): 419–453

DOI

34
Brockmann W, Hennemann  O D, Kollek  H. Surface properties and adhesion in bonding aluminium alloys by adhesives. International Journal of Adhesion and Adhesives, 1982, 2(1): 33–40

DOI

35
Olsson-Jacques C L ,  Wilson A R ,  Rider A N ,  Arnott D R . Effect of contaminant on the durability of epoxy adhesive bonds with Alclad 2024 aluminium alloy adherends. Surface and Interface Analysis, 1996, 24(9): 569–577

DOI

36
Kinloch A J, Little  M S G, Watts  J F. The role of the interphase in the environmental failure of adhesive joints. Acta Materialia, 2000, 48(18-19): 4543–4553

DOI

37
G. Pape  P . Adhesion Promoters. In: Ebnesajjad S, ed. Handbook of Adhesives and Surface Preparation. Oxford: William Andrew Publishing, 2011, 369–386

38
Abel M L, Digby  R P, Fletcher  I W, Watts  J F. Evidence of specific interaction between γ-glycidoxypropyltrimethoxysilane and oxidized aluminium using high-mass resolution ToF-SIMS. Surface and Interface Analysis, 2000, 29(2): 115–125 

DOI

39
Tchoquessi Doidjo M R ,  Belec L ,  Aragon E ,  Joliff Y ,  Lanarde L ,  Meyer M ,  Bonnaudet M ,  Perrin F X . Influence of silane-based treatment on adherence and wet durability of fusion bonded epoxy/steel joints. Progress in Organic Coatings, 2013, 76(12): 1765–1772

DOI

40
Ooij W, Zhu  D, Palanivel V ,  Lamar J A ,  Stacy M . Overview: The potential of silanes for chromate replacement in metal finishing industries. Silicon Chemistry, 2006, 3(1-2): 11–30

DOI

41
Thiedmanu W, Tolan  F C, Pearce  P J, Morris  C E M. Silane coupling agents as adhesion promoters for aerospace structural film adhesives. Journal of Adhesion, 1987, 22(3): 197–210

DOI

42
Cabral A, Duarte  R G, Montemor  M F, Zheludkevich  M L, Ferreira  M G S. Analytical characterisation and corrosion behaviour of bis-[triethoxysilylpropyl]tetrasulphide pre-treated AA2024-T3. Corrosion Science, 2005, 47(3): 869–881

DOI

43
Cabral A M, Duarte  R G, Montemor  M F, Ferreira  M G S. A comparative study on the corrosion resistance of AA2024-T3 substrates pre-treated with different silane solutions: Composition of the films formed. Progress in Organic Coatings, 2005, 54(4): 322–331

DOI

44
Song J, Van Ooij  W J. Bonding and corrosion protection mechanisms of γ-APS and BTSE silane films on aluminum substrates. Journal of Adhesion Science and Technology, 2003, 17(16): 2191–2221

DOI

45
Franquet A, Terryn  H, Vereecken J . Study of the effect of different aluminium surface pretreatments on the deposition of thin non-functional silane coatings. Surface and Interface Analysis, 2004, 36(8): 681–684

DOI

46
Park S Y, Choi  W J, Choi  H S, Kwon  H, Kim S H . Recent trends in surface treatment technologies for airframe adhesive bonding processing: A review (1995‒2008). Journal of Adhesion, 2010, 86(2): 192–221

DOI

47
Hughes A E, Cole  I S, Muster  T H, Varley  R J. Designing green, self-healing coatings for metal protection. NPG Asia Materials, 2010, 2(4): 143–151

DOI

48
Kinloch A J, Welch  L S, Bishop  H E. The locus of environmental crack growth in bonded aluminium alloy joints. Journal of Adhesion, 1984, 16(3): 165–177

DOI

49
Visser P, Terryn  H, Mol J M . Aerospace Coatings. In: Hughes A E, Mol J M C, Zheludkevich M L, Buchheit R G, eds. Active Protective Coatings. Berlin: Springer, 2016, 315–372

50
Sulka G D, Parkoła  K G. Temperature influence on well-ordered nanopore structures grown by anodization of aluminium in sulphuric acid. Electrochimica Acta, 2007, 52(5): 1880–1888

DOI

51
Arrowsmith D J ,  Clifford A W . Morphology of anodic oxide for adhesive bonding of aluminum. International Journal of Adhesion and Adhesives, 1983, 3(4): 193–196

