RESEARCH ARTICLE

Environmental and economic assessment of vegetable oil production using membrane separation and vapor recompression

  • Weibin Kong 1 ,
  • Qi Miao 1 ,
  • Peiyong Qin 1 ,
  • Jan Baeyens 2 ,
  • Tianwei Tan , 1
Expand
  • 1. Beijing Key Lab of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
  • 2. School of Engineering, University of Warwick, Coventry, CV4 7AL, UK

Received date: 14 Sep 2016

Accepted date: 15 Oct 2016

Published date: 12 May 2017

Copyright

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Solvent extraction of crude oil from oilseeds is widely applied for its high production capacity and low cost. In this process, solvent recovery and tail gas treatment are usually performed by adsorption, paraffin scrubbing, or even cryogenics (at low tail gas flow rates). Membrane separation, which has a lower energy consumption than these techniques, spans a broad range of admissible concentrations and flow rates, and is moreover easily combined with other techniques. Vapor recompression has potentials to reduce the heat loss in association with distillation and evaporation. In this study, we proved the possibility of combining membrane separation and vapor recompression to improve the conventional vegetable oil production, by both experiments and process simulation. Nearly 73% of energy can be saved in the process of vegetable oil extraction by the novel processing approach. By further environmental assessment, several impact categories show that the optimized process is environmentally sustainable.

Cite this article

Weibin Kong , Qi Miao , Peiyong Qin , Jan Baeyens , Tianwei Tan . Environmental and economic assessment of vegetable oil production using membrane separation and vapor recompression[J]. Frontiers of Chemical Science and Engineering, 2017 , 11(2) : 166 -176 . DOI: 10.1007/s11705-017-1616-4

Acknowledgements

This work was supported by the National Basic Research Program of China (973 program, Grant Nos. 2013CB733600 and 2012CB72520), the National Nature Science Foundation of China (Grant Nos. 21390202 and 21436002).

Electronic Supplementary Material

Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s11705-017-1616-4 and is accessible for authorized users.
1
Vaskova H, Buckova M. Thermal degradation of vegetable oils: Spectroscopic measurement and analysis. Procedia Engineering, 2015, 100: 630–635

DOI

2
Alam M, Akram D, Sharmin E, Zafar F, Ahmad S. Vegetable oil based eco-friendly coating materials: A review article. Arabian Journal of Chemistry, 2014, 7(4): 469–479

DOI

3
Tomita K, Machmudah S, Wahyudiono, Fukuzato R, Kanda H, Quitain A T, Sasaki M, Goto M. Extraction of rice bran oil by supercritical carbon dioxide and solubility consideration. Separation and Purification Technology, 2014, 125: 319–325

DOI

4
Lin L, Ying D, Chaitep S, Vittayapadung S. Biodiesel production from crude rice bran oil and properties as fuel. Applied Energy, 2009, 86(5): 681–688

DOI

5
Manna M S, Bhatluri K K, Saha P, Ghoshal A K. Transportation of catechin (°C) using physiologically benign vegetable oil as liquid membrane. Industrial & Engineering Chemistry Research, 2012, 51(46): 15207–15216

DOI

6
Cerutti M L M N, de Souza A A U. Solvent extraction of vegetable oils: Numerical and experimental study. Food and Bioproducts Processing, 2012, 90(2): 199–204

DOI

7
Lau E V, Gan S, Ng H K. Extraction of phenanthrene andfluoranthene from contaminated sand using palm kernel and soybean oils. Journal of Environmental Management, 2012, 107: 124–130

DOI

8
Un U T, Koparal A S, Ogutveren U B. Electrocoagulation of vegetable oil refinery wastewater using aluminum electrodes. Journal of Environmental Management, 2009, 90(1): 428–433

DOI

9
Peralta-Ruiz Y, González-Delgado A D, Kafarov V. Evaluation of alternatives for microalgae oil extraction based on exergy analysis. Applied Energy, 2013, 101: 226–236

DOI

10
Carrín M E, Crapiste G H. Mathematical modeling of vegetable oil–solvent extraction in a multistage horizontal extractor. Journal of Food Engineering, 2008, 85(3): 418–425

DOI

11
Martinho A, Matos H A, Gani R, Sarup B, Youngreen W. Modelling and simulation of vegetable oil processes. Food and Bioproducts Processing, 2008, 86(2): 87–95

DOI

12
Lua A C, Shen Y. Preparation and characterization of polyimide-silica composite membranes and their derived carbon-silica composite membranes for gas separation. Chemical Engineering Journal, 2013, 220: 441–451

