Engineering platelet-mimicking drug delivery vehicles
Quanyin Hu, Hunter N. Bomba, Zhen Gu
Engineering platelet-mimicking drug delivery vehicles
Platelets dynamically participate in various physiological processes, including wound repair, bacterial clearance, immune response, and tumor metastasis. Recreating the specific biological features of platelets by mimicking the structure of the platelet or translocating the platelet membrane to synthetic particles holds great promise in disease treatment. This review highlights recent advancements made in the platelet-mimicking strategies. The future opportunities and translational challenges are also discussed.
drug delivery / platelets / nanomedicine / bio-inspired / biomimetic
[1] |
Rondina M T, Weyrich A S, Zimmerman G A. Platelets as cellular effectors of inflammation in vascular diseases. Circulation Research, 2013, 112(11): 1506–1519
CrossRef
Google scholar
|
[2] |
Moers A, Nieswandt B, Massberg S, Wettschureck N, Grüner S, Konrad I, Schulte V, Aktas B, Gratacap M P, Simon M I, Gawaz M, Offermanns S. G13 is an essential mediator of platelet activation in hemostasis and thrombosis. Nature Medicine, 2003, 9(11): 1418–1422
CrossRef
Google scholar
|
[3] |
Semple J W, Italiano J E, Freedman J. Platelets and the immune continuum. Nature Reviews. Immunology, 2011, 11(4): 264–274
CrossRef
Google scholar
|
[4] |
Davì G, Patrono C. Platelet activation and atherothrombosis. New England Journal of Medicine, 2007, 357(24): 2482–2494
CrossRef
Google scholar
|
[5] |
Gay L J, Felding-Habermann B. Contribution of platelets to tumour metastasis. Nature Reviews. Cancer, 2011, 11(2): 123–134
CrossRef
Google scholar
|
[6] |
Karpatkin S, Pearlstein E, Ambrogio C, Coller B. Role of adhesive proteins in platelet tumor interaction in vitro and metastasis formation in vivo. Journal of Clinical Investigation, 1988, 81(4): 1012–1019
CrossRef
Google scholar
|
[7] |
Borsig L, Wong R, Feramisco J, Nadeau D R, Varki N M, Varki A. Heparin and cancer revisited: Mechanistic connections involving platelets, P-selectin, carcinoma mucins, and tumor metastasis. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(6): 3352–3357
CrossRef
Google scholar
|
[8] |
Jurasz P, Alonso-Escolano D, Radomski M W. Platelet-cancer interactions: Mechanisms and pharmacology of tumour cell—induced platelet aggregation. British Journal of Pharmacology, 2004, 143(7): 819–826
CrossRef
Google scholar
|
[9] |
Borsig L. The role of platelet activation in tumor metastasis. Expert Review of Anticancer Therapy, 2008, 8(8): 1247–1255
CrossRef
Google scholar
|
[10] |
Farokhzad O C, Langer R. Impact of nanotechnology on drug delivery. ACS Nano, 2009, 3(1): 16–20
CrossRef
Google scholar
|
[11] |
Farokhzad O C, Langer R. Nanomedicine: Developing smarter therapeutic and diagnostic modalities. Advanced Drug Delivery Reviews, 2006, 58(14): 1456–1459
CrossRef
Google scholar
|
[12] |
Langer R. Drug delivery and targeting. Nature, 1998, 392(6679 Suppl): 5–10
|
[13] |
Peer D, Karp J M, Hong S, Farokhzad O C, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nature Nanotechnology, 2007, 2(12): 751–760
CrossRef
Google scholar
