Visual chiral recognition of 1,1′-binaphthol through enantioselective collapse of gel based on an amphiphilic Schiff-base gelator

Xuhong Zhang, Haimiao Li, Xin Zhang, Meng An, Weiwei Fang, Haitao Yu

PDF(328 KB)
PDF(328 KB)
Front. Chem. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (2) : 231-237. DOI: 10.1007/s11705-017-1633-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Visual chiral recognition of 1,1′-binaphthol through enantioselective collapse of gel based on an amphiphilic Schiff-base gelator

Author information +
History +

Abstract

A novel gelator that contained both Schiff base and L-lysine moieties was synthesized and its gelation behavior was tested. This gelator can form gels in various organic solvents. The resulting gel can be applied as a fascinating platform for visual recognition of enantiomeric 1-(2-hydroxynaphthalen-1-yl)naphthalen-2-ol (BINOL) through selective gel collapse. In addition, the mechanism for the reaction of the gel with chiral BINOL was investigated by scanning electron microscope and 1H nuclear magnetic resonance.

Graphical abstract

Keywords

gelator / Schiff base / chiral recognition / gel formation / gel collapse

Cite this article

Download citation ▾
Xuhong Zhang, Haimiao Li, Xin Zhang, Meng An, Weiwei Fang, Haitao Yu. Visual chiral recognition of 1,1′-binaphthol through enantioselective collapse of gel based on an amphiphilic Schiff-base gelator. Front. Chem. Sci. Eng., 2017, 11(2): 231‒237 https://doi.org/10.1007/s11705-017-1633-3

