Frontiers of Chemical Science and Engineering >
Engineering platelet-mimicking drug delivery vehicles
Received date: 26 Sep 2016
Accepted date: 25 Oct 2016
Published date: 06 Nov 2017
Copyright
Platelets dynamically participate in various physiological processes, including wound repair, bacterial clearance, immune response, and tumor metastasis. Recreating the specific biological features of platelets by mimicking the structure of the platelet or translocating the platelet membrane to synthetic particles holds great promise in disease treatment. This review highlights recent advancements made in the platelet-mimicking strategies. The future opportunities and translational challenges are also discussed.
Key words: drug delivery; platelets; nanomedicine; bio-inspired; biomimetic
Quanyin Hu , Hunter N. Bomba , Zhen Gu . Engineering platelet-mimicking drug delivery vehicles[J]. Frontiers of Chemical Science and Engineering, 2017 , 11(4) : 624 -632 . DOI: 10.1007/s11705-017-1614-6
1 |
Rondina M T, Weyrich A S, Zimmerman G A. Platelets as cellular effectors of inflammation in vascular diseases. Circulation Research, 2013, 112(11): 1506–1519
|
2 |
Moers A, Nieswandt B, Massberg S, Wettschureck N, Grüner S, Konrad I, Schulte V, Aktas B, Gratacap M P, Simon M I, Gawaz M, Offermanns S. G13 is an essential mediator of platelet activation in hemostasis and thrombosis. Nature Medicine, 2003, 9(11): 1418–1422
|
3 |
Semple J W, Italiano J E, Freedman J. Platelets and the immune continuum. Nature Reviews. Immunology, 2011, 11(4): 264–274
|
4 |
Davì G, Patrono C. Platelet activation and atherothrombosis. New England Journal of Medicine, 2007, 357(24): 2482–2494
|
5 |
Gay L J, Felding-Habermann B. Contribution of platelets to tumour metastasis. Nature Reviews. Cancer, 2011, 11(2): 123–134
|
6 |
Karpatkin S, Pearlstein E, Ambrogio C, Coller B. Role of adhesive proteins in platelet tumor interaction in vitro and metastasis formation in vivo. Journal of Clinical Investigation, 1988, 81(4): 1012–1019
|
7 |
Borsig L, Wong R, Feramisco J, Nadeau D R, Varki N M, Varki A. Heparin and cancer revisited: Mechanistic connections involving platelets, P-selectin, carcinoma mucins, and tumor metastasis. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(6): 3352–3357
|
8 |
Jurasz P, Alonso-Escolano D, Radomski M W. Platelet-cancer interactions: Mechanisms and pharmacology of tumour cell—induced platelet aggregation. British Journal of Pharmacology, 2004, 143(7): 819–826
|
9 |
Borsig L. The role of platelet activation in tumor metastasis. Expert Review of Anticancer Therapy, 2008, 8(8): 1247–1255
|
10 |
Farokhzad O C, Langer R. Impact of nanotechnology on drug delivery. ACS Nano, 2009, 3(1): 16–20
|
11 |
Farokhzad O C, Langer R. Nanomedicine: Developing smarter therapeutic and diagnostic modalities. Advanced Drug Delivery Reviews, 2006, 58(14): 1456–1459
|
12 |
Langer R. Drug delivery and targeting. Nature, 1998, 392(6679 Suppl): 5–10
|
13 |
Peer D, Karp J M, Hong S, Farokhzad O C, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nature Nanotechnology, 2007, 2(12): 751–760
|
14 |
Shi J, Votruba A R, Farokhzad O C, Langer R. Nanotechnology in drug delivery and tissue engineering: From discovery to applications. Nano Letters, 2010, 10(9): 3223–3230
|
15 |
Wilhelm S, Tavares A J, Dai Q, Ohta S, Audet J, Dvorak H F, Chan W C. Analysis of nanoparticle delivery to tumours. Nature Reviews Materials, 2016, 1(5): 16014
|
16 |
Mitragotri S, Anderson D G, Chen X, Chow E K, Ho D, Kabanov A V, Karp J M, Kataoka K, Mirkin C A, Petrosko S H, Shi J, Stevens M M, Sun S, Teoh S, Venkatraman S S, Xia Y, Wang S, Gu Z, Xu C. Accelerating the translation of nanomaterials in biomedicine. ACS Nano, 2015, 9(7): 6644–6654
|
17 |