|
[14] |
Shi J, Votruba A R, Farokhzad O C, Langer R. Nanotechnology in drug delivery and tissue engineering: From discovery to applications. Nano Letters, 2010, 10(9): 3223–3230
CrossRef
Google scholar
|
[15] |
Wilhelm S, Tavares A J, Dai Q, Ohta S, Audet J, Dvorak H F, Chan W C. Analysis of nanoparticle delivery to tumours. Nature Reviews Materials, 2016, 1(5): 16014
CrossRef
Google scholar
|
[16] |
Mitragotri S, Anderson D G, Chen X, Chow E K, Ho D, Kabanov A V, Karp J M, Kataoka K, Mirkin C A, Petrosko S H, Shi J, Stevens M M, Sun S, Teoh S, Venkatraman S S, Xia Y, Wang S, Gu Z, Xu C. Accelerating the translation of nanomaterials in biomedicine. ACS Nano, 2015, 9(7): 6644–6654
CrossRef
Google scholar
|
[17] |
Ikoba U, Peng H, Li H, Miller C, Yu C, Wang Q. Nanocarriers in therapy of infectious and inflammatory diseases. Nanoscale, 2015, 7(10): 4291–4305
CrossRef
Google scholar
|
[18] |
Peng H, Liu X, Wang G, Li M, Bratlie K M, Cochran E, Wang Q. Polymeric multifunctional nanomaterials for theranostics. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 2015, 3(34): 6856–6870
CrossRef
Google scholar
|
[19] |
Nguyen T X, Huang L, Gauthier M, Yang G, Wang Q. Recent advances in liposome surface modification for oral drug delivery. Nanomedicine (London), 2016, 11(9): 1169–1185
CrossRef
Google scholar
|
[20] |
Weber C, Fraemohs L, Dejana E. The role of junctional adhesion molecules in vascular inflammation. Nature Reviews. Immunology, 2007, 7(6): 467–477
CrossRef
Google scholar
|
[21] |
Nesbitt W S, Westein E, Tovar-Lopez F J, Tolouei E, Mitchell A, Fu J, Carberry J, Fouras A, Jackson S P. A shear gradient-dependent platelet aggregation mechanism drives thrombus formation. Nature Medicine, 2009, 15(6): 665–673
CrossRef
Google scholar
|
[22] |
Nandi S, Brown A C. Platelet-mimetic strategies for modulating the wound environment and inflammatory responses. Experimental Biology and Medicine (Maywood, N.J.), 2016, 241(10): 1138–1148
CrossRef
Google scholar
|
[23] |
Woulfe D. Review articles: Platelet G protein—coupled receptors in hemostasis and thrombosis. Journal of Thrombosis and Haemostasis, 2005, 3(10): 2193–2200
CrossRef
Google scholar
|
[24] |
Kuwahara M, Sugimoto M, Tsuji S, Matsui H, Mizuno T, Miyata S, Yoshioka A. Platelet shape changes and adhesion under high shear flow. Arteriosclerosis, Thrombosis, and Vascular Biology, 2002, 22(2): 329–334
CrossRef
Google scholar
|
[25] |
Frojmovic M M, Milton J G. Human platelet size, shape, and related functions in health and disease. Physiological Reviews, 1982, 62(1): 185–261
|
[26] |
Kamath S, Blann A, Lip G. Platelet activation: Assessment and quantification. European Heart Journal, 2001, 22(17): 1561–1571
CrossRef
Google scholar
|
[27] |
Jackson S P. The growing complexity of platelet aggregation. Blood, 2007, 109(12): 5087–5095
CrossRef
Google scholar
|
[28] |
Borsig L. The role of platelet activation in tumor metastasis. Expert Review of Anticancer Therapy, 2008, 8(8): 1247–1255
CrossRef
Google scholar
|
[29] |
Liu X, Zhang F, Wang Q, Gao J, Meng J, Wang S, Yang Z, Jiang L. Platelet-inspired multiscaled cytophilic interfaces with high specificity and efficiency toward point-of-care cancer diagnosis. Small, 2014, 10(22): 4677–4683