DOI

52
Kock E, Muss  V, Matz C ,  De Wit F . Patent EP0607579 A1, 1994-07-27

53
Abrahami S T, Hauffman  T, de Kok J M M ,  Mol J M C ,  Terryn H . XPS analysis of the surface chemistry and interfacial bonding of barrier-type Cr(VI)-free anodic oxides. Journal of Physical Chemistry C, 2015, 119(34): 19967–19975

DOI

54
Abrahami S T, de Kok  J M M, Gudla  V C, Ambat  R, Terryn H ,  Mol J M C . Interface strength and degradation of adhesively bonded porous aluminum oxides. NPJ Materials Degradation, 2017, in press

55
Kape J M. Electroplating. Metal Finishing, 1961, 11: 407–415

56
Curioni M, Skeldon  P, Koroleva E ,  Thompson G E ,  Ferguson J . Role of tartaric acid on the anodizing and corrosion behavior of AA 2024 T3 aluminum alloy. Journal of the Electrochemical Society, 2009, 156(4): C147–C153

DOI

57
García-Rubio M ,  de Lara M P ,  Ocón P ,  Diekhoff S ,  Beneke M ,  Lavía A ,  García I . Effect of postreatment on the corrosion behaviour of tartaric-sulphuric anodic films. Electrochimica Acta, 2009, 54(21): 4789–4800

DOI

58
García-Rubio M ,  Ocón P ,  Climent-Font A ,  Smith R W ,  Curioni M ,  Thompson G E ,  Skeldon P ,  Lavía A ,  García I . Influence of molybdate species on the tartaric acid/sulphuric acid anodic films grown on AA2024 T3 aerospace alloy. Corrosion Science, 2009, 51(9): 2034–2042

DOI

59
van Put M, Abrahami  S T, Elisseeva  O, de Kok J M M ,  Mol J M C ,  Terryn H . Potentiodynamic anodizing of aluminum alloys in Cr(VI)-free electrolytes. Surface and Interface Analysis, 2016, 48(8): 946–952

DOI

60
Domingues L, Fernandes  J C S, Da Cunha Belo  M, Ferreira M G S ,  Guerra-Rosa L . Anodising of Al 2024-T3 in a modified sulphuric acid/boric acid bath for aeronautical applications. Corrosion Science, 2003, 45(1): 149–160

DOI

61
Zhang J S, Zhao  X H, Zuo  Y, Xiong J P . The bonding strength and corrosion resistance of aluminum alloy by anodizing treatment in a phosphoric acid modified boric acid/sulfuric acid bath. Surface and Coatings Technology, 2008, 202(14): 3149–3156

DOI

62
Yendall K A, Critchlow  G W. Novel methods, incorporating pre- and post-anodising steps, for the replacement of the Bengough-Stuart chromic acid anodising process in structural bonding applications. International Journal of Adhesion and Adhesives, 2009, 29(5): 503–508

DOI

63
Johnsen B B, Lapique  F, Bjørgum A . The durability of bonded aluminium joints: A comparison of AC and DC anodising pretreatments. International Journal of Adhesion and Adhesives, 2004, 24(2): 153–161

DOI

64
Critchlow G, Ashcroft  I, Cartwright T ,  Bahrani D . US Patent, 0213618 A1, 2008-09-04

65
Arrowsmith D J ,  Clifford A W . A new pretreatment for the adhesive bonding of aluminium. International Journal of Adhesion and Adhesives, 1985, 5(1): 40–42

DOI

66
Digby R P, Packham  D E. Pretreatment of aluminium: topography, surface chemistry and adhesive bond durability. International Journal of Adhesion and Adhesives, 1995, 15(2): 61–71

DOI

67
Chung C K, Liao  M W, Chang  H C, Lee  C T. Effects of temperature and voltage mode on nanoporous anodic aluminum oxide films by one-step anodization. Thin Solid Films, 2011, 520(5): 1554–1558

DOI

68
Underhill P R ,  Rider A N . Hydrated oxide film growth on aluminium alloys immersed in warm water. Surface and Coatings Technology, 2005, 192(2-3): 199–207

DOI

69
Rider A N. The influence of porosity and morphology of hydrated oxide films on epoxy-aluminium bond durability. Journal of Adhesion Science and Technology, 2001, 15(4): 395–422