Ikoba U, Peng H, Li H, Miller C, Yu C, Wang Q. Nanocarriers in therapy of infectious and inflammatory diseases. Nanoscale, 2015, 7(10): 4291–4305
|
18 |
Peng H, Liu X, Wang G, Li M, Bratlie K M, Cochran E, Wang Q. Polymeric multifunctional nanomaterials for theranostics. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 2015, 3(34): 6856–6870
|
19 |
Nguyen T X, Huang L, Gauthier M, Yang G, Wang Q. Recent advances in liposome surface modification for oral drug delivery. Nanomedicine (London), 2016, 11(9): 1169–1185
|
20 |
Weber C, Fraemohs L, Dejana E. The role of junctional adhesion molecules in vascular inflammation. Nature Reviews. Immunology, 2007, 7(6): 467–477
|
21 |
Nesbitt W S, Westein E, Tovar-Lopez F J, Tolouei E, Mitchell A, Fu J, Carberry J, Fouras A, Jackson S P. A shear gradient-dependent platelet aggregation mechanism drives thrombus formation. Nature Medicine, 2009, 15(6): 665–673
|
22 |
Nandi S, Brown A C. Platelet-mimetic strategies for modulating the wound environment and inflammatory responses. Experimental Biology and Medicine (Maywood, N.J.), 2016, 241(10): 1138–1148
|
23 |
Woulfe D. Review articles: Platelet G protein—coupled receptors in hemostasis and thrombosis. Journal of Thrombosis and Haemostasis, 2005, 3(10): 2193–2200
|
24 |
Kuwahara M, Sugimoto M, Tsuji S, Matsui H, Mizuno T, Miyata S, Yoshioka A. Platelet shape changes and adhesion under high shear flow. Arteriosclerosis, Thrombosis, and Vascular Biology, 2002, 22(2): 329–334
|
25 |
Frojmovic M M, Milton J G. Human platelet size, shape, and related functions in health and disease. Physiological Reviews, 1982, 62(1): 185–261
|
26 |
Kamath S, Blann A, Lip G. Platelet activation: Assessment and quantification. European Heart Journal, 2001, 22(17): 1561–1571
|
27 |
Jackson S P. The growing complexity of platelet aggregation. Blood, 2007, 109(12): 5087–5095
|
28 |
Borsig L. The role of platelet activation in tumor metastasis. Expert Review of Anticancer Therapy, 2008, 8(8): 1247–1255
|
29 |
Liu X, Zhang F, Wang Q, Gao J, Meng J, Wang S, Yang Z, Jiang L. Platelet-inspired multiscaled cytophilic interfaces with high specificity and efficiency toward point-of-care cancer diagnosis. Small, 2014, 10(22): 4677–4683
|
30 |
Gires O, Klein C A, Baeuerle P A. On the abundance of EpCAM on cancer stem cells. Nature Reviews. Cancer, 2009, 9(2): 143–143
|
31 |
Baeuerle P, Gires O. EpCAM (CD326) finding its role in cancer. British Journal of Cancer, 2007, 96(3): 417–423
|
32 |
Sarkar S, Alam M A, Shaw J, Dasgupta A K. Drug delivery using platelet cancer cell interaction. Pharmaceutical Research, 2013, 30(11): 2785–2794
|
33 |
Brown A C, Stabenfeldt S E, Ahn B, Hannan R T, Dhada K S, Herman E S, Stefanelli V, Guzzetta N, Alexeev A, Lam W A, Lyon L A, Barker T H. Ultrasoft microgels displaying emergent platelet-like behaviours. Nature Materials, 2014, 13(12): 1108–1114
|
34 |
Doshi N, Orje J N, Molins B, Smith J W, Mitragotri S, Ruggeri Z M. Platelet mimetic particles for targeting thrombi in flowing blood. Advanced Materials, 2012, 24(28): 3864–3869
|
35 |
Anselmo A C, Modery-Pawlowski C L, Menegatti S, Kumar S, Vogus D R, Tian L L, Chen M, Squires T M, Sen Gupta A, Mitragotri S. Platelet-like nanoparticles: Mimicking shape, flexibility, and surface biology of platelets to target vascular injuries. ACS Nano, 2014, 8(11): 11243–11253
|
36 |
Gao W, Zhang L. Coating nanoparticles with cell membranes for targeted drug delivery. Journal of Drug Targeting, 2015, 23(7-8): 619–626
|
37 |
Luk B T, Zhang L. Cell membrane-camouflaged nanoparticles for drug delivery. Journal of Controlled Release, 2015, 220: 600–607
|
38 |
Wang Q, Cheng H, Peng H, Zhou H, Li P Y, Langer R. Non-genetic engineering of cells for drug delivery and cell-based therapy. Advanced Drug Delivery Reviews, 2015, 91: 125–140
|
39 |
