Frontiers of Chemical Science and Engineering >
Hierarchically porous materials: Synthesis strategies and emerging applications
Received date: 09 Apr 2016
Accepted date: 07 Jun 2016
Published date: 23 Aug 2016
Copyright
Great interests have arisen over the last decade in the development of hierarchically porous materials. The hierarchical structure enables materials to have maximum structural functions owing to enhanced accessibility and mass transport properties, leading to improved performances in various applications. Hierarchical porous materials are in high demand for applications in catalysis, adsorption, separation, energy and biochemistry. In the present review, recent advances in synthesis routes to hierarchically porous materials are reviewed together with their catalytic contributions.
Key words: hierarchically porous materials; synthesis; application
Minghui Sun , Chen Chen , Lihua Chen , Baolian Su . Hierarchically porous materials: Synthesis strategies and emerging applications[J]. Frontiers of Chemical Science and Engineering, 2016 , 10(3) : 301 -347 . DOI: 10.1007/s11705-016-1578-y
1 |
Baerlocher C, Meier W, Olson D. Atlas of Zeolite Framework Types. Elsevier, 2007, 10–45
|
2 |
Kresge C T, Leonowicz M E, Roth W J, Vrtuli J C, Beck J S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 1992, 359(6397): 710–712
|
3 |
Zhao D, Feng J, Huo Q, Melosh W, Fredrickson G H, Chmelka B F, Stucky G D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science, 1998, 279(5350): 548–552
|
4 |
Holland B, Blanford C, Stein A. Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids. Science, 1998, 281(5376): 538–540
|
5 |
Sing K, Everett D, Haul R, Moscou L, Pierotti R, Rouquerol J, Siemieniewska T. Reporting physisorption data for gas solid system. Pure and Applied Chemistry, 1985, 57: 603–619
|
6 |
Su B L, Sanchez C, Yang X Y. Hierarchically structured porous materials: From nanoscience to catalysis, separation, optics, energy, and life science. Germany: Wiley-VCH, 2012, 15–45
|
7 |
Yang P, Tao D, Zhao D, Feng P, Pine D, Chmelka B, Whitesides G, Stucky G. Hierarchically ordered oxides. Science, 1998, 282(5397): 2244–2246
|
8 |
Yuan Z, Su B L. Insights into hierarchically meso-macroporous structured material. Journal of Materials Chemsitry A, 2006, 16(7): 663–677
|
9 |
Pérez Ramirez J, Christensen C, Egeblad K, Christensen H, Groen J. Hierarchical zeolites: Enhanced utilisation of microporous crystals in catalysis by advances in materials design. Chemical Society Reviews, 2008, 37: 2530–2542
|
10 |
Yang X Y, Li Y, Lemaire A, Yu J, Su B L. Hierarchically structured functional materials: Synthesis strategies for multimodal porous networks. Pure and Applied Chemistry, 2009, 81(12): 2265–2307
|
11 |
Yang X Y, Alexandre L, Arnaud L, Tian G, Su B L. Self-formation phenomenon to hierarchically structured porous materials: Design, synthesis, formation mechanism and applications, Chemical Communications, 2011, 47(10): 2763–2786
|
12 |
Jacobsen C J H, Madsen C, Houzvicka J, Schmidt I, Carlsson A. Mesoporous zeolite single crystals. Journal of the American Chemical Society, 2000, 122(29): 7116–7117
|
13 |
Schmidt I, Boisen A, Gustavsson E, Stahl K, Pehrson S, Dahl S, Carlsson A, Jacobsen C J H. Carbon nanotube templated growth of mesoporous zeolite single crystals. Chemistry of Materials, 2001, 13(12): 4416–4418
|
14 |
Cho H S, Ryoo R. Synthesis of ordered mesoporous MFI zeolite using CMK carbon templates. Microporous and Mesoporous Materials, 2012, 151: 107–112
|
15 |
Chen H, Wydra J, Zhang X, Lee P S, Wang Z, Fan W, Tsapatsis M. Hydrothermal synthesis of zeolites with three-dimensionally ordered mesoporous-imprinted structure. Journal of Materials Chemsitry A, 2011, 133: 12390–12393
|
16 |
Kustova M, Egeblad K, Zhu K, Christensen C H. Versatile route to zeolite single crystals with controlled mesoporosity: In situ sugar decomposition for templating of hierarchical zeolites. Chemistry of Materials, 2007, 19(12): 2915–2917
|
17 |
Chu N B, Wang J Q, Zhang Y, Yang J H, Lu J M, Yin D H. Nestlike hollow hierarchical MCM-22 microspheres: Synthesis and exceptional catalytic properties. Chemistry of Materials, 2010, 22(9): 2757–2763
|
18 |
Wang X D, Yang W L, Tang Y, Wang Y J, Fu S K, Gao Z. Fabrication of hollow zeolite spheres. Chemical Communications, 2000, 21: 2161–2162
|
19 |
Valtchev V. Core-shell polystyrene/zeolite A microbeads. Chemistry of Materials, 2002, 14(3): 956–958
|
20 |
Petkovich N D, Stein A. Controlling macro- and mesostructures with hierarchical porosity through combined hard and soft templating. Chemical Society reviews, 2013, 42: 3721–3739
|
21 |
Huang L, Wang Z, Sun J, Miao L, Li Q, Yan Y, Zhao D. Fabrication of ordered porous structures by self-assembly of zeolite nanocrystals. Journal of the American Chemical Society, 2000, 122(14): 3530–3531
|
22 |
Zhu G, Qiu S, Gao F, Li D, Li Y, Wang R, Terasaki O. Template-assisted self-assembly of macro-micro bifunctional porous materials. Journal of Materials Chemistry, 2001, 11(6): 1687–1693
|
23 |
Sanchez C, Arribart H, Guille M M G. Biomimetism and bioinspiration as tools for the design of innovative materials and systems. Nature Materials, 2005, 4: 277–288
|
24 |
Dong A, Wang Y, Tang Y, Zhang Y, Hong A, Ren N, Gao Z. Mechanically stable zeolite monoliths with three-dimensional ordered macropores by the transformation of mesoporous silica spheres. Advanced Materials, 2002, 14(20): 1506–1510
|
25 |
Justin Thomas K R, Lin J T, Velusamy M, Tao Y T, Chuen C H. Color tuning in benzo [1, 2, 5] thiadiazole-based small molecules by amino conjugation/deconjugation: Bright red-light-emitting diode. Advanced Functional Materials, 2004, 14(1): 83–90
|
26 |
Song W, Kanthasamy R, Grassian V H, Larsen S C. Hexagonal, hollow, aluminium-containing ZSM-5 tubes prepared from mesoporous silica templates. Chemical Communications, 2004, 17: 1920–1921
|
27 |
Ren N, Yang Y H, Zhang Y H, Wang Q R, Tang Y. Heck coupling in zeolitic microcapsular reactor: A test for encaged quasi-homogeneous catalysis. Journal of Catalysis, 2007, 246(1): 215–222
|
28 |
Machoke A G, Beltrán A M, Inayat A, Winter B, Weissenberger T, Kruse N, Güttel R, Spiecker E, Schwieger W. Micro/macroporous system: MFI-type zeolite crystals with embedded macropores. Advanced Materials, 2015, 27(6): 1066–1070
|
29 |
Zhang X, Yan W, Yang H, Liu B, Li H. Gaseous infiltration method for preparation of three-dimensionally ordered macroporous polyethylene. Polymer, 2008, 49(25): 5446–5451
|
30 |
Lodge T P, Rasdal A, Li Z, Hillmyer M A. Simultaneous, segregated storage of two agents in a multicompartment micelle. Journal of the American Chemical Society, 2005, 127(50): 17608–17609
|
31 |
Sun J H, Shan Z, Maschmeyer T, Coppens M O. Synthesis of bimodal nanostructured silicas with independently controlled small and large mesopore sizes. Langmuir, 2003, 19(20): 8395–8402
|
32 |
Antonietti M, Berton B, Göltner C, Hentze H P. Synthesis of mesoporous silica with large pores and bimodal pore size distribution by templating of polymer latices. Advanced Materials, 1998, 10(2): 154–159
|
33 |
Groenewolt M, Antonietti M, Polarz S. Mixed micellar phases of nonmiscible surfactants: Mesoporous silica with bimodal pore size distribution via the nanocasting process. Langmuir, 2004, 20(18): 7811–7819