DOI

70
Özkanat Ö ,  Salgin B ,  Rohwerder M ,  Mol J M C ,  de Wit J H W ,  Terryn H . Scanning Kelvin probe study of (oxyhydr)oxide surface of aluminum alloy. Journal of Physical Chemistry C, 2011, 116(2): 1805–1811

DOI

71
Özkanat Ö ,  de Wit F M ,  de Wit J H W ,  Terryn H ,  Mol J M C . Influence of pretreatments and aging on the adhesion performance of epoxy-coated aluminum. Surface and Coatings Technology, 2013, 215: 260–265

DOI

72
Rider A N, Arnott  D R. Boiling water and silane pre-treatment of aluminium alloys for durable adhesive bonding. International Journal of Adhesion and Adhesives, 2000, 20(3): 209–220

DOI

73
Din R U, Piotrowska  K, Gudla V C ,  Jellesen M S ,  Ambat R . Steam assisted oxide growth on aluminium alloys using oxidative chemistries: Part I Microstructural investigation. Applied Surface Science, 2015, 355: 820–831

DOI

74
Din R U, Jellesen  M S, Ambat  R. Steam assisted oxide growth on aluminium alloys using oxidative chemistries: Part II corrosion performance. Applied Surface Science, 2015, 355: 716–725

DOI

75
Din R U, Jellesen  M S, Ambat  R. Role of acidic chemistries in steam treatment of aluminium alloys. Corrosion Science, 2015, 99: 258–271

DOI

76
Sulka G D. Highly Ordered Anodic Porous Alumina Formation by Self-Organized Anodizing. Nanostructured Materials in Electrochemistry. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2008, 1–116

77
Parkhutik V P . The initial stages of aluminium porous anodization studied by Auger electron spectroscopy. Corrosion Science, 1986, 26(4): 295–310

DOI

78
Xu Y, Thompson  G E, Wood  G C, Bethune  B. Anion incorporation and migration during barrier film formation on aluminium. Corrosion Science, 1987, 27(1): 83–102

DOI

79
González-Rovira L ,  López-Haro M ,  Hungría A B ,  El Amrani K ,  Sánchez-Amaya J M ,  Calvino J J ,  Botana F J . Direct sub-nanometer scale electron microscopy analysis of anion incorporation to self-ordered anodic alumina layers. Corrosion Science, 2010, 52(11): 3763–3773

DOI

80
Ono S, Ichinose  H, Masuko N . The high resolution observation of porous anodic films formed on aluminum in phosphoric acid solution. Corrosion Science, 1992, 33(6): 841–850

DOI

81
Thompson G E, Wood  G C. Anodic Films on Aluminium. In: J.C S, ed. Treatise on Materials Science and Technology. Amsterdam: Elsevier, 1983, 205–329

82
Alexander M R ,  Thompson G E ,  Beamson G . Characterization of the oxide/hydroxide surface of aluminium using x-ray photoelectron spectroscopy: A procedure for curve fitting the O 1s core level. Surface and Interface Analysis, 2000, 29(7): 468–477

DOI

83
van den Brand J ,  Blajiev O ,  Beentjes P C J ,  Terryn H ,  de Wit J H W . Interaction of anhydride and carboxylic acid compounds with aluminum oxide surfaces studied using infrared reflection absorption spectroscopy. Langmuir, 2004, 20(15): 6308–6317

DOI

84
Abrahami S T, Hauffman  T, de Kok J M M ,  Mol J M C ,  Terryn H . Effect of anodic aluminum oxide chemistry on adhesive bonding of epoxy. Journal of Physical Chemistry C, 2016, 120(35): 19670–19677

DOI

85
Wood G C, O’Sullivan  J P. The anodizing of aluminium in sulphate solutions. Electrochimica Acta, 1970, 15(12): 1865–1876

DOI

86
Patermarakis G, Moussoutzanis  K. Transformation of porous structure of anodic alumina films formed during galvanostatic anodising of aluminium. Journal of Electroanalytical Chemistry, 2011, 659(2): 176–190

DOI

87
Curioni M, Skeldon  P, Thompson G E . Anodizing of aluminum under nonsteady conditions. Journal of the Electrochemical Society, 2009, 156(12): C407–C413

DOI

88
Han X Y, Shen  W Z. Improved two-step anodization technique for ordered porous anodic aluminum membranes. Journal of Electroanalytical Chemistry, 2011, 655(1): 56–64

