Visual chiral recognition of 1,1′-binaphthol through enantioselective collapse of gel based on an amphiphilic Schiff-base gelator

Xuhong Zhang , Haimiao Li , Xin Zhang , Meng An , Weiwei Fang , Haitao Yu

Front. Chem. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (2) : 231 -237.

PDF (328KB)
Front. Chem. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (2) : 231 -237. DOI: 10.1007/s11705-017-1633-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Visual chiral recognition of 1,1′-binaphthol through enantioselective collapse of gel based on an amphiphilic Schiff-base gelator

Author information +
History +
PDF (328KB)

Abstract

A novel gelator that contained both Schiff base and L-lysine moieties was synthesized and its gelation behavior was tested. This gelator can form gels in various organic solvents. The resulting gel can be applied as a fascinating platform for visual recognition of enantiomeric 1-(2-hydroxynaphthalen-1-yl)naphthalen-2-ol (BINOL) through selective gel collapse. In addition, the mechanism for the reaction of the gel with chiral BINOL was investigated by scanning electron microscope and 1H nuclear magnetic resonance.

Graphical abstract

Keywords

gelator / Schiff base / chiral recognition / gel formation / gel collapse

Cite this article

Download citation ▾
Xuhong Zhang, Haimiao Li, Xin Zhang, Meng An, Weiwei Fang, Haitao Yu. Visual chiral recognition of 1,1′-binaphthol through enantioselective collapse of gel based on an amphiphilic Schiff-base gelator. Front. Chem. Sci. Eng., 2017, 11(2): 231-237 DOI:10.1007/s11705-017-1633-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sun THan DRhemann KChi LFuchs H. Stereospecific interaction between immune cells and chiral surfaces. Journal of the American Chemical Society2007129(6): 1496–1497

[2]

Tang KGan HLi YChi LSun TFuchs H. Stereoselective interaction between DNA and chiral surfaces. Journal of the American Chemical Society2008130(34): 11284–11285

[3]

Miao W GZhang LWang X FQin LLiu M H. Gelation-induced visible supramolecular chiral recognition by fluorescent metal complexes of quinolinol-glutamide. Langmuir201329(18): 5435–5442

[4]

Wang YZhang TLiu L. Enantioselective and α-regioselective allylic amination of Morita-Baylis-Hillman acetates with simple aromatic  amines  catalyzed  by  planarly  chiral ligand/palladium catalyst.  Chinese  Journal of  Chemistry201230(11): 2641–2646

[5]

Velmurugan KTang LNandhakumar R. A Novel dimeric BINOL for enantioselective recognition of 1,2-amino alcohols. Chinese Journal of Chemistry201432(11): 1157–1160

[6]

Chi LZhao JJames T D. Chiral mono boronic acid as fluorescent enantioselective sensor for mono α-hydroxyl carboxylic acids. Journal of Organic Chemistry200873(12): 4684–4687

[7]

Li Z BLin JSabat MHyacinth MPu L. Enantioselective fluorescent recognition of chiral acids by cyclohexane-1, 2-diamine-based bisbinaphthyl molecules. Journal of Organic Chemistry200772(13): 4905–4916

[8]

Jintoku HTakafuji MOda RIhara H. Enantioselective recognition by a highly ordered porphyrin-assembly on a chiral molecular gel. Chemical Communications201248(40): 4881–4883

[9]

Jin Q XZhang LZhu X FDuan P FLiu M H. Amphiphilic schiff base organogels: Metal-ion-mediated chiral twists and chiral recognition. Chemistry-A European Journal201218(16): 4916–4922

[10]

Wei GZhang SDai CQuan YCheng YZhu C. A new chiral binaphthalene-based fluorescence polymer sensor for the highly enantioselective recognition of phenylalaninol. Chemistry-A European Journal201319(47): 16066–16071

[11]

Miao WZhang LWang XCao HJin QLiu M. A dual functional metallogel of amphiphilic copper (II) quinolinol: Redox responsiveness and enantioselectivity. Chemistry-A European Journal201319(9): 3029–3036

[12]

Xu KKong HLi PYang LZhang JWang C. Acridine-based enantioselective fluorescent sensors for the malate anion in water. New Journal of Chemistry201438(3): 1004–1010

[13]

Tu TFang WSun Z. Visual-size molecular recognition based on gels. Advanced Materials201325(37): 5304–5313

[14]

Song FFei NLi FZhang SCheng YZhu C. Zhu C. A chiral ionic polymer for direct visual enantioselective recognition of α-amino acid  anions.  Chemical  Communications201349(28): 2891–2893

[15]

Yu XLiu QWu JZhang MCao XZhang SWang QChen LYi T. Sonication-triggered instantaneous gel-to-gel transformation. Chemistry-A European Journal201016(30): 9099–9106

[16]

Fang WLiu XLu ZTu T. Photoresponsive metallo-hydrogels based on visual discrimination of the positional isomers through selective thixotropic gel collapse. Chemical Communications201450(25): 3313–3316

[17]

Ladet SDavid LDomard A. Multi-membrane hydrogels. Nature2008452(7183): 76–79

[18]

Kumar N S SVarghese SNarayan GDas S. Hierarchical self-assembly of donor–acceptor-substituted butadiene amphiphiles into photoresponsive vesicles and gels. Angewandte Chemie International Edition200645(38): 6317–6321

[19]

Li ZHuang YFan DLi HLiu SWang L. Synthesis and properties of novel organogelators functionalized with 5-iodo-1,2,3-triazole and azobenzene groups. Frontiers of Chemical Science and Engineering201610(4): 552–561

[20]

Zhang LJin QLiu M. Enantioselective recognition by chiral supramolecular gels. Chemistry, an Asian Journal201611(19): 2642–2649

[21]

Chen XHuang ZChen S YLi KYu X QPu L. Enantioselective gel collapsing: A new means of visual chiral sensing. Journal of the American Chemical Society2010132(21): 7297–7299

[22]

Tu TFang W WBao X LLi X BDotz K H. Visual chiral recognition through enantioselective metallogel collapsing: Synthesis, characterization, and application of platinum-steroid low molecular mass gelators. Angewandte Chemie2011123(29): 6731–6735

[23]

Shockravi AJavadi AAbouzari-Lotf E. Binaphthyl-based macromolecules: A review. RSC Advances20133(19): 6717–6746

[24]

Wang QChen XTao LWang LXiao DYu X QPu L. Enantioselective fluorescent recognition of amino alcohols by a chiral tetrahydroxyl 1,1′-binaphthyl compound. Journal of Organic Chemistry200772(1): 97–101

[25]

Xu Y FMcCarroll M E. Chiral recognition of 1,1′-binaphthyl-2, 2′-diyl hydrogenphosphate using fluorescence anisotropy. Journal of Photochemistry and Photobiology A Chemistry2007187(2): 139–145

[26]

Hardy J GHirst A RAshworth IBrennan CSmith D K. Exploring molecular recognition pathways within a family of gelators with different hydrogen bonding motifs. Tetrahedron200763(31): 7397–7406

[27]

Dado G PGellman S H. Intramolecular hydrogen bonding in derivatives of beta-alanine and gamma-amino butyric acid: Model studies for the folding of unnatural polypeptide backbones. Journal of the American Chemical Society1994116(3): 1054–1062

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (328KB)

2787

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/