|
34 |
Avera S, Boissiere C, Grosso D, Asakawa T, Sanchez C, Linden M. One-pot aerosol synthesis of ordered hierarchical mesoporous core-shell silica nanoparticles. Chemical Communications, 2004, 10(14): 1630–1631
|
35 |
Zhou Y, Antonietti M. A novel tailored bimodal porous silica with well-defined inverse opal microstructure and super-microporous lamellar nanostructure. Chemical Communications, 2003, 20(20): 2564–2565
|
36 |
Kuang D, Brezesinski T, Smarsly B. Hierarchical porous silica materials with a trimodal pore system using surfactant templates. Journal of the American Chemical Society, 2004, 126(34): 10534–10535
|
37 |
Liu J, Yang T Y, Wang D W, Lu G Q, Zhao D Y, Qiao S Z. A facile soft-template synthesis of mesoporous polymeric and carbonaceous nanospheres. Nature Communications, 2013, 4: 2798
|
38 |
Cao S, Gody G, Zhao W, Perrier S, Peng X Y, Ducati C, Zhao D Y, Cheetham A K. Hierarchical bicontinuous porosity in metal-organic frameworks templated from functional block co-oligomer micelles. Chemical Science (Cambridge), 2013, 4(9): 3573–3577
|
39 |
Martins L, Rosa M M A, Pulcinelli S H, Santilli C V. Preparation of hierarchically structured porous aluminas by a dual soft template method. Microporous and Mesoporous Materials, 2010, 132(1-2): 268–275
|
40 |
Choi M, Cho H S, Srivastava R, Venkatesan C, Choi D H, Ryoo R. Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity. Nature Materials, 2006, 5(9): 718–723
|
41 |
Cho K, Cho H S, De Menorval L C, Ryoo R. Generation of mesoporosity in LTA zeolites by organosilane surfactant for rapid molecular transport in catalytic application. Chemistry of Materials, 2009, 21(23): 5664–5673
|
42 |
Wang H, Pinnavaia T J. MFI zeolite with small and uniform intracrystal mesopores. Angewandte Chemie International Edition, 2006, 45(45): 7603–7606
|
43 |
Choi M, Na K, Kim J, Sakamoto Y, Terasaki O, Ryoo R. Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature, 2009, 461(7261): 246–249
|
44 |
Na K, Choi M, Park W, Sakamoto Y, Terasaki O, Ryoo R. Pillared MFI zeolite nanosheets of a single-unit-cell thickness. Journal of the American Chemical Society, 2010, 132(12): 4169–4177
|
45 |
Na K, Jo C, Kim J, Cho K, Jung J, Seo Y, Messinger R J, Chmelka B F, Ryoo R. Directing zeolite structures into hierarchically nanoporous architectures. Science, 2011, 333(6040): 328–332
|
46 |
Xiao F S, Wang L, Yin C, Lin K, Di Y, Li J, Xu R, Su D S, Schlögl R, Yokoi T, Tatsumi T. Catalytic properties of hierarchical mesoporous zeolites templated with a mixture of small organic ammonium salts and mesoscale cationic polymers. Angewandte Chemie, 2006, 118(19): 3162–3165
|
47 |
Song J, Ren L, Yin C, Ji Y, Wu Z, Li J, Xiao F S. Stable, porous, and bulky particles with high external surface and large pore volume from self-assembly of zeolite nanocrystals with cationic polymer. Journal of Physical Chemistry C, 2008, 112(23): 8609–8613
|
48 |
Zhong L S, Hu J S, Liang H P, Cao A M, Song W G, Wan L J. Self-Assembled 3D flowerlike iron oxide nanostructures and their application in water treatment. Advanced Materials, 2006, 18(18): 2426–2431
|
49 |
Xu L, Sithambaram S, Zhang Y, Chen C H, Jin L, Joesten R, Suib S L. Novel urchin-like CuO synthesized by a facile reflux method with efficient olefin epoxidation catalytic performance. Chemistry of Materials, 2009, 21(7): 1253–1259
|
50 |
Holland B T, Abrams L, Stein A. Dual templating of macroporous silicates with zeolitic microporous frameworks. Journal of the American Chemical Society, 1999, 121(17): 4308–4309
|
51 |
Bian S W, Ma Z, Zhang L S, Niu F, Song W G. Silica nanotubes with mesoporous walls and various internal morphologies using hard/soft dual templates. Chemical Communications, 2009, 10(10): 1261–1263
|
52 |
Stein A, Rudisill S G, Petkovich N D. Perspective on the influence of interactions between hard and soft templates and precursors on morphology of hierarchically structured porous materials. Chemistry of Materials, 2014, 26(1): 259–276
|
53 |
Yang R C, Ma F Y, Tang D X. Template synthesis to fabrication of 3D ordered hierarchical materials. Advanced Materials Research, 2013, 602: 1355–1358
|
54 |
Zhao Q L, Wang X Y, Liu J, Wang H, Zhang Y W, Gao J, Lu Q, Zhou H Y. Design and synthesis of three-dimensional hierarchical ordered porous carbons for supercapacitors. Electrochimica Acta, 2015, 154: 110–118
|
55 |
Gundiah G. Macroporous silica-alumina composites with mesoporous walls. Bulletin of Materials Science, 2001, 24(2): 211–214
|
56 |
Drisko G L, Zelcer A, Luca V, Caruso R A, Soler-Illia G J D A. One-pot synthesis of hierarchically structured ceramic monoliths with adjustable porosity. Chemistry of Materials, 2010, 22(15): 4379–4385
|
57 |
Mandlmeier B, Szeifert J M, Fattakhova-Rohlfing D, Amenitsch H, Bein T. Formation of interpenetrating hierarchical titania structures by confined synthesis in inverse opal. Journal of the American Chemical Society, 2011, 133(43): 17274–17282
|
58 |
Petkovich N D, Stein A. Controlling macro-and mesostructures with hierarchical porosity through combined hard and soft templating. Chemical Society Reviews, 2013, 42(9): 3721–3739
|
59 |
Danumah C, Vaudreuil S, Bonneviot L, Bousmina M, Giasson S, Kaliaguine S. Synthesis of macrostructured MCM-48 molecular sieves. Microporous and Mesoporous Materials, 2001, 44: 241–247
|
60 |
Oh C G, Baek Y, Ihm S K. Synthesis of skeletal-structured biporous silicate powders through microcolloidal crystal templating. Advanced Materials, 2005, 17(3): 270–273
|
61 |
Deng Y, Liu C, Yu T, Liu F, Zhang F, Wan Y, Zhang L, Wang C, Tu B, Webley P A, Wang H, Zhao D. Facile synthesis of hierarchically porous carbons from dual colloidal crystal/block copolymer template approach. Chemistry of Materials, 2007, 19(13): 3271–3277
|
62 |
Zhang S, Chen L, Zhou S, Zhao D, Wu L. Facile synthesis of hierarchically ordered porous carbon via in situ self-assembly of colloidal polymer and silica spheres and its use as a catalyst support. Chemistry of Materials, 2010, 22(11): 3433–3440
|
63 |
Zhang F, Wang K X, Li G D, Chen J S. Hierarchical porous carbon derived from rice straw for lithium ion batteries with high-rate performance. Electrochemistry Communications, 2009, 11(1): 130–133
|
64 |
Huang W T, Zhang H, Huang Y Q, Wang W K, Wei S H. Hierarchical porous carbon obtained from animal bone and evaluation in electric double-layer capacitors. Carbon, 2011, 49(3): 838–843
|
65 |
Smith C J, Field M, Coakley C J, Awschalom D D. Organizing nanometer-scale magnets with bacterial threads. IEEE Transactions on Magnetics, 1998, 34(4): 988–990
|
66 |
Zhi L, Zhang L, Schalchi A B , Tan X H, Xu Z W, Wang H L, Olsen B C, Holt C M B, David M. Carbonized Chicken Eggshell Membranes with 3D Architectures as High-Performance Electrode Materials for Supercapacitors. Advanced Energy Materials, 2012, 2(4): 431–437
|
67 |
Song N, Jiang H, Cui T, Chang L, Wang X. Synthesis and enhanced gas-sensing properties of mesoporous hierarchical α-Fe2O3 architectures from an eggshell membrane. Micro & Nano Letters, 2012, 7(9): 943–946
|
68 |
Zhang W, Zhang D, Fan T J, Gu J J, Ding J, Wang H, Guo Q X, Ogawa H. Novel photoanode structure templated from butterfly wing scales. Chemistry of Materials, 2009, 21(1): 33–40
|
69 |