DOI

89
Aerts T, Dimogerontakis  T, De Graeve I ,  Fransaer J ,  Terryn H . Influence of the anodizing temperature on the porosity and the mechanical properties of the porous anodic oxide film. Surface and Coatings Technology, 2007, 201(16-17): 7310–7317

DOI

90
Stȩpniowski W J ,  Bojar Z . Synthesis of anodic aluminum oxide (AAO) at relatively high temperatures. Study of the influence of anodization conditions on the alumina structural features. Surface and Coatings Technology, 2011, 206(2-3): 265–272

DOI

91
Aerts T, Jorcin  J B, De Graeve  I, Terryn H . Comparison between the influence of applied electrode and electrolyte temperatures on porous anodizing of aluminium. Electrochimica Acta, 2010, 55(12): 3957–3965

DOI

92
Schneider M, Kremmer  K, Weidmann S K ,  Fürbeth W . Interplay between parameter variation and oxide structure of a modified PAA process. Surface and Interface Analysis, 2013, 45(10): 1503–1509

DOI

93
Terryn H. Electrochemical investigation of AC electrograining of aluminium and its porous anodic oxidation. Dissertation for the Doctoral Degree. Brussel: Vrije Universiteit Brussel, 1987: 155–174

94
Zaraska L, Sulka  G D, Szeremeta  J, Jaskuła M . Porous anodic alumina formed by anodization of aluminum alloy (AA1050) and high purity aluminum. Electrochimica Acta, 2010, 55(14): 4377–4386

DOI

95
Curioni M, Scenini  F. The mechanism of hydrogen evolution during anodic polarization of aluminium. Electrochimica Acta, 2015, 180: 712–721

DOI

96
Curioni M, Saenz de Miera  M, Skeldon P ,  Thompson G E ,  Ferguson J . Macroscopic and local filming behavior of AA2024 T3 aluminum alloy during anodizing in sulfuric acid electrolyte. Journal of the Electrochemical Society, 2008, 155(8): C387–C395

DOI

97
Schneider M, Yezerska  O, Lohrengel M M . Anodic oxide formation on AA2024: Electrochemical and microstructure investigation. Corrosion Engineering, Science and Technology, 2008, 43(4): 304–312

DOI

98
Saenz de Miera M ,  Curioni M ,  Skeldon P ,  Thompson G E . The behaviour of second phase particles during anodizing of aluminium alloys. Corrosion Science, 2010, 52(7): 2489–2497

DOI

99
Garcia-Vergara S J ,  El Khazmi K ,  Skeldon P ,  Thompson G E . Influence of copper on the morphology of porous anodic alumina. Corrosion Science, 2006, 48(10): 2937–2946

DOI

100
Kollek H. Some aspects of chemistry in adhesion on anodized aluminium. International Journal of Adhesion and Adhesives, 1985, 5(2): 75–80

DOI

101
Packham D E. Surface energy, surface topography and adhesion. International Journal of Adhesion and Adhesives, 2003, 23(6): 437–448

DOI

102
Packham D E, Johnston  C. Mechanical adhesion: Were McBain and Hopkins right? An empirical study. International Journal of Adhesion and Adhesives, 1994, 14(2): 131–135

DOI

103
Allen K W. Some reflections on contemporary views of theories of adhesion. International Journal of Adhesion and Adhesives, 1993, 13(2): 67–72

DOI

104
van den Brand J ,  Blajiev O ,  Beentjes P C J ,  Terryn H ,  de Wit J H W . Interaction of ester functional groups with aluminum oxide surfaces studied using infrared reflection absorption spectroscopy. Langmuir, 2004, 20(15): 6318–6326

DOI

105
Özkanat Ö ,  Salgin B ,  Rohwerder M ,  Wit J, Mol  J, Terryn H . Interactions at polymer/(oxyhydr) oxide/aluminium interfaces studied by Scanning Kelvin Probe. Surface and Interface Analysis, 2012, 44(8): 1059–1062

DOI

106
Abrahami S T, Hauffman  T, de Kok J M M ,  Terryn H ,  Mol J M C . The role of acid-base properties in the interactions across the oxide-primer interface in aerospace applications. Surface and Interface Analysis, 2016, 48(8): 712–720

DOI

Outlines

/