Fang R H, Hu C M J, Luk B T, Gao W, Copp J A, Tai Y, O’Connor D E, Zhang L. Cancer cell membrane-coated nanoparticles for anticancer vaccination and drug delivery. Nano Letters, 2014, 14(4): 2181–2188
|
40 |
Hu C M J, Fang R H, Copp J, Luk B T, Zhang L. A biomimetic nanosponge that absorbs pore-forming toxins. Nature Nanotechnology, 2013, 8(5): 336–340
|
41 |
Hu C M J, Fang R H, Luk B T, Zhang L. Nanoparticle-detained toxins for safe and effective vaccination. Nature Nanotechnology, 2013, 8(12): 933–938
|
42 |
Hu C M J, Zhang L, Aryal S, Cheung C, Fang R H, Zhang L. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(27): 10980–10985
|
43 |
Parodi A, Quattrocchi N, van de Ven A L, Chiappini C, Evangelopoulos M, Martinez J O, Brown B S, Khaled S Z, Yazdi I K, Enzo M V. Biomimetic functionalization with leukocyte membranes imparts cell like functions to synthetic particles. Nature Nanotechnology, 2013, 8(1): 61–68
|
44 |
Fan Z, Zhou H, Li P Y, Speer J E, Cheng H. Structural elucidation of cell membrane-derived nanoparticles using molecular probes. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 2014, 2(46): 8231–8238
|
45 |
Luk B T, Hu C M J, Fang R H, Dehaini D, Carpenter C, Gao W, Zhang L. Interfacial interactions between natural RBC membranes and synthetic polymeric nanoparticles. Nanoscale, 2014, 6(5): 2730–2737
|
46 |
Li J, Sharkey C C, Wun B, Liesveld J L, King M R. Genetic engineering of platelets to neutralize circulating tumor cells. Journal of Controlled Release, 2016, 228: 38–47
|
47 |
Ponta H, Sherman L, Herrlich P A. CD44: From adhesion molecules to signalling regulators. Nature Reviews. Molecular Cell Biology, 2003, 4(1): 33–45
|
48 |
Hu Q, Sun W, Qian C, Wang C, Bomba H N, Gu Z. Anticancer platelet-mimicking nanovehicles. Advanced Materials, 2015, 27(44): 7043–7050
|
49 |
Hu Q, Sun W, Lu Y, Bomba H N, Ye Y, Jiang T, Isaacson A J, Gu Z. Tumor microenvironment-mediated construction and deconstruction of extracellular drug-delivery depots. Nano Letters, 2016, 16(2): 1118–1126
|
50 |
Hu Q, Sun W, Wang C, Gu Z. Recent advances of cocktail chemotherapy by combination drug delivery systems. Advanced Drug Delivery Reviews, 2016, 98: 19–34
|
51 |
Cohen J A, Beaudette T T, Tseng W W, Bachelder E M, Mende I, Engleman E G, Fréchet J M. T-cell activation by antigen-loaded pH-sensitive hydrogel particles in vivo: The effect of particle size. Bioconjugate Chemistry, 2008, 20(1): 111–119
|
52 |
Kwon Y J, Standley S M, Goh S L, Fréchet J M. Enhanced antigen presentation and immunostimulation of dendritic cells using acid-degradable cationic nanoparticles. Journal of Controlled Release, 2005, 105(3): 199–212
|
53 |
Li J, Ai Y, Wang L, Bu P, Sharkey C C, Wu Q, Wun B, Roy S, Shen X, King M R. Targeted drug delivery to circulating tumor cells via platelet membrane-functionalized particles. Biomaterials, 2016, 76: 52–65
|
54 |
Hu Q, Qian C, Sun W, Wang J, Chen Z, Bomba H N, Xin H, Shen Q, Gu Z. Engineered nanoplatelets for enhanced treatment of multiple myeloma and thrombus. Advanced Materials, 2016,
|
55 |
Swami A, Reagan M R, Basto P, Mishima Y, Kamaly N, Glavey S, Zhang S, Moschetta M, Seevaratnam D, Zhang Y, Liu J, Memarzadeh M, Wu J, Manier S, Shi J, Bertrand N, Lu Z N, Nagano K, Baron R, Sacco A, Roccaro A M, Farokhzad O C, Ghobrial I M. Engineered nanomedicine for myeloma and bone microenvironment targeting. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(28): 10287–10292
|
56 |
Hu C M J, Fang R H, Wang K C, Luk B T, Thamphiwatana S, Dehaini D, Nguyen P, Angsantikul P, Wen C H, Kroll A V, Carpenter C, Ramesh M, Qu V, Patel S H, Zhu J, Shi W, Hofman F M, Chen T C, Gao W, Zhang K, Chien S, Zhang L. Nanoparticle biointerfacing by platelet membrane cloaking. Nature, 2015, 526(7571): 118–121
|
57 |
Farokhzad O C. Nanotechnology: Platelet mimicry. Nature, 2015, 526(7571): 47–48
|
/
〈 | 〉 |