Zhu W J, Huang H, Zhang W K, Tao X Y, Gan Y P, Xia Y, Yang H, Guo X Z. Synthesis of MnO/C composites derived from pollen template for advanced lithium-ion batteries. Electrochimica Acta, 2015, 152(10): 286–293
|
70 |
Kim H, Kim H J, Huh H K, Hwang H J, Lee S J. Structural design of a double-layered porous hydrogel for effective mass transport. Biomicrofluidics, 2015, 9(2): 18–24
|
71 |
Wang L Q, Shin Y, Samuels W D, Exarhos G J, Moudrakovski I L, Terskikh V V, Ripmeester J A. Magnetic resonance studies of hierarchically ordered replicas of wood cellular structures prepared by surfactant-mediated mineralization. Journal of Physical Chemistry B, 2003, 107(50): 13793–13802
|
72 |
You J, Cao G. Synthesis and characterization of hierarchical biomorphic mesoporous TiO2 nanosheets using caltrop-stem as biotemplate. Journal of Inorganic and Organometallic Polymers and Materials, 2013, 23(6): 1417–1424
|
73 |
Yang X Y, Li Z Q, Liu B, Klein-Hofmann A, Tian G, Feng Y F, Ding Y, Su D S, Xiao F S. “Fish-in-Net” encapsulation of enzymes in macroporous cages for stable, reusable, and active heterogeneous biocatalysts. Advanced Materials, 2006, 18(4): 410–414
|
74 |
Huang L, Wang H, Hayashi C Y, Tian B, Zhao D, Yan Y. Single-strand spider silk templating for the formation of hierarchically ordered hollow mesoporous silica fibers. Journal of Materials Chemistry, 2003, 13(4): 666–668
|
75 |
Zhu S, Zhang D, Chen Z, Zhou G, Jiang H, Li J. Sonochemical fabrication of morpho-genetic TiO2 with hierarchical structures for photocatalyst. Journal of Nanoparticle Research, 2010, 12(7): 2445–2456
|
76 |
Ogasawara W, Shenton W, Davis S A, Mann S. Template mineralization of ordered macroporous chitin-silica composites using a cuttlebone-derived organic matrix. Chemistry of Materials, 2000, 12(10): 2835–2837
|
77 |
Pedroni V, Schulz P C, Gschaider de Ferreira M E, Morini M A. A chitosan-templated monolithic siliceous mesoporous-macroporous material. Colloid & Polymer Science, 2000, 278(10): 964–971
|
78 |
Walsh D, Arcelli L, Ikoma T, Tanaka J, Mann S. Dextran templating for the synthesis of metallic and metal oxide sponges. Nature Materials, 2003, 2(6): 386–390
|
79 |
Caruso R A, Antonietti M. Silica films with bimodal pore structure prepared by using membranes as templates and amphiphiles as porogens. Advanced Functional Materials, 2002, 12(4): 307–312
|
80 |
Giunta P R, Washington R P, Campbell T D, Steinbock O, Stiegman A E. Preparation of mesoporous silica monoliths with ordered arrays of macrochannels templated from electric-field-oriented hydrogels. Angewandte Chemie International Edition, 2004, 43(12): 1505–1507
|
81 |
Zhao D, Yang P, Chmelka B, Stucky G. Multiphase assembly of mesoporous-macroporous membranes. Chemistry of Materials, 1999, 11(5): 1174–1178
|
82 |
Stubenrauch C, Tessendorf R, Strey R, Lynch I, Dawson K A. Gelled polymerizable microemulsions phase behavior. Langmuir, 2007, 23(14): 7730–7737
|
83 |
Li X, Sun G, Li Y, Yu J C, Wu J, Ma G H, Ngai T. Porous TiO2 materials through pickering high-internal phase emulsion templating. Langmuir, 2014, 30(10): 2676–2683
|
84 |
Carn F, Colin A, Achard M F, Deleuze H, Sellier E, Birot M, Backov R, Capadona J R, Shanmuganathan K, Tyler D J, Rowan S J, Weder C. General synthesis of ordered crystallized metal oxide nanoarrays replicated by microwave-digested mesoporous silica. Journal of the American Chemical Society, 2014, 14(9): 1370–1374
|
85 |
Sen T, Tiddy G J T, Casci J L, Anderson M W. Macro-cellular silica foams: Synthesis during the natural creaming process of an oil-in-water emulsion. Chemical Communications, 2003, 17: 2182–2183
|
86 |
Zhang H F, Hardy G C, Rosseinsky M J, Cooper A I. Uniform emulsion-templated silica beads with high pore volume and hierarchical porosity. Advanced Materials, 2003, 15(1): 78–81
|
87 |
Carn F, Colin A, Achard M F, Deleuze H, Sellier E, Birot M, Backov R. Inorganic monoliths hierarchically textured via concentrated direct emulsion and micellar templates. Journal of Materials Chemistry, 2004, 14(9): 1370–1376
|
88 |
Li H, Jin J, Wu W, Chen C, Li L, Li Y, Zhao W, Gu J, Chen G, Shi J. Synthesis of a hierarchically macro-/mesoporous zeolite based on a micro-emulsion mechanism. Journal of Materials Chemistry, 2011, 21(48): 19395–19401
|
89 |
Hu X F, Cheng F Y, Han X P, Zhang T R, Chen J. Oxygen bubble-templated hierarchical porous ε-MnO2 as a superior catalyst for rechargeable Li-O2 batteries. Small, 2015, 11(7): 809–813
|
90 |
Bagshaw S A. Morphosynthesis of macrocellular mesoporous silicate foams. Chemical Communications, 1999, 9(9): 767–768
|
91 |
Carn F, Colin A, Achard M F, Deleuze H, Saadi Z, Backov R. Rational design of macrocellular silica scaffolds obtained by a tunable sol-gel foaming process. Advanced Materials, 2004, 16(2): 140–144
|
92 |
Carn F, Colin A, Achard M F, Deleuze H, Sanchez C, Backov R. Anatase and rutile TiO2 macrocellular foams: Air-liquid foaming sol-gel process towards controlling cell sizes, morphologies, and topologies. Advanced Materials, 2005, 17(1): 62–66
|
93 |
Suzuki K, Ikari K, Imai H. Synthesis of mesoporous silica foams with hierarchical trimodal pore structures. Journal of Materials Chemistry, 2003, 13(7): 1812–1816
|
94 |
Wang J G, Li F, Zhou H J, Sun P C, Ding D T, Chen T H. Silica hollow spheres with ordered and radially oriented amino-functionalized mesochannels. Chemistry of Materials, 2009, 21(4): 612–620
|
95 |
Li Y, Shi J. Hollow-structured mesoporous materials: Chemical synthesis, functionalization and applications. Advanced Materials, 2014, 26(20): 3176–3205
|
96 |
Miyamoto M, Kamei T, Nishiyama N, Egashira Y, Ueyama K. Single crystals of ZSM-5/silicalite composites. Advanced Materials, 2005, 17(16): 1985–1988
|
97 |
Porcher F, Dusausoy Y, Souhassou M, Lecomte C. Epitaxial growth of zeolite X on zeolite A and twinning in zeolite A: Structural and topological analysis. Mineralogical Magazine, 2000, 64(1): 1–8
|
98 |
Thomas J M, Millward G R. Direct, real-space determination of intergrowths in ZSM-5/ZSM-11 catalysts. Journal of the Chemical Society. Chemical Communications, 1982, (24): 1380–1383
|
99 |
Goossens A M, Wouters B H, Buschmann V, Martens J A. Oriented FAU zeolite films on micrometer-sized EMT crystals. Advanced Materials, 1999, 11(7): 561–564
|
100 |
Lillerud K P, Raeder J H. On the synthesis of erionite-offretite intergrowth zeolites. Zeolites, 1986, 6(6): 474–483
|
101 |
Bouizi Y, Rouleau L, Valtchev V P. Bi-phase MOR/MFI-type zeolite core-shell composite. Microporous and Mesoporous Materials, 2006, 91(1-3): 70–77
|
102 |
Yonkeu A L, Miehe G, Fuess H, Goossens A M, Martens J A. A new overgrowth of mazzite on faujasite zeolite crystal investigated by X-ray diffraction and electron microscopy. Microporous and Mesoporous Materials, 2006, 96(1-3): 396–404
|
103 |
Wakihara T, Yamakita S, Iezumi K, Okubo T. Heteroepitaxial growth of a zeolite film with a patterned surface-texture. Journal of Americal Chemistry Society, 2003, 125(41): 12388–12389
|
104 |
Bouizi Y, Diaz I, Rouleau L, Valtchev V P. Core-shell zeolite microcomposites. Advanced Functional Materials, 2005, 15(12): 1955–1960
|
105 |
Zheng J J, Zeng Q H, Ma J H, Zhang X W, Sun W F, Li R F. Synthesis of hollow zeolite composite spheres by using. BETA zeolite crystal as template. Chemistry Letters, 2010, 39(4): 330–331
|
106 |