DOI

13
Bastani D, Esmaeili N, Asadollahi M. Polymeric mixed matrix membranes containing zeolites as a filler for gas separation applications: A review. Journal of Industrial and Engineering Chemistry, 2013, 19(2): 375–393

DOI

14
Shen Y, Lua A C. Preparation and characterization of mixed matrix membranes based on PVDF and three inorganic fillers (fumed nonporous silica, zeolite 4A and mesoporous MCM-41) for gas separation. Chemical Engineering Journal, 2012, 192: 201–210

DOI

15
Degrève J, Everaert K, Baeyens J. The use of gas membranes for VOC-air separations. Filtration & Separation, 2001, 38(4): 49–54

DOI

16
García-Gonz M C, Vanotti M B, Szogi A A. Recovery of ammonia from swine manure using gas-permeable membranes: Effect of aeration. Journal of Environmental Management, 2015, 152: 19–26

DOI

17
Li M, Jiang X, He G. Application of membrane separation technology in postcombustion carbon dioxide capture process. Frontiers of Chemical Science and Engineering, 2014, 8(2): 233–239

DOI

18
Tan M, He G, Dai Y, Wang R, Shi W. Calculation on phase diagrams of polyetherimide/N,N-dimethylacetamide/H2O-BuOH casting system and their relevance to membrane performances. Frontiers of Chemical Science and Engineering, 2014, 8(3): 312–319

DOI

19
Li J, Zhong J, Huang W, Xu R, Zhang Q, Shao H, Gu X. Study on the development of ZIF-8 membranes for gasoline vapor recovery. Industrial & Engineering Chemistry Research, 2014, 53(9): 3662–3668

DOI

20
Waheed M A, Oni A O, Adejuyigbe S B, Adewumi B A, Fadare D A. Performance enhancement of vapor recompression heat pump. Applied Energy, 2014, 114: 69–79

DOI

21
Tuan C I, Yeh Y L, Chen C J, Chen T C. Performance assessment with Pinch technology and integrated heat pumps for vaporized concentration processing. Journal of the Taiwan Institute of Chemical Engineers, 2012, 43(2): 226–234

DOI

22
Fu C, Gundersen T. Recuperative vapor recompression heat pumps in cryogenic air separation processes. Energy, 2013, 59: 708–718

DOI

23
Morales M, Dapsens P Y, Giovinazzo I, Witte J, Mondelli C, Papadokonstantakis S, Hungerbühler K, Pérez-Ramírez J. Environmental and economic assessment of lactic acid production from glycerol using cascade bio- and chemocatalysis. Energy & Environmental Science, 2015, 8(2): 558–567

DOI

24
Li S, Qin F, Qin P, Karim M N, Tan T. Preparation of PDMS membrane using water as solvent for pervaporation separation of butanol-water mixture. Green Chemistry, 2013, 15(8): 2180–2190

DOI

25
Cai D, Zhang T, Zheng J, Chang Z, Wang Z, Qin P Y, Tan T W. Biobutanol from sweet sorghum bagasse hydrolysate by a hybrid pervaporation process. Bioresource Technology, 2013, 145: 97–102

DOI

26
Kong W, Kang Q, Feng W, Tan T. Improving the solvent-extraction process of rice bran oil. Chemical Engineering Research & Design, 2015, 104: 1–10

DOI

27
Li B, He G, Jiang X, Dai Y, Ruan X. Pressure swing adsorption/membrane hybrid processes for hydrogen purification with a high recovery. Frontiers of Chemical Science and Engineering, 2016, 10(2): 255–264

DOI

28
Thiel C L, Eckelman M, Guido R, Huddleston M, Landis A E, Sherman J, Shrake S O, Copley-Woods N, Bilec M M. Environmental impacts of surgical procedures: Life cycle assessment of hysterectomy in the United States. Environmental Science & Technology, 2015, 49(3): 1779–1786

DOI

29
Dominguez-Ramos A, Chavan K, García V, Jimeno G, Albo J, Marathe K V, Yadav G D, Irabien A. Arsenic removal from natural waters by adsorption or ion exchange: An environmental sustainability assessment. Industrial & Engineering Chemistry Research, 2014, 53(49): 18920–18927

DOI

30
Herrmann I T, Moltesen A. Does it matter which Life Cycle Assessment (LCA) tool you choose?—a comparative assessment of SimaPro and GaBi. Journal of Cleaner Production, 2015, 86: 163–169

DOI

31
Liu L, Chakma A, Feng X, Lawless D. Separation of VOCs from N2 using poly(ether block amide) membranes. Canadian Journal of Chemical Engineering, 2009, 87(3): 456–465

DOI

Outlines

/