RESEARCH ARTICLE

A conceptual methodology for simultaneous optimization of water and heat with non-isothermal mixing

  • Yanlong Hou 1 ,
  • Wanni Xie 1 ,
  • Zhenya Duan , 2 ,
  • Jingtao Wang , 1
Expand
  • 1. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
  • 2. College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, China

Received date: 14 May 2016

Accepted date: 16 Jul 2016

Published date: 12 May 2017

Copyright

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

A new conceptual methodology is proposed to simultaneously integrate water allocation and energy networks with non-isothermal mixing. This method employs a simultaneous model and includes two design steps. In the first step, the water allocation network (WAN), which could achieve the targets of saving water and energy, is obtained by taking account the temperature factor into the design procedure. The optimized targets of both freshwater and energy are reached at this step which ensures this approach is a simultaneous one. In the second step, based on the obtained WAN, the whole water allocation and heat exchange network (WAHEN) is combined with the non-isothermal mixing to reduce the number of heat exchangers. The thus obtained WAHEN can achieve three optimization targets (minimization of water, energy and the number of heat exchangers). Furthermore, the effectivity of our method has been demonstrated by solving two literature examples.

Cite this article

Yanlong Hou , Wanni Xie , Zhenya Duan , Jingtao Wang . A conceptual methodology for simultaneous optimization of water and heat with non-isothermal mixing[J]. Frontiers of Chemical Science and Engineering, 2017 , 11(2) : 154 -165 . DOI: 10.1007/s11705-016-1593-z

Acknowledgement

This work was supported by a grant from the National Basic Research Development Program of China (No. 2012CB720305), the National Natural Science Foundation of China (Grant No. 21376162), the Science and Technology Planning Project of Shandong Provincial Education Department of China (No. J15LC16), and Qingdao Science and Technology Planning Project of China (No. 15-9-2-113-nsh).
1
Chen Z Y, Wang J T. Heat, mass, and work exchange networks. Frontiers of Chemical Science Engineering, 2012, 6(4): 484–502

DOI

2
Savelski M J, Bagejewicz M J. Design and retrofit of water utilization systems in refineries and process plants. AIChE Annual Meeting, Los Angeles, 1997

3
Ahmetović E, Ibrić N, Kravanja Z, Grossmann I E. Water and energy integration: A comprehensive literature review of non-isothermal water network synthesis. Computers & Chemical Engineering, 2015, 82: 144–171

DOI

4
Bagajewicz M J, Pham R, Manousiouthakis V. On the state space approach to mass/heat exchanger network design. Chemical Engineering Science, 1998, 53(14): 2595–2621

DOI

5
Bagajewicz M J, Rodera H, Savelski M. Energy efficient water utilization systems in process plants. Computers & Chemical Engineering, 2002, 26(1): 59–79

DOI

6
Dong H G, Lin C Y, Chang C T. Simultaneous optimization approach for integrated water-allocation and heat-exchange networks. Chemical Engineering Science, 2008, 63(14): 3664–3678

DOI

7
Liao Z W, Rong G, Wang J D, Yang Y R. Systematic optimization of heat-integrated water allocation networks. Industrial & Engineering Chemistry Research, 2011, 50(11): 6713–6727

DOI

8
Chen Z Y, Hou Y L, Li X D, Wang J T. Simultaneous optimization of water and heat exchange networks. Korean Journal of Chemical Engineering, 2014, 31(4): 558–567

DOI

9
Bogataj M, Bagajewicz M J. Design of non-isothermal process water networks. 17th European Symposium on Computer Aided Process Engineering. Computer Aided Chemical Engineering, 2007, 24: 377–382

10
Bogataj M, Bagajewicz M J. Synthesis of non-isothermal heat integrated water networks in chemical processes. Computers & Chemical Engineering, 2008, 32(12): 3130–3142

DOI

11
Boix M, Pibouleau L, Montastruc L, Azzaro-Pantel C, Domenech S. Minimizing water and energy consumptions in water and heat exchange networks. Applied Thermal Engineering, 2012, 36: 442–455

DOI

12
Manan Z A, Tea S Y, Wan S R. A new technique for simultaneous water and energy minimization in process plant. Chemical Engineering Research & Design, 2009, 87(11): 1509–1519

DOI

13
George J, Sahu G C, Bandyopadhyay S. Heat integration in process water networks. Industrial & Engineering Chemistry Research, 2011, 50(7): 3695–3704

DOI

14
Thongpreecha S, Siemanond K. Water and heat exchanger network design for fixed-flowrate system. Chemical Engineering Transactions, 2014, 39: 193–198

15
Huang Y L, Edgar T F. Knowledge based design approach for the simultaneous minimization of waste generation and energy consumption in a petroleum refinery. In: Rossiter A P, ed. Waste Minimization Through Process Design. New York: McGraw-Hill Companies, 1995, 181–196

16
Savulescu L, Smith R. Simultaneous energy and water minimisation. AIChE Annual Meeting, Miami Beach, Florida, 1998

17
Savulescu L E, Kim J, Smith R. Studies on simultaneous energy and water minimisation – Part I: Systems with no water re-use. Chemical Engineering Science, 2005, 60(12): 3279–3290

DOI

18
Savulescu L E, Kim J K, Smith R. Studies on simultaneous energy and water minimization – Part II: Systems with maximum re-use of water. Chemical Engineering Science, 2005, 60(12): 3291–3308

DOI

19
Wan Alwi S R, Ismail A, Manan Z A, Handani Z B. A new graphical approach for simultaneous mass and energy minimization. Applied Thermal Engineering, 2011, 31(6-7): 1021–1030

DOI

20
Leewongtanawit B, Kim J K. Improving energy recovery for water minimisation. Energy, 2009, 34(7): 880–893

DOI

21
Martínez-Patiño J, Picón-Núñez M, Serra L M, VerdaV.Systematic approach for the synthesis of water and energy networks. Applied Thermal Engineering, 2012, 48: 458–464

DOI

22
Hou Y L, Wang J T, Chen Z Y, Li X D, Zhang J L. Simultaneous integration of water and energy on conceptual methodology for both single- and multi-contaminant problems. Chemical Engineering Science, 2014, 117: 436–444

DOI

23
Liu Z Y, Yang Y, Wan L Z, Wang X, Hou K H. A heuristic design procedure for water-using networks with multiple contaminants. AIChE Journal. American Institute of Chemical Engineers, 2009, 55(2): 374–382

DOI

24
Zheng X S, Feng X, Cao D L. Design water allocation network with minimum freshwater and energy consumption. Process System Engineering, 2003, 388–393

25
Feng X, Li Y C, Shen R J. A new approach to design energy efficient water allocation networks. Applied Thermal Engineering, 2009, 29(11-12): 2302–2307

DOI

26
Wang Y P, Smith R. Waste-water minimisation. Chemical Engineering Science, 1994, 49(7): 981–1006

DOI

Outlines

/