RESEARCH ARTICLE

Visual chiral recognition of 1,1′-binaphthol through enantioselective collapse of gel based on an amphiphilic Schiff-base gelator

  • Xuhong Zhang ,
  • Haimiao Li ,
  • Xin Zhang ,
  • Meng An ,
  • Weiwei Fang ,
  • Haitao Yu
Expand
  • College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China

Received date: 02 Nov 2016

Accepted date: 12 Jan 2017

Published date: 12 May 2017

Copyright

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

A novel gelator that contained both Schiff base and L-lysine moieties was synthesized and its gelation behavior was tested. This gelator can form gels in various organic solvents. The resulting gel can be applied as a fascinating platform for visual recognition of enantiomeric 1-(2-hydroxynaphthalen-1-yl)naphthalen-2-ol (BINOL) through selective gel collapse. In addition, the mechanism for the reaction of the gel with chiral BINOL was investigated by scanning electron microscope and 1H nuclear magnetic resonance.

Cite this article

Xuhong Zhang , Haimiao Li , Xin Zhang , Meng An , Weiwei Fang , Haitao Yu . Visual chiral recognition of 1,1′-binaphthol through enantioselective collapse of gel based on an amphiphilic Schiff-base gelator[J]. Frontiers of Chemical Science and Engineering, 2017 , 11(2) : 231 -237 . DOI: 10.1007/s11705-017-1633-3

Acknowledgement

We greatly appreciate the support of the National Natural Science Foundation of China (Grant Nos. 21272054 and 21502040), Natural Science Foundation of Hebei Province (B2016205249 and B2016205211), Youth Top-notch Talent Foundation of the Education Department of Hebei Province (No. BJ2014039), Science and Technology Research Fund of the Education Department of Hebei Province (No. ZD2015030) and the Startup Foundation of Hebei Normal University (Nos. L2015B08, L2015B09, L2015k02 and L2016Z01)
1
Sun T, Han D, Rhemann K, Chi L, Fuchs H. Stereospecific interaction between immune cells and chiral surfaces. Journal of the American Chemical Society, 2007, 129(6): 1496–1497

DOI

2
Tang K, Gan H, Li Y, Chi L, Sun T, Fuchs H. Stereoselective interaction between DNA and chiral surfaces. Journal of the American Chemical Society, 2008, 130(34): 11284–11285

DOI

3
Miao W G, Zhang L, Wang X F, Qin L, Liu M H. Gelation-induced visible supramolecular chiral recognition by fluorescent metal complexes of quinolinol-glutamide. Langmuir, 2013, 29(18): 5435–5442

DOI

4
Wang Y, Zhang T, Liu L. Enantioselective and α-regioselective allylic amination of Morita-Baylis-Hillman acetates with simple aromatic  amines  catalyzed  by  planarly  chiral ligand/palladium catalyst.  Chinese  Journal of  Chemistry, 2012, 30(11): 2641–2646

5
Velmurugan K, Tang L, Nandhakumar R. A Novel dimeric BINOL for enantioselective recognition of 1,2-amino alcohols. Chinese Journal of Chemistry, 2014, 32(11): 1157–1160

DOI

6
Chi L, Zhao J, James T D. Chiral mono boronic acid as fluorescent enantioselective sensor for mono α-hydroxyl carboxylic acids. Journal of Organic Chemistry, 2008, 73(12): 4684–4687

DOI

7
Li Z B, Lin J, Sabat M, Hyacinth M, Pu L. Enantioselective fluorescent recognition of chiral acids by cyclohexane-1, 2-diamine-based bisbinaphthyl molecules. Journal of Organic Chemistry, 2007, 72(13): 4905–4916

DOI

8
Jintoku H, Takafuji M, Oda R, Ihara H. Enantioselective recognition by a highly ordered porphyrin-assembly on a chiral molecular gel. Chemical Communications, 2012, 48(40): 4881–4883

DOI

9
Jin Q X, Zhang L, Zhu X F, Duan P F, Liu M H. Amphiphilic schiff base organogels: Metal-ion-mediated chiral twists and chiral recognition. Chemistry-A European Journal, 2012, 18(16): 4916–4922