Tsang C, Dai P, Petty R H. Upgrading and catalytic cracking catalyst. US Patent 5888921, <Date>1999-03-30</Date>
|
107 |
Lei Q, Zhao T B, Li F, Wang Y Y, Zheng M F. Fabrication of hierarchically structured monolithic silicalite-1 through steam-assisted conversion of macroporous silica gel. Chemistry Letters, 2006, 35(5): 490–491
|
108 |
Lei Q, Zhao T L F, Li Y, Zhang L L, Wang Y. Catalytic cracking of large molecules over hierarchical zeolites. Chemical Communications, 2006, 16: 1769–1771
|
109 |
Lei Q, Zhao T, Li F, Wang Y F, Hou L. Zeolite beta monoliths with hierarchical porosity by the transformation of bimodal pore silica gel. Journal of Porous Materials, 2008, 15(6): 643–646
|
110 |
Sachse A, Galarneau A, Di Renzo F, Fajula F, Coq B. Synthesis of zeolite monoliths for flow continuous processes: The case of sodalite as a basic catalyst. Chemistry of Materials, 2010, 22(14): 4123–4125
|
111 |
Yang X Y, Tian G, Chen L H, Li Y, Rooke J C, Wei Y X, Liu Z M, Deng Z, Van Tendeloo G, SuB L. Well organized zeolite nanocrystal aggregates with interconnected hierarchically micro-meso- macropore systems showing enhanced catalytic performance. Chemistry European Journal A, 2011, 17(52): 14987–14995
|
112 |
SUN M H, Huang S Z, Chen L H, Li Y, Yang X Y, Yuan Z Y, Su B L. Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine Chemical Society reviews, 2016, 45: 3479–3563
|
113 |
Li X Y, Chen L H, Li Y, Rooke J C, Deng Z, Hu Z Y, Liu J, Krief A, Yang X Y, Su B L. Tuning the structure of a hierarchically porous ZrO2 for dye molecule depollution. Microporous and Mesoporous Materials, 2012, 152: 110–121
|
114 |
Li X Y, Chen L H, Li Y, Rooke J C, Wang C, Lu Y, Krief A, Yang X Y, Su B L. Self-generated hierarchically porous titania with high surface area: Photocatalytic activity enhancement by macrochannel structure. Journal of Colloid and Interface Science, 2012, 368(1): 128–138
|
115 |
Chen L H, Li X Y, Tian G, Li Y, Tan H Y, Van Tendeloo G, Zhu G S, Qiu S L, Yang X Y, Su B L. Multimodal zeolite-beta-based catalysts with a hierarchical, three-level pore structure. ChemSusChem, 2011, 4(10): 1452–1456
|
116 |
Chen L H, Li X Y, Tian G, Li Y, Rooke J C, Zhu G S, Qiu S L, Yang X Y, Su B L. Highly stable and reusable multimodal zeolite TS-1 based catalysts with hierarchically interconnected three-level micro-meso-macroporous structure. Angewandte Chemie International Edition, 2011, 50(47): 11156–11161
|
117 |
Chen L H, Xu S T, Li X Y, Tian G, Li Y, Rooke J C, Su B L. Multimodal Zr-Silicalite-1 zeolite nanocrystal aggregates with interconnected hierarchically micro-meso-macroporous architecture and enhanced mass transport property. Journal of Colloid and Interface Science, 2012, 377(1): 368–374
|
118 |
Blin J L, Leonard A, Yuan Z Y, Gigot L, Vantomme A, Cheetham A K, Su B L. Hierarchically mesoporous/macroporous metal oxides templated from polyethylene oxide surfactant assemblies. Angewand Chemie International Edit ion, 2003, 42: 2872–2875
|
119 |
Li Y, Yang X Y, Tian G, Vantomme A, Yu J, Van T G, Su B L. Chemistry of trimethyl aluminum: A spontaneous route to thermally stable 3D crystalline macroporous alumina foams with a hierarchy of pore sizes. Chemistry of Materials, 2010, 22(10): 3251–3258
|
120 |
Yuan Z Y, Vantomme A, Léonard A, Su B L. Surfactant-assisted synthesis of unprecedented hierarchical meso-macrostructured zirconia. Chemical Communications, 2003, 9(13): 1558–1559
|
121 |
Deng W, Toepke M W, Shanks B H. Surfactant-assisted synthesis of alumina with hierarchical nanopores. Advanced Functional Materials, 2003, 13(1): 61–65
|
122 |
Collins A, Carriazo D, Davis S A, Mann S. Spontaneous template-free assembly of ordered macroporous titania. Chemical Communications, 2004, 5(5): 568–569
|
123 |
Léonard A, Blin J L, Su B L. One-pot surfactant assisted synthesis of aluminosilicate macrochannels with tunable micro- or mesoporous wall structure. Chemistry Communications, 2003: 2568–2569
|
124 |
Ren T Z, Yuan Z Y, Su B L. Microwave-assisted preparation of hierarchical mesoporous-macroporous boehmite AlOOH and g-Al2O3. Langmuir, 2004, 20(4): 1531–1534
|
125 |
Ren T Z, Yuan Z Y, Su B L. A novel macroporous structure of mesoporous titanias: Synthesis and characterisation. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2004, 241(1-3): 67–73
|
126 |
Deng W, Shanks B H. Synthesis of hierarchically structured aluminas under controlled hydrodynamic conditions. Chemistry of Materials, 2005, 17(12): 3092–3100
|
127 |
Su B L, Léonard A, Yuan Z Y. Highly ordered mesoporous CMI-n materials and hierarchically structured meso-macroporous compositions. Comptes Rendus. Chimie, 2005, 8(3-4): 713–726
|
128 |
Yuan Z Y, Ren T Z, Azioune A, Pireaux J J, Su B L. Marvelous self-assembly of hierarchically nanostructured porous zirconium phosphate solid acids with high thermal stability. Catalysis Today, 2005, 105(105): 647–654
|
129 |
Lemaire A, Wang Q Y, Wei Y X, Liu Z M, Su B L. Hierarchically structured meso-macroporous aluminosilicates with high tetrahedral aluminium content in acid catalysed esterification of fatty acids. Journal of Colloid & Interface Science, 2011, 363: 511–520
|
130 |
Vantomme A, Léonard A, Yuan Z Y, Su B L. Hierarchically nanostructured porous functional ceramics key. Engineering Materials, 2007, 336: 1933–1938
|
131 |
Lemaire A, Su B L. Tailoring the porous hierarchy and the tetrahedral aluminum content by using carboxylate ligands: hierarchically structured macro-mesoporous aluminosilicates from a single molecular source. Langmuir, 2010, 26(22): 17603–17616
|
132 |
Lemaire A, Rooke J C, Chen L H, Su B L. Direct observation of macrostructure formation of hierarchically structured meso-macroporous aluminosilicates with 3D interconnectivity by optical microscope. Langmuir, 2011, 27(6): 3030–3043
|
133 |
Zhang K B, Fu Z Y, Nakayama T, Suzuki T, Suematsu H, Niihara K. One-pot synthesis of hierarchically macro/mesoporous Al2O3 monoliths from a facile sol–gel process. Materials Research Bulletin, 2011, 46(11): 2155–2162
|
134 |
Yang X Y, Li Y, Van T G, Xiao F, Su B L. One-pot synthesis of catalytically stable and active nanoreactors: Encapsulation of size-controlled nanoparticles within a hierarchically macroporous core@ ordered mesoporous shell system. Advanced Materials, 2009, 21(13): 1368–1372
|
135 |
Kloestra K R, van Bekkum H, Jansen J C. Mesoporous material containing framework tectosilicate by pore-wall recrystallization. Chemical Communications, 1997, 23(23): 2281–2282
|
136 |
Hu M C, Zielke J T, Byers C H, Lin J S, Harris M T. Probing the early-stage/rapid processes in hydrolysis and condensation of metal alkoxides. Journal of Materials Science, 2000, 35(8): 1957–1971
|
137 |
Su B L, Vantomme A, Surahy L, Pirard R, Pirard J P. Hierarchical multimodal mesoporous carbon materials with parallel macrochannels. Chemistry of Materials, 2007, 19(13): 3325–3333
|
138 |
Vantomme A, Yuan Z Y, Su B L. One-pot synthesis of a high-surface-area zirconium oxide material with hierarchically three-length-scaled pore structure. New Journal of Chemistry, 2004, 28(9): 1083–1085
|
139 |
Léonard A, Su B L. Hierarchical aluminosilicate macrochannels with structured mesoporous walls: Towards a single catalyst for multistep reactions. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2007, 300(1-2): 129–135
|
140 |
Hakim S H, Shanks B H. A comparative study of macroporous metal oxides synthesized via a unified approach. Chemistry of Materials, 2009, 21(10): 2027–2038
|
141 |
Léonard A, Vantomme A, Bouvy C, Moniotte N, Mariaulle P, Su B L. Highly ordered mesoporous and hierarchically nanostructured meso-macroporous materials for nanotechnology, biotechnology, information technology and medical applications. Nanopages, 2006, 1(1): 1–44
|
142 |
Yuan Z Y, Ren T Z, Su B L. Hierarchically mesostructured titania materials with an unusual interior macroporous structure. Advanced Materials, 2003, 15(17): 1462–1465
|
143 |
Ren T Z, Yuan Z Y, Su B L. Template-free synthesis of hierarchical mesoporous alumina-based materials with uniform channel-like macrostructures. Studies in Surface Science & Catalysis, 2007, 165: 287–290
|
144 |
Yuan Z Y, Ren T Z, Vantomme A, Su B L. Facile and generalized preparation of hierarchically mesoporous-macroporous binary metal oxide materials. Chemistry of Materials, 2004, 16(24): 5096–5106
|
145 |
Ren T Z, Yuan Z Y, Su B L. Thermally stable macroporous zirconium phosphates with supermicroporous walls: A self-formation phenomenon of hierarchy. Chemical Communications, 2004, (23): 2730–2731
|
146 |
Ren T Z, Yuan Z Y, Azioun A, Pireaux J J, Su B L. Tailoring the porous hierarchy of titanium phosphates. Langmuir, 2006, 22(8): 3886–3894
|
147 |
Yuan Z Y, Ren T Z, Azioune A, Pireaux J J, Su B L. Self-assembly of hierarchically mesoporous-macroporous phosphated nanocrystalline aluminum (oxyhydr) oxide materials. Chemistry of Materials, 2006, 18(7): 1753–1767
|
148 |
Wan Y, Zhao D. On the controllable soft-templating approach to mesoporous silicates. Chemical Reviews, 2007, 107(7): 2821–2860
|
149 |
Zhao D, Huo Q, Feng J, Chmelka B F, Stucky G D. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. Journal of the American Chemical Society, 1998, 120(24): 6024–6036
|
150 |
Ryoo R, Ko C H, Kruk M, Antochshuk V, Jaroniec M. Block-copolymer- templated ordered mesoporous silica: Array of uniform mesopores or mesopore-micropore network. Journal of Physical Chemistry B, 2000, 104(48): 11465–11471
|
151 |
Imperor-Clerc M, Davidson P, Davidson A. Existence of a microporous corona around the mesopores of silica-based SBA-15 materials templated by triblock copolymers. Journal of the American Chemical Society, 2000, 122(48): 11925–11933
|
152 |
Wang J, Feng S, Song Y, Li W, Gao W, Elzatahry A A, Aldhayan D, Xia Y, Zhao D. Elzatahry, Zhao A A. Synthesis of hierarchically porous carbon spheres with yolk-shell structure for high performance supercapacitors. Catalysis Today, 2015, 243: 199–208
|
153 |
Haskouri E I, de Zárate J, Guillem D O, Latorre C, Caldés J, Beltrán M, Beltrán A, Descalzo D, Rodríguez-López A B, Gertrudis Martínez-Máñez R. Silica-based powders and monoliths with bimodal pore systems. Chemical Communications, 2002, 4(4): 330–331
|
154 |
Kim J H, Fang B, Song M Y, Yu J S. Topological transformation of thioether-bridged organosilicas into nanostructured functional materials. Chemistry of Materials, 2012, 24(12): 2256–2264
|
155 |
Wu D, Fu R, Dresselhaus M S, Dresselhaus G. Nano-structure control of carbon aerogels via a microemulsion-templated sol-gel polymerization method. Carbon, 2006, 44(4): 675–681
|
156 |
Fu R, Zheng B, Liu J, Dresselhaus M S, Dresselhaus G, Satcher J H, Baumann T F. The fabrication and characterization of carbon aerogels by gelation and supercritical drying in isopropanol. Advanced Functional Materials, 2003, 13(7): 558–562
|
157 |
Nakanishi K, Soga N. Phase separation in gelling silica-organic polymer solution: Systems containing poly(sodium styrenesulfonate). Journal of the American Ceramic Society, 1991, 74(10): 2518–2530
|
158 |
Sun Y. Porous zirconium phosphates prepared by surfactant-assistedprecipitation. Journal of Materials Chemistry, 2000, 10(10): 2320–2324
|
159 |
Unger K K, Tanaka N, Machtejevas E. Monolithic silicas in separation science: Concepts, syntheses, characterization, modeling and applications. Germany: Wiley-VCH, 2010, 125–161
|
160 |
Inagaki S, Guan S, Fukushima Y, Ohsuna T, Terasaki O. Novel mesoporous materials with a uniform distribution of organic groups and inorganic oxide in their frameworks. Journal of the American Chemical Society, 1999, 121(41): 9611–9614
|
161 |
Sun X H, Zheng C M, Qiao M Q, Yan J L, Wang X P, Guan N J. Bioinspired synthesis of hierarchical macro-mesoporous titania with tunable macroporous morphology using cell-assemblies as macrotemplates. Chemical Communications, 2009: 4750–4752
|
162 |
Konishi J, Fujit K, Nakanishi K, Hirao K. Monolithic TiO2 with controlled multiscale porosity via a template-free sol-gel process accompanied by phase separation. Chemistry of Materials, 2006, 18(25): 6069–6074
|
163 |
Smått J H, Schunk S, Lindén M. Versatile double-templating synthesis route to silica monoliths exhibiting a multimodal hierarchical porosity. Chemistry of Materials, 2003, 15(12): 2354–2361
|
164 |
Takahashi R, Sato S, Sodesawa T, Suzuki K, Tafu M, Nakanishi K, Soga N. Phase separation in sol-gel process of alkoxide-derived silica-zirconia in the presence of polyethylene oxide. Journal of the American Ceramic Society, 2001, 84(9): 1968–1976
|
165 |
Murai S, Fujita K, Nakanishi K, Hirao K. Morphology control of phase-separation-induced alumina-silica macroporous gels for rare-earth-doped scattering media. Journal of Physical Chemistry B, 2004, 108(43): 16670–16676
|
166 |
Nakanishi K, Kobayashi Y, Amatani T, Hirao K, Kodaira T. Spontaneous formation of hierarchical macro-mesoporous ethane-silica monolith. Chemistry of Materials, 2004, 16(19): 3652–3658
|
167 |
Amatani T, Nakanishi K, Hirao K, Kodaira T. Monolithic periodic mesoporous silica with well-defined macropores. Chemistry of Materials, 2005, 17(8): 2114–2119
|
168 |
Brandhuber D, Torma V, Raab C, Peterlik H, Kulak A, Hüsing N. Glycol-modified silanes in the synthesis of mesoscopically organized silica monoliths with hierarchical porosity. Chemistry of Materials, 2005, 17(16): 4262–4271
|
169 |
Konishi J, Fujita K, Nakanishi K, Hirao K, Komarneni S, Parker J C. Macroporous Morphology Induced by Phase Separation in Sol-Gel Systems Derived from Titania Colloid, MRS Proceedings. Cambridge: Cambridge University Press, 2003, 788: 8–11
|
170 |
Huesing N, Raab C, Torma V, Roig A, Peterlik H. Periodically mesostructured silica monoliths from diol-modified silanes. Chemistry of Materials, 2003, 15(14): 2690–2692
|
171 |
Wu Q L, Subramanian N, Rankin S E. Hierarchically porous titania thin film prepared by controlled phase separation and surfactant templating. Langmuir, 2011, 27(15): 9557–9566
|
172 |
François B, Pitois O, François J. Polymer films with a self-organized honeycomb morphology. Advanced Materials, 1995, 7(12): 1041–1044
|
173 |
Saito Y, Shimomura M, Yabu H. Dispersion of Al2O3 nanoparticles stabilized with mussel-inspired amphiphilic copolymers in organic solvents and formation of hierarchical porous films by the breath figure technique. Chemical Communications, 2013, 49(54): 6081–6083
|
174 |
Kon K, Brauer C N, Hidaka K, Löhmannsröben H G, Karthaus O. Preparation of patterned zinc oxide films by breath figure templating. Langmuir, 2010, 26(14): 12173–12176
|
175 |