CrossRef
Google scholar
|
[30] |
Gires O, Klein C A, Baeuerle P A. On the abundance of EpCAM on cancer stem cells. Nature Reviews. Cancer, 2009, 9(2): 143–143
CrossRef
Google scholar
|
[31] |
Baeuerle P, Gires O. EpCAM (CD326) finding its role in cancer. British Journal of Cancer, 2007, 96(3): 417–423
CrossRef
Google scholar
|
[32] |
Sarkar S, Alam M A, Shaw J, Dasgupta A K. Drug delivery using platelet cancer cell interaction. Pharmaceutical Research, 2013, 30(11): 2785–2794
CrossRef
Google scholar
|
[33] |
Brown A C, Stabenfeldt S E, Ahn B, Hannan R T, Dhada K S, Herman E S, Stefanelli V, Guzzetta N, Alexeev A, Lam W A, Lyon L A, Barker T H. Ultrasoft microgels displaying emergent platelet-like behaviours. Nature Materials, 2014, 13(12): 1108–1114
CrossRef
Google scholar
|
[34] |
Doshi N, Orje J N, Molins B, Smith J W, Mitragotri S, Ruggeri Z M. Platelet mimetic particles for targeting thrombi in flowing blood. Advanced Materials, 2012, 24(28): 3864–3869
CrossRef
Google scholar
|
[35] |
Anselmo A C, Modery-Pawlowski C L, Menegatti S, Kumar S, Vogus D R, Tian L L, Chen M, Squires T M, Sen Gupta A, Mitragotri S. Platelet-like nanoparticles: Mimicking shape, flexibility, and surface biology of platelets to target vascular injuries. ACS Nano, 2014, 8(11): 11243–11253
CrossRef
Google scholar
|
[36] |
Gao W, Zhang L. Coating nanoparticles with cell membranes for targeted drug delivery. Journal of Drug Targeting, 2015, 23(7-8): 619–626
CrossRef
Google scholar
|
[37] |
Luk B T, Zhang L. Cell membrane-camouflaged nanoparticles for drug delivery. Journal of Controlled Release, 2015, 220: 600–607
CrossRef
Google scholar
|
[38] |
Wang Q, Cheng H, Peng H, Zhou H, Li P Y, Langer R. Non-genetic engineering of cells for drug delivery and cell-based therapy. Advanced Drug Delivery Reviews, 2015, 91: 125–140
CrossRef
Google scholar
|
[39] |
Fang R H, Hu C M J, Luk B T, Gao W, Copp J A, Tai Y, O’Connor D E, Zhang L. Cancer cell membrane-coated nanoparticles for anticancer vaccination and drug delivery. Nano Letters, 2014, 14(4): 2181–2188
CrossRef
Google scholar
|
[40] |
Hu C M J, Fang R H, Copp J, Luk B T, Zhang L. A biomimetic nanosponge that absorbs pore-forming toxins. Nature Nanotechnology, 2013, 8(5): 336–340
CrossRef
Google scholar
|
[41] |
Hu C M J, Fang R H, Luk B T, Zhang L. Nanoparticle-detained toxins for safe and effective vaccination. Nature Nanotechnology, 2013, 8(12): 933–938
CrossRef
Google scholar
|
[42] |
Hu C M J, Zhang L, Aryal S, Cheung C, Fang R H, Zhang L. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(27): 10980–10985
CrossRef
Google scholar
|
[43] |
Parodi A, Quattrocchi N, van de Ven A L, Chiappini C, Evangelopoulos M, Martinez J O, Brown B S, Khaled S Z, Yazdi I K, Enzo M V. Biomimetic functionalization with leukocyte membranes imparts cell like functions to synthetic particles. Nature Nanotechnology, 2013, 8(1): 61–68
CrossRef
Google scholar
|
[44] |
Fan Z, Zhou H, Li P Y, Speer J E, Cheng H. Structural elucidation of cell membrane-derived nanoparticles using molecular probes. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 2014, 2(46): 8231–8238