DOI

10
Wei G, Zhang S, Dai C, Quan Y, Cheng Y, Zhu C. A new chiral binaphthalene-based fluorescence polymer sensor for the highly enantioselective recognition of phenylalaninol. Chemistry-A European Journal, 2013, 19(47): 16066–16071

DOI

11
Miao W, Zhang L, Wang X, Cao H, Jin Q, Liu M. A dual functional metallogel of amphiphilic copper (II) quinolinol: Redox responsiveness and enantioselectivity. Chemistry-A European Journal, 2013, 19(9): 3029–3036

DOI

12
Xu K, Kong H, Li P, Yang L, Zhang J, Wang C. Acridine-based enantioselective fluorescent sensors for the malate anion in water. New Journal of Chemistry, 2014, 38(3): 1004–1010

DOI

13
Tu T, Fang W, Sun Z. Visual-size molecular recognition based on gels. Advanced Materials, 2013, 25(37): 5304–5313

DOI

14
Song F, Fei N, Li F, Zhang S, Cheng Y, Zhu C. Zhu C. A chiral ionic polymer for direct visual enantioselective recognition of α-amino acid  anions.  Chemical  Communications, 2013, 49(28): 2891–2893

DOI

15
Yu X, Liu Q, Wu J, Zhang M, Cao X, Zhang S, Wang Q, Chen L, Yi T. Sonication-triggered instantaneous gel-to-gel transformation. Chemistry-A European Journal, 2010, 16(30): 9099–9106

DOI

16
Fang W, Liu X, Lu Z, Tu T. Photoresponsive metallo-hydrogels based on visual discrimination of the positional isomers through selective thixotropic gel collapse. Chemical Communications, 2014, 50(25): 3313–3316

DOI

17
Ladet S, David L, Domard A. Multi-membrane hydrogels. Nature, 2008, 452(7183): 76–79

DOI

18
Kumar N S S, Varghese S, Narayan G, Das S. Hierarchical self-assembly of donor–acceptor-substituted butadiene amphiphiles into photoresponsive vesicles and gels. Angewandte Chemie International Edition, 2006, 45(38): 6317–6321

DOI

19
Li Z, Huang Y, Fan D, Li H, Liu S, Wang L. Synthesis and properties of novel organogelators functionalized with 5-iodo-1,2,3-triazole and azobenzene groups. Frontiers of Chemical Science and Engineering, 2016, 10(4): 552–561

DOI

20
Zhang L, Jin Q, Liu M. Enantioselective recognition by chiral supramolecular gels. Chemistry, an Asian Journal, 2016, 11(19): 2642–2649

DOI

21
Chen X, Huang Z, Chen S Y, Li K, Yu X Q, Pu L. Enantioselective gel collapsing: A new means of visual chiral sensing. Journal of the American Chemical Society, 2010, 132(21): 7297–7299

DOI

22
Tu T, Fang W W, Bao X L, Li X B, Dotz K H. Visual chiral recognition through enantioselective metallogel collapsing: Synthesis, characterization, and application of platinum-steroid low molecular mass gelators. Angewandte Chemie, 2011, 123(29): 6731–6735

DOI

23
Shockravi A, Javadi A, Abouzari-Lotf E. Binaphthyl-based macromolecules: A review. RSC Advances, 2013, 3(19): 6717–6746

DOI

24
Wang Q, Chen X, Tao L, Wang L, Xiao D, Yu X Q, Pu L. Enantioselective fluorescent recognition of amino alcohols by a chiral tetrahydroxyl 1,1′-binaphthyl compound. Journal of Organic Chemistry, 2007, 72(1): 97–101

DOI

25
Xu Y F, McCarroll M E. Chiral recognition of 1,1′-binaphthyl-2, 2′-diyl hydrogenphosphate using fluorescence anisotropy. Journal of Photochemistry and Photobiology A Chemistry, 2007, 187(2): 139–145

DOI

26
Hardy J G, Hirst A R, Ashworth I, Brennan C, Smith D K. Exploring molecular recognition pathways within a family of gelators with different hydrogen bonding motifs. Tetrahedron, 2007, 63(31): 7397–7406

DOI

27
Dado G P, Gellman S H. Intramolecular hydrogen bonding in derivatives of beta-alanine and gamma-amino butyric acid: Model studies for the folding of unnatural polypeptide backbones. Journal of the American Chemical Society, 1994, 116(3): 1054–1062

DOI

Outlines

/