Peng J, Han Y, Yang Y, Li B. The influencing factors on the macroporous formation in polymer films by water droplet templating. Polymer, 2004, 45(2): 447–452
|
176 |
Sel O, Laberty-Robert C, Azais T, Sanchez C. Designing meso-and macropore architectures in hybrid organic-inorganic membranes by combining surfactant and breath figure templating (BFT). Physical Chemistry Chemical Physics, 2009, 11(19): 3733–3741
|
177 |
Böker A, Lin Y, Chiapperini K, Horowitz R, Thompson M, Carreon V, Xu T, Abetz C, Skaff H, Dinsmore A D, Emrick T, RussellT P. Hierarchical nanoparticle assemblies formed by decorating breath figures. Nature Materials, 2004, 3(5): 302–306
|
178 |
Srinivasarao M, Collings D, Philips A, Patel S. Three-dimensionally ordered array of air bubbles in a polymer film. Science, 2001, 292(5514): 79–83
|
179 |
Gao Y, Hou Y, Beaujuge P M. Arrays of hollow silica half-nanospheres via the breath figure approach. Advanced Materials Interfaces, 2015, 2(9): 1500078
|
180 |
Deville S. Freeze-casting of porous ceramics: A review of current achievements and issues. Advanced Engineering Materials, 2008, 10(3): 155–169
|
181 |
Chatterji S. Aspects of the freezing process in a porous material–water system: Part 1. Freezing and the properties of water and ice. Cement and Concrete Research, 1999, 29(4): 627–630
|
182 |
DeSimone J M, Guan Z, Elsbernd C S. Synthesis of fluoropolymers in supercritical carbon dioxide. Science, 1992, 257(5072): 945–947
|
183 |
Ho M H, Kuo P Y, Hsieh H J, Hsien T Y, Hou L T, Lai J Y, Wang D M. Preparation of porous scaffolds by using freeze-extraction and freeze-gelation methods. Biomaterials, 2004, 25(1): 129–138
|
184 |
Kang H W, Tabata Y, Ikada Y. Fabrication of porous gelatin scaffolds for tissue engineering. Biomaterials, 1999, 20(14): 1339–1344
|
185 |
Hsieh C Y, Tsai S P, Ho M H, Wang D M, Liu C E, Hsieh C H, Hsieh H J. Analysis of freeze-gelation and cross-linking processes for preparing porous chitosan scaffolds. Carbohydrate Polymers, 2007, 67(1): 124–132
|
186 |
Daamen W F, Van Moerkerk H T B, Hafmans T, Buttafoco L, Poot A A, Veerkamp J H, Van Kuppevelt T H. Preparation and evaluation of molecularly-defined collagen-elastin-glycosaminoglycan scaffolds for tissue engineering. Biomaterials, 2003, 24(22): 4001–4009
|
187 |
Yannas I V, Burke J F, Gordon P L, Huang C, Rubenstein R H. Design of an artificial skin. II. Control of chemical composition. Journal of Biomedical Materials Research, 1980, 14(2): 107–132
|
188 |
Shalaby W S W, Peck G E, Park K. Release of dextromethorphan hydrobromide from freeze-dried enzyme-degradable hydrogels. Journal of Controlled Release, 1991, 16(3): 355–363
|
189 |
Mukai S R, Nishihara H, Tamon H. Formation of monolithic silica gel microhoneycombs (SMHs) using pseudosteady state growth of microstructural ice crystals. Chemical Communications, 2004, 7(7): 874–875
|
190 |
Nishihara H, Mukai S R, Yamashita D, Tamon H. Ordered macroporous silica by ice templating. Chemistry of Materials, 2005, 17(3): 683–689
|
191 |
Mahler W, Bechtold M F. Freeze-formed silica fibres. Nature, 1980, 285(5759): 27–28
|
192 |
Fukasawa T, Ando M, Ohji T, Kanzaki S. Synthesis of porous ceramics with complex pore structure by freeze-dry processing. Journal of the American Ceramic Society, 2001, 84(1): 230–232
|
193 |
Sofie S W, Dogan F. Freeze casting of aqueous alumina slurries with glycerol. Journal of the American Ceramic Society, 2001, 84(7): 1459–1464
|
194 |
Gutiérrez M C, Jobbágy M, Rapún N, Ferrer M L, del Monte F A. Biocompatible bottom-up route for the preparation of hierarchical biohybrid materials. Advanced Materials, 2006, 18(9): 1137–1140
|
195 |
Zhang H, Hussain I, Brust M, Butler M F, Rannard S P, Cooper A I. Aligned two-and three-dimensional structures by directional freezing of polymers and nanoparticles. Nature Materials, 2005, 4(10): 787–793
|
196 |
Perriman A W, Brogan A P, Cölfen H, Tsoureas N, Owen G R, Mann S. Reversible dioxygen binding in solvent-free liquid myoglobin. Nature Chemistry, 2010, 2(8): 622–626
|
197 |
Eckert C A, Knutson B L, Debenedetti P G. Supercritical fluids as solvents for chemical and materials processing. Nature, 1996, 383(6598): 313–318
|
198 |
Cooper A I. Porous materials and supercritical fluids. Advanced Materials, 2003, 15(13): 1049–1059
|
199 |
DeSimone J M, Maury E E, Menceloglu Y Z, McClain J B, Romack T J, Combes J R. Dispersion polymerizations in supercritical carbon dioxide. Science, 1994, 265(5170): 356–359
|
200 |
Kendall J L, Canelas D A, Young J L, DeSimone J M. Polymerizations in supercritical carbon dioxide. Chemical Reviews, 1999, 99(2): 543–564
|
201 |
DeSimone J M. Practical approaches to green solvents. Science, 2002, 297(5582): 799–803
|
202 |
Partap S, Rehman I, Jones J R, Darr J A. Supercritical carbon dioxide in water emulsion-templated synthesis of porous calcium alginate hydrogels. Advanced Materials, 2006, 18(4): 501–504
|
203 |
Palocci C, Barbetta A, La Grotta A, Dentini M. Porous biomaterials obtained using supercritical CO2-water emulsions. Langmuir, 2007, 23(15): 8243–8251
|
204 |
Butler R, Hopkinson I, Cooper A I. Synthesis of porous emulsion-templated polymers using high internal phase CO2-in-water emulsions. Journal of the American Chemical Society, 2003, 125(47): 14473–14481
|
205 |
Langer R, Vacanti J. Tissue engineering. Science, 1993, 260(5110): 920–926
|
206 |
Sui R, Charpentier P. Synthesis of metal oxide nanostructures by direct sol-gel chemistry in supercritical fluids. Chemical Reviews, 2012, 112(6): 3057–3082
|
207 |
Xu S, Yang H, Wang K, Wang B, Xu Q. Effect of supercritical CO2 on fabrication of free-standing hierarchical graphene oxide/carbon nanofiber/polypyrrole film and its electrochemical property. Physical Chemistry Chemical Physics, 2014, 16(16): 7350–7357
|
208 |
Wang M, Zhao B, Xu S, Lin L, Liu S, He D. Synthesis of hierarchically structured ZnO nanomaterials via a supercritical assisted solvothermal process. Chemical Communications, 2014, 50(8): 930–932
|
209 |
Nugroho A, Kim S J, Chang W, Chung K Y, Kim J. Design and fabrication of hierarchically porous carbon with a template-free method. Scientific Reports, 2014, 4: 6349
|
210 |
Wang L, Zhuo L, Zhang C, Zhao F. Supercritical carbon dioxide assisted deposition of Fe3O4 nanoparticles on hierarchical porous carbon and their lithium-storage performance. Chemistry (Weinheim an der Bergstrasse, Germany), 2014, 20(15): 4308–4315
|
211 |
Nugroho A, Yoon D, Joo O S, Chung K Y, Kim J. Continuous synthesis of Li4Ti5O12 nanoparticles in supercritical fluids and their electrochemical performance for anode in Li-ion batteries. Chemical Engineering Journal, 2014, 258: 357–366
|
212 |
Davis S A, Burkett S L, Mendelson N H, Mann S. Bacterial templating of ordered macrostructures in silica and silica-surfactant mesophases. Nature, 1997, 385(6615): 420–423
|
213 |
Meldrum F C, Seshadri R. Porous gold structures through templating by echinoidskeletal plates. Chemical Communications, 2000, 1(1): 29–30
|
214 |
Qi L, Li J, Ma J. Biomimetic morphogenesis of calcium carbonate in mixed solutions of surfactants and double-hydrophilic block copolymers. Advanced Materials, 2002, 14(4): 300–303
|
215 |
Cook G, Timms P L, Göltner Spickermann C. Exact replication of biological structures by chemical vapor deposition of silica. Angewandte Chemie International Edition, 2003, 42(5): 557–559