References

[1]
Sun T, Han D, Rhemann K, Chi L, Fuchs H. Stereospecific interaction between immune cells and chiral surfaces. Journal of the American Chemical Society, 2007, 129(6): 1496–1497
CrossRef Google scholar
[2]
Tang K, Gan H, Li Y, Chi L, Sun T, Fuchs H. Stereoselective interaction between DNA and chiral surfaces. Journal of the American Chemical Society, 2008, 130(34): 11284–11285
CrossRef Google scholar
[3]
Miao W G, Zhang L, Wang X F, Qin L, Liu M H. Gelation-induced visible supramolecular chiral recognition by fluorescent metal complexes of quinolinol-glutamide. Langmuir, 2013, 29(18): 5435–5442
CrossRef Google scholar
[4]
Wang Y, Zhang T, Liu L. Enantioselective and α-regioselective allylic amination of Morita-Baylis-Hillman acetates with simple aromatic  amines  catalyzed  by  planarly  chiral ligand/palladium catalyst.  Chinese  Journal of  Chemistry, 2012, 30(11): 2641–2646
[5]
Velmurugan K, Tang L, Nandhakumar R. A Novel dimeric BINOL for enantioselective recognition of 1,2-amino alcohols. Chinese Journal of Chemistry, 2014, 32(11): 1157–1160
CrossRef Google scholar
[6]
Chi L, Zhao J, James T D. Chiral mono boronic acid as fluorescent enantioselective sensor for mono α-hydroxyl carboxylic acids. Journal of Organic Chemistry, 2008, 73(12): 4684–4687
CrossRef Google scholar
[7]
Li Z B, Lin J, Sabat M, Hyacinth M, Pu L. Enantioselective fluorescent recognition of chiral acids by cyclohexane-1, 2-diamine-based bisbinaphthyl molecules. Journal of Organic Chemistry, 2007, 72(13): 4905–4916
CrossRef Google scholar
[8]
Jintoku H, Takafuji M, Oda R, Ihara H. Enantioselective recognition by a highly ordered porphyrin-assembly on a chiral molecular gel. Chemical Communications, 2012, 48(40): 4881–4883
CrossRef Google scholar
[9]
Jin Q X, Zhang L, Zhu X F, Duan P F, Liu M H. Amphiphilic schiff base organogels: Metal-ion-mediated chiral twists and chiral recognition. Chemistry-A European Journal, 2012, 18(16): 4916–4922
CrossRef Google scholar
[10]
Wei G, Zhang S, Dai C, Quan Y, Cheng Y, Zhu C. A new chiral binaphthalene-based fluorescence polymer sensor for the highly enantioselective recognition of phenylalaninol. Chemistry-A European Journal, 2013, 19(47): 16066–16071
CrossRef Google scholar
[11]
Miao W, Zhang L, Wang X, Cao H, Jin Q, Liu M. A dual functional metallogel of amphiphilic copper (II) quinolinol: Redox responsiveness and enantioselectivity. Chemistry-A European Journal, 2013, 19(9): 3029–3036
CrossRef Google scholar
[12]
Xu K, Kong H, Li P, Yang L, Zhang J, Wang C. Acridine-based enantioselective fluorescent sensors for the malate anion in water. New Journal of Chemistry, 2014, 38(3): 1004–1010
CrossRef Google scholar
[13]
Tu T, Fang W, Sun Z. Visual-size molecular recognition based on gels. Advanced Materials, 2013, 25(37): 5304–5313
CrossRef Google scholar
[14]
Song F, Fei N, Li F, Zhang S, Cheng Y, Zhu C. Zhu C. A chiral ionic polymer for direct visual enantioselective recognition of α-amino acid  anions.  Chemical  Communications, 2013, 49(28): 2891–2893
CrossRef Google scholar
[15]
Yu X, Liu Q, Wu J, Zhang M, Cao X, Zhang S, Wang Q, Chen L, Yi T. Sonication-triggered instantaneous gel-to-gel transformation. Chemistry-A European Journal, 2010, 16(30): 9099–9106
CrossRef Google scholar
[16]
Fang W, Liu X, Lu Z, Tu T. Photoresponsive metallo-hydrogels based on visual discrimination of the positional isomers through selective thixotropic gel collapse. Chemical Communications, 2014, 50(25): 3313–3316
CrossRef Google scholar
[17]
Ladet S, David L, Domard A. Multi-membrane hydrogels. Nature, 2008, 452(7183): 76–79
CrossRef Google scholar
[18]
Kumar N S S, Varghese S, Narayan G, Das S. Hierarchical self-assembly of donor–acceptor-substituted butadiene amphiphiles into photoresponsive vesicles and gels. Angewandte Chemie International Edition, 2006, 45(38): 6317–6321
CrossRef Google scholar
[19]
Li Z, Huang Y, Fan D, Li H, Liu S, Wang L. Synthesis and properties of novel organogelators functionalized with 5-iodo-1,2,3-triazole and azobenzene groups. Frontiers of Chemical Science and Engineering, 2016, 10(4): 552–561
CrossRef Google scholar
[20]
Zhang L, Jin Q, Liu M. Enantioselective recognition by chiral supramolecular gels. Chemistry, an Asian Journal, 2016, 11(19): 2642–2649
CrossRef Google scholar
[21]
Chen X, Huang Z, Chen S Y, Li K, Yu X Q, Pu L. Enantioselective gel collapsing: A new means of visual chiral sensing. Journal of the American Chemical Society, 2010, 132(21): 7297–7299
CrossRef Google scholar
[22]
Tu T, Fang W W, Bao X L, Li X B, Dotz K H. Visual chiral recognition through enantioselective metallogel collapsing: Synthesis, characterization, and application of platinum-steroid low molecular mass gelators. Angewandte Chemie, 2011, 123(29): 6731–6735
CrossRef Google scholar
[23]
Shockravi A, Javadi A, Abouzari-Lotf E. Binaphthyl-based macromolecules: A review. RSC Advances, 2013, 3(19): 6717–6746
CrossRef Google scholar
[24]
Wang Q, Chen X, Tao L, Wang L, Xiao D, Yu X Q, Pu L. Enantioselective fluorescent recognition of amino alcohols by a chiral tetrahydroxyl 1,1′-binaphthyl compound. Journal of Organic Chemistry, 2007, 72(1): 97–101
CrossRef Google scholar
[25]
Xu Y F, McCarroll M E. Chiral recognition of 1,1′-binaphthyl-2, 2′-diyl hydrogenphosphate using fluorescence anisotropy. Journal of Photochemistry and Photobiology A Chemistry, 2007, 187(2): 139–145
CrossRef Google scholar
[26]
Hardy J G, Hirst A R, Ashworth I, Brennan C, Smith D K. Exploring molecular recognition pathways within a family of gelators with different hydrogen bonding motifs. Tetrahedron, 2007, 63(31): 7397–7406
CrossRef Google scholar
[27]
Dado G P, Gellman S H. Intramolecular hydrogen bonding in derivatives of beta-alanine and gamma-amino butyric acid: Model studies for the folding of unnatural polypeptide backbones. Journal of the American Chemical Society, 1994, 116(3): 1054–1062
CrossRef Google scholar

Acknowledgement

We greatly appreciate the support of the National Natural Science Foundation of China (Grant Nos. 21272054 and 21502040), Natural Science Foundation of Hebei Province (B2016205249 and B2016205211), Youth Top-notch Talent Foundation of the Education Department of Hebei Province (No. BJ2014039), Science and Technology Research Fund of the Education Department of Hebei Province (No. ZD2015030) and the Startup Foundation of Hebei Normal University (Nos. L2015B08, L2015B09, L2015k02 and L2016Z01)

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(328 KB)

Accesses

Citations

Detail

Sections
Recommended

/