A conceptual methodology for simultaneous optimization of water and heat with non-isothermal mixing

Yanlong Hou , Wanni Xie , Zhenya Duan , Jingtao Wang

Front. Chem. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (2) : 154 -165.

PDF (414KB)
Front. Chem. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (2) : 154 -165. DOI: 10.1007/s11705-016-1593-z
RESEARCH ARTICLE
RESEARCH ARTICLE

A conceptual methodology for simultaneous optimization of water and heat with non-isothermal mixing

Author information +
History +
PDF (414KB)

Abstract

A new conceptual methodology is proposed to simultaneously integrate water allocation and energy networks with non-isothermal mixing. This method employs a simultaneous model and includes two design steps. In the first step, the water allocation network (WAN), which could achieve the targets of saving water and energy, is obtained by taking account the temperature factor into the design procedure. The optimized targets of both freshwater and energy are reached at this step which ensures this approach is a simultaneous one. In the second step, based on the obtained WAN, the whole water allocation and heat exchange network (WAHEN) is combined with the non-isothermal mixing to reduce the number of heat exchangers. The thus obtained WAHEN can achieve three optimization targets (minimization of water, energy and the number of heat exchangers). Furthermore, the effectivity of our method has been demonstrated by solving two literature examples.

Graphical abstract

Keywords

simultaneous integration / non-isothermal mixing / multi-target optimization / water and energy networks

Cite this article

Download citation ▾
Yanlong Hou, Wanni Xie, Zhenya Duan, Jingtao Wang. A conceptual methodology for simultaneous optimization of water and heat with non-isothermal mixing. Front. Chem. Sci. Eng., 2017, 11(2): 154-165 DOI:10.1007/s11705-016-1593-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chen Z YWang J T. Heat, mass, and work exchange networks. Frontiers of Chemical Science Engineering20126(4): 484–502

[2]

Savelski M JBagejewicz M J. Design and retrofit of water utilization systems in refineries and process plants. AIChE Annual Meeting, Los Angeles1997

[3]

Ahmetović EIbrić NKravanja ZGrossmann I E. Water and energy integration: A comprehensive literature review of non-isothermal water network synthesis. Computers & Chemical Engineering201582: 144–171

[4]

Bagajewicz M JPham RManousiouthakis V. On the state space approach to mass/heat exchanger network design. Chemical Engineering Science199853(14): 2595–2621

[5]

Bagajewicz M JRodera HSavelski M. Energy efficient water utilization systems in process plants. Computers & Chemical Engineering200226(1): 59–79

[6]

Dong H GLin C YChang C T. Simultaneous optimization approach for integrated water-allocation and heat-exchange networks. Chemical Engineering Science200863(14): 3664–3678

[7]

Liao Z WRong GWang J DYang Y R. Systematic optimization of heat-integrated water allocation networks. Industrial & Engineering Chemistry Research201150(11): 6713–6727

[8]

Chen Z YHou Y LLi X DWang J T. Simultaneous optimization of water and heat exchange networks. Korean Journal of Chemical Engineering201431(4): 558–567

[9]

Bogataj MBagajewicz M J. Design of non-isothermal process water networks. 17th European Symposium on Computer Aided Process Engineering. Computer Aided Chemical Engineering, 200724: 377–382

[10]

Bogataj MBagajewicz M J. Synthesis of non-isothermal heat integrated water networks in chemical processes. Computers & Chemical Engineering200832(12): 3130–3142

[11]

Boix MPibouleau LMontastruc LAzzaro-Pantel CDomenech S. Minimizing water and energy consumptions in water and heat exchange networks. Applied Thermal Engineering201236: 442–455

[12]

Manan Z ATea S YWan S R. A new technique for simultaneous water and energy minimization in process plant. Chemical Engineering Research & Design200987(11): 1509–1519

[13]

George JSahu G CBandyopadhyay S. Heat integration in process water networks. Industrial & Engineering Chemistry Research201150(7): 3695–3704

[14]

Thongpreecha SSiemanond K. Water and heat exchanger network design for fixed-flowrate system. Chemical Engineering Transactions201439: 193–198

[15]

Huang Y LEdgar T F. Knowledge based design approach for the simultaneous minimization of waste generation and energy consumption in a petroleum refinery. In: Rossiter A P, ed. Waste Minimization Through Process Design. New York: McGraw-Hill Companies, 1995, 181–196

[16]

Savulescu LSmith R. Simultaneous energy and water minimisation. AIChE Annual Meeting, Miami Beach, Florida1998

[17]

Savulescu L EKim JSmith R. Studies on simultaneous energy and water minimisation – Part I: Systems with no water re-use. Chemical Engineering Science200560(12): 3279–3290

[18]

Savulescu L EKim J KSmith R. Studies on simultaneous energy and water minimization – Part II: Systems with maximum re-use of water. Chemical Engineering Science200560(12): 3291–3308

[19]

Wan Alwi S RIsmail AManan Z AHandani Z B. A new graphical approach for simultaneous mass and energy minimization. Applied Thermal Engineering201131(6-7): 1021–1030

[20]

Leewongtanawit BKim J K. Improving energy recovery for water minimisation. Energy200934(7): 880–893

[21]

Martínez-Patiño JPicón-Núñez MSerra L MVerdaV.Systematic approach for the synthesis of water and energy networks. Applied Thermal Engineering201248: 458–464

[22]

Hou Y LWang J TChen Z YLi X DZhang J L. Simultaneous integration of water and energy on conceptual methodology for both single- and multi-contaminant problems. Chemical Engineering Science2014117: 436–444

[23]

Liu Z YYang YWan L ZWang XHou K H. A heuristic design procedure for water-using networks with multiple contaminants. AIChE Journal. American Institute of Chemical Engineers200955(2): 374–382

[24]

Zheng X SFeng XCao D L. Design water allocation network with minimum freshwater and energy consumption. Process System Engineering2003, 388–393

[25]

Feng XLi Y CShen R J. A new approach to design energy efficient water allocation networks. Applied Thermal Engineering200929(11-12): 2302–2307

[26]

Wang Y PSmith R. Waste-water minimisation. Chemical Engineering Science199449(7): 981–1006

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (414KB)

2516

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/