|
216 |
Hall S R, Bolger H, Mann S. Morphosynthesis of complex inorganic forms using pollen grain templates. Chemical Communications, 2003, 22(22): 2784–2785
|
217 |
Valtchev V P, Smaihi M, Faust A C, Vidal L. Biomineral-silica-induced zeolitzation of equisetum arvense. Angewandte Chemie International Edition, 2003, 42(24): 2782–2785
|
218 |
Sim K, Youn H J. Preparation of porous sheets with high mechanical strength by the addition of cellulose nanofibrils. Cellulose, 2016, 23(2): 1383–1392
|
219 |
Farin D, Peleg S, Yavin D, Avnir D. Applications and limitations of boundary-line fractal analysis of irregular surfaces: Proteins, aggregates, and porous materials. Langmuir, 1985, 1(4): 399–407
|
220 |
Shim I K, Jung M R, Kim K H, Seol Y J B, Park Y J D, Park W H, Lee S J. Novel three-dimensional scaffolds of poly(L-lactic acid) microfibers using electrospinning and mechanical expansion: Fabrication and bone regeneration. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2010, 95(1): 150–160
|
221 |
Jia Y, Han W, Xiong G, Yang W. Layer-by-layer assembly of TiO2 colloids onto diatomite to build hierarchical porous materials. Journal of Colloid and Interface Science, 2008, 323(2): 326–331
|
222 |
Zampieri A, Mabande G T P, Selvam T, Schwieger W, Rudolph A, Hermann R, Sieber H, Greil P. Biotemplating of Luffa cylindrica sponges to self-supporting hierarchical zeolite macrostructures for bio-inspired structured catalytic reactors. Materials Science and Engineering, 2006, 26(1): 130–135
|
223 |
Holmes S M, Graniel-Garcia B E, Foran P, Hill P, Roberts E P L, Sakakini B H, Newton J M. A novel porous carbon based on diatomaceous earth. Chemical Communications, 2006, 25(25): 2662–2663
|
224 |
Vrieling E G, Beelen T P M, van Santen R A, Gieskes W W. Mesophases of (bio) polymer-silica particles inspire a model for silica biomineralization in diatoms. Angewandte Chemie International Edition, 2002, 41(9): 1543–1546
|
225 |
Wang Y, Tang Y, Dong A, Wang X, Ren N, Gao Z. Zeolitization of diatomite to prepare hierarchical porous zeolite materials through a vapor-phase transport process. Journal of Materials Chemistry, 2002, 12(6): 1812–1818
|
226 |
Yang H, Zhao D. Synthesis of replica mesostructures by the nanocasting strategy. Journal of Materials Chemistry, 2005, 15: 1217–1231
|
227 |
Polarz S, Antonietti M. Porous materials via nanocasting procedures: Innovative materials and learning about soft-matter organization. Chemical Communications, 2002, 22(22): 2593–2604
|
228 |
Kyotani T, Nagai T, Inoue S, Tomita A. Formation of new type of porous carbon by carbonization in zeolite nanochannels. Chemistry of Materials, 1997, 9(2): 609–615
|
229 |
Lu A, Schmidt W, Spliethoff B, Schüth F. Synthesis and characterization of nanocast silica NCS-1 with CMK-3 as a template. Chemistry (Weinheim an der Bergstrasse, Germany), 2004, 10(23): 6085–6092
|
230 |
Ryoo R, Joo S H, Jun S. Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation. Journal of Physical Chemistry B, 1999, 103(37): 7743–7746
|
231 |
Schüth F. Endo- und exotemplate zur erzeugung von anorganischen materialien mit großer spezifischer oberfläChe. Angewandte Chemie, 2003, 115(31): 3730–3750
|
232 |
Velev O D, Jede T A, Lobo R F, Lenhoff A M. Porous silica via colloidal crystallization. Nature, 1997, 389(6650): 447–448
|
233 |
Lu A H, Schüth F. Nanocasting: A versatile strategy for creating nanostructured porous materials. Advanced Materials, 2006, 18(14): 1793–1805
|
234 |
Jun S, Joo S H, Ryoo R, Kruk M, Jaroniec M, Liu Z, Ohsuna T, Terasaki O. Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure. Journal of the American Chemical Society, 2000, 122(43): 10712–10713
|
235 |
Ryoo R, Joo S H, Kruk M, Jaroniec M. Ordered mesoporous carbons. Advanced Materials, 2001, 13(9): 677–681
|
236 |
Kang M, Kim D, Yi S H, Han J U, Yie J E, Kim J M. Preparation of stable mesoporous inorganic oxides via nano-replication technique. Catalysis Today, 2004, 93-95: 695–699
|
237 |
Marsh H, Heintz E A, Rodriguez R F. Introduction to Carbon Technologies. Spain: University of Alicante, Secretariado de Publicaciones, 1997, 151–167
|
238 |
Lee J, Kim J, Hyeon T. A facile synthesis of bimodal mesoporous silica and its replication for bimodal mesoporous carbon. Chemical Communications, 2003, 10(10): 1138–1139
|
239 |
Taguchi A, Smått J H, Lindén M. Carbon monoliths possessing a hierarchical, fully interconnected porosity. Advanced Materials, 2003, 15(14): 1209–1211
|
240 |
Lu A H, Smått J H, Lindén M. Combined surface and volume templating of highly porous nanocast carbon monoliths. Advanced Functional Materials, 2005, 15(5): 865–871
|
241 |
Chai G S, Shin I S, Yu J S. Synthesis of ordered, uniform, macroporous carbons with mesoporous walls templated by aggregates of polystyrene spheres and silica particles for use as catalyst supports in direct methanol fuel cells. Advanced Materials, 2004, 16(22): 2057–2061
|
242 |
Yoon S B, Sohn K, Kim J Y, Shin C H, Yu J S, Hyeon T. Fabrication of carbon capsules with hollow macroporous core/mesoporous shell structures. Advanced Materials, 2002, 14(1): 19–21
|
243 |
Kim M, Sohn K, Na H B, Hyeon T. Synthesis of nanorattles composed of gold nanoparticles encapsulated in mesoporous carbon and polymer shells. Nano Letters, 2002, 2(12): 1383–1387
|
244 |
Zhang X, Tu K N, Xie Y H, Tung C H, Xu S. Single-step fabrication of nickel films with arrayed macropores and nanostructured skeletons. Advanced Materials, 2006, 18(14): 1905–1909
|
245 |
Martin C R, Che G, Lakshmi B B, Fisher E R. Carbon nanotubule membranes for electrochemical energy storage and production. Nature, 1998, 393(6683): 346–349
|
246 |
Chen X, Steinhart M, Hess C, Gösele U. Ordered arrays of mesoporous microrods from recyclable macroporous silicon templates. Advanced Materials, 2006, 18(16): 2153–2156
|
247 |
Panda M, Seshadri R, Gopalakrishnan J. Preparation of PbZrO3/AsO4 composites (A= Ca, Sr, Ba) and PbZrO3 by metathetic reactions in the solid state: Metathetic exchange of divalent species. Chemistry of Materials, 2003, 15(7): 1554–1559
|
248 |
Panda M, Rajamathi M, Seshadri R. A template-free, combustion-chemical route to macroporous nickel monoliths displaying a hierarchy of pore sizes. Chemistry of Materials, 2002, 14(11): 4762–4767
|
249 |
Toberer E S, Schladt T D, Seshadri R. Macroporous manganese oxides with regenerative mesopores. Journal of the American Chemical Society, 2006, 128(5): 1462–1463
|
250 |
Muir D M. A review of the selective leaching of gold from oxidised copper-gold ores with ammonia-cyanide and new insights for plant control and operation. Minerals Engineering, 2011, 24(6): 576–582
|
251 |
Zhang L, Wu H B, Liu B, Lou X W D. Formation of porous SnO2 microboxes via selective leaching for highly reversible lithium storage. Energy & Environmental Science, 2014, 7(3): 1013–1017
|
252 |
Yuan Z Y, Blin J L, Su B L. Design of bimodal mesoporous silicas with interconnected pore systems by ammonia post-hydrothermal treatment in the mild-temperature range. Chemical Communications, 2002, 5(5): 504–505
|
253 |
Sun Z, Liu Y, Li B, Wei J, Wang M, Yue Q, Deng Y, Kaliaguine S, Zhao D. General synthesis of discrete mesoporous carbon microspheres through a confined self-assembly process in inverse opals. ACS Nano, 2013, 7(10): 8706–8714
|
254 |
Tao Y, Kanoh H, Abrams L, Kaneko K. Mesopore-modified zeolites: Preparation, characterization, and applications. Chemical Reviews, 2006, 106(3): 896–910
|
255 |
van Donk S, Janssen A H, Bitter J H, deJong K P. Generation, characterization, and impact of mesopores in zeolite catalysts. Catalysis Reviews, 2003, 45(2): 297–319
|
256 |
Mei C, Liu Z, Wen P, Xie Z, Hua W, Gao Z. Regular HZSM-5 microboxes prepared via a mild alkaline treatment. Journal of Materials Chemistry, 2008, 18(29): 3496–3500
|
257 |
Zhou J, Hua Z, Shi J, He Q, Guo L, Ruan M. Synthesis of a hierarchical micro/mesoporous structure by steam-assisted post-crystallization. Chemistry (Weinheim an der Bergstrasse, Germany), 2009, 15(47): 12949–12954
|
258 |
Groen J C, Bach T, Ziese U, Paulaime-van Donk A M, de Jong K P, Moulijn J A, Pérez-Ramírez J. Creation of hollow zeolite architectures by controlled desilication of Al-zoned ZSM-5 crystals. Journal of the American Chemical Society, 2005, 127(31): 10792–10793
|
259 |
Verboekend D, Vilé G, Pérez-Ramírez J. Hierarchical Y and USY zeolites designed by post-synthetic strategies. Advanced Functional Materials, 2012, 22(5): 916–928
|
260 |
Dähne L, Leporatti S, Donath E, Möhwald H. Fabrication of micro reaction cages with tailored properties. Journal of the American Chemical Society, 2001, 123(23): 5431–5436
|
261 |
Lin K J, Chen L J, Prasad M R, Cheng C Y. Core-shell synthesis of a novel, spherical, mesoporous silica/platinum nanocomposite: Pt/PVP@ MCM-41. Advanced Materials, 2004, 16(20): 1845–1849
|
262 |
Liu Y, Zhang W, Pinnavaia T J. Steam-stable MSU-S aluminosilicate mesostructures assembled from zeolite ZSM-5 and zeolite beta seeds. Angewandte Chemie International Edition, 2001, 40(7): 1255–1258
|
263 |
Xiao F S, Han Y, Yu Y, Meng X, Yang M, Wu S. Hydrothermally stable ordered mesoporous titanosilicates with highly active catalytic sites. Journal of the American Chemical Society, 2002, 124(6): 888–889
|
264 |
Chal R, Gerardin C, Bulut M, van Donk S. Overview and industrial assessment of synthesis strategies towards zeolites with mesopores. ChemCatChem, 2011, 3(1): 67–81
|
265 |
Möller K, Bein T. Mesoporosity—A new dimension for zeolites. Chemical Society Reviews, 2013, 42(9): 3689–3707
|
266 |
Rolison D R. Catalytic nanoarchitectures—The importance of nothing and the unimportance of periodicity. Science, 2003, 299(5613): 1698–1701
|
267 |
Wang X, Yu J C, Ho C, Hou Y, Fu X. Photocatalytic activity of a hierarchically macro/mesoporous titania. Langmuir, 2005, 21(6): 2552–2559
|
268 |
Shi J W, Zong X, Wu X, Cui H J, Xu B, Wang L Z, Fu M L. Carbon-doped titania hollow spheres with tunable hierarchical macroporous channels and enhanced visible light-induced photocatalytic activity. Chemcatchem, 2012, 4(4): 488–491
|
269 |
Yu J G, Su Y R, Cheng B. Template-free fabrication and enhanced photocatalytic activity of hierarchical macro-mesoporous titania. Advanced Functional Materials, 2007, 17(12): 1984–1990
|
270 |
Zhou H, Ding L, Fan T, Ding J, Zhang D, Guo Q. Leaf-inspired hierarchical porous CdS/Au/N-TiO2 heterostructures for visible light photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2014, 147: 221–228
|
271 |
Schnepp Z, Yang W, Antonietti M, Giordano C. Biotemplating of metal carbide microstructures: The magnetic leaf. Angewandte Chemie International Edition, 2010, 49(37): 6564–6566
|
272 |
Zhu J, Zhu Y, Zhu L, Rigutto M, van der Made A, Yang C, Pan S, Wang L, Zhu L, Jin Y, Sun Q, Wu Q, Meng X, Zhang D, Han Y, Li J, Chu Y, Zheng A, Qiu S, Zheng X, Xiao F S, van der Made A, Yang C, Pan S X, Xiao F S. Highly mesoporous single-crystalline zeolite beta synthesized using a nonsurfactant cationic polymer as a dual-function template. Journal of the American Chemical Society, 2014, 136(6): 2503–2510
|
273 |
Corma A, Diaz-Cabanas M J, Martínez-Triguero J, Rey F, Rius J. A large-cavity zeolite with wide pore windows and potential as an oil refining catalyst. Nature, 2002, 418(6897): 514–517
|
274 |
Tang T, Yin C, Wang L, Ji Y, Xiao F S. Superior performance in deep saturation of bulky aromatic pyrene over acidic mesoporous beta zeolite-supported palladium catalyst. Journal of Catalysis, 2007, 249(1): 111–115
|
275 |
Serrano D P, Sanz R, Pizarro P, Moreno I, Medina S. Hierarchical TS-1 zeolite as an efficient catalyst for oxidative desulphurization of hydrocarbon fractions. Applied Catalysis B: Environmental, 2014, 146: 35–42
|
276 |
Zhang S, Xu W, Zeng M, Li J, Li J, Xu J, Wang X. Superior adsorption capacity of hierarchical iron oxide @ magnesium silicate magnetic nanorods for fast removal of organic pollutants from aqueous solution. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(38): 11691–11697
|
277 |
Ma T Y, Zhang X J, Yuan Z Y. Hierarchical meso-/macroporous aluminum phosphonate hybrid materials as multifunctional adsorbents. Journal of Physical Chemistry C, 2009, 113(29): 12854–12862
|
278 |
Xiao H, Ai Z, Zhang L. Nonaqueous sol-gel synthesized hierarchical CeO2 nanocrystal microspheres as novel adsorbents for wastewater treatment. Journal of Physical Chemistry C, 2009, 113(38): 16625–16630
|
279 |
Han S, Sohn K, Hyeon T. Fabrication of new nanoporous carbons through silica templates and their application to the adsorption of bulky dyes. Chemistry of Materials, 2000, 12(11): 3337–3341
|
280 |
Ayad M, Zaghlol S. Nanostructured crosslinked polyaniline with high surface area: Synthesis, characterization and adsorption for organic dye. Chemical Engineering Journal, 2012, 79: 204–206
|
281 |
Iwasaki M, Miwa S, Ikegami T, Tomita M, Tanaka N, Ishihama Y. One-dimensional capillary liquid chromatographic separation coupled with tandem mass spectrometry unveils the Escherichia coli proteome on a microarray scale. Analytical Chemistry, 2010, 82(7): 2616–2620
|
282 |
Miyamoto K, Hara T, Kobayashi H, Morisaka H, Tokuda D, Horie K, Koduki K, Makino S, Núñez O, Yang C, Kawabe T, Ikegami T, Takubo H, Ishihama Y, TanakaN. High-efficiency liquid chromatographic separation utilizing long monolithic silica capillary columns. Analytical Chemistry, 2008, 80(22): 8741–8750
|
283 |
Meunier C F, Rooke J C, Léonard A, Van Cutsem P, Su B L. Design of photochemical materials for carbohydrate production via the immobilisation of whole plant cells into a porous silica matrix. Journal of Materials Chemistry, 2010, 20(5): 929–936
|
284 |
Léonard A, Rooke J C, Meunier C F, Sarmento H, Descy J P, Su B L. Cyanobacteria immobilised in porous silica gels: Exploring biocompatible synthesis routes for the development of photobioreactors. Energy & Environmental Science, 2010, 3(3): 370–377
|
285 |
Meunier C F, Rooke J C, Léonard A, Xie H, Su B L. Living hybrid materials capable of energy conversion and CO2 assimilation. Chemical Communications, 2010, 46(22): 3843–3859
|
286 |
Rooke J C, Léonard A, Meunier C F, Sarmento H, Descy J P, Su B L. Hybrid photosynthetic materials derived from microalgae cyanidium caldarium encapsulated within silica gel. Journal of Colloid and Interface Science, 2010, 344(2): 348–352
|
287 |
Rooke J C, Meunier C, Léonard A, Su B L. Energy from photobioreactors: Bioencapsulation of photosynthetically active molecules, organelles, and whole cells within biologically inert matrices. Pure and Applied Chemistry, 2008, 80