CrossRef
Google scholar
|
[45] |
Luk B T, Hu C M J, Fang R H, Dehaini D, Carpenter C, Gao W, Zhang L. Interfacial interactions between natural RBC membranes and synthetic polymeric nanoparticles. Nanoscale, 2014, 6(5): 2730–2737
CrossRef
Google scholar
|
[46] |
Li J, Sharkey C C, Wun B, Liesveld J L, King M R. Genetic engineering of platelets to neutralize circulating tumor cells. Journal of Controlled Release, 2016, 228: 38–47
CrossRef
Google scholar
|
[47] |
Ponta H, Sherman L, Herrlich P A. CD44: From adhesion molecules to signalling regulators. Nature Reviews. Molecular Cell Biology, 2003, 4(1): 33–45
CrossRef
Google scholar
|
[48] |
Hu Q, Sun W, Qian C, Wang C, Bomba H N, Gu Z. Anticancer platelet-mimicking nanovehicles. Advanced Materials, 2015, 27(44): 7043–7050
CrossRef
Google scholar
|
[49] |
Hu Q, Sun W, Lu Y, Bomba H N, Ye Y, Jiang T, Isaacson A J, Gu Z. Tumor microenvironment-mediated construction and deconstruction of extracellular drug-delivery depots. Nano Letters, 2016, 16(2): 1118–1126
CrossRef
Google scholar
|
[50] |
Hu Q, Sun W, Wang C, Gu Z. Recent advances of cocktail chemotherapy by combination drug delivery systems. Advanced Drug Delivery Reviews, 2016, 98: 19–34
CrossRef
Google scholar
|
[51] |
Cohen J A, Beaudette T T, Tseng W W, Bachelder E M, Mende I, Engleman E G, Fréchet J M. T-cell activation by antigen-loaded pH-sensitive hydrogel particles in vivo: The effect of particle size. Bioconjugate Chemistry, 2008, 20(1): 111–119
CrossRef
Google scholar
|
[52] |
Kwon Y J, Standley S M, Goh S L, Fréchet J M. Enhanced antigen presentation and immunostimulation of dendritic cells using acid-degradable cationic nanoparticles. Journal of Controlled Release, 2005, 105(3): 199–212
CrossRef
Google scholar
|
[53] |
Li J, Ai Y, Wang L, Bu P, Sharkey C C, Wu Q, Wun B, Roy S, Shen X, King M R. Targeted drug delivery to circulating tumor cells via platelet membrane-functionalized particles. Biomaterials, 2016, 76: 52–65
CrossRef
Google scholar
|
[54] |
Hu Q, Qian C, Sun W, Wang J, Chen Z, Bomba H N, Xin H, Shen Q, Gu Z. Engineered nanoplatelets for enhanced treatment of multiple myeloma and thrombus. Advanced Materials, 2016,
CrossRef
Google scholar
|
[55] |
Swami A, Reagan M R, Basto P, Mishima Y, Kamaly N, Glavey S, Zhang S, Moschetta M, Seevaratnam D, Zhang Y, Liu J, Memarzadeh M, Wu J, Manier S, Shi J, Bertrand N, Lu Z N, Nagano K, Baron R, Sacco A, Roccaro A M, Farokhzad O C, Ghobrial I M. Engineered nanomedicine for myeloma and bone microenvironment targeting. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(28): 10287–10292
CrossRef
Google scholar
|
[56] |
Hu C M J, Fang R H, Wang K C, Luk B T, Thamphiwatana S, Dehaini D, Nguyen P, Angsantikul P, Wen C H, Kroll A V, Carpenter C, Ramesh M, Qu V, Patel S H, Zhu J, Shi W, Hofman F M, Chen T C, Gao W, Zhang K, Chien S, Zhang L. Nanoparticle biointerfacing by platelet membrane cloaking. Nature, 2015, 526(7571): 118–121
CrossRef
Google scholar
|
[57] |
Farokhzad O C. Nanotechnology: Platelet mimicry. Nature, 2015, 526(7571): 47–48
CrossRef
Google scholar
|
/
〈 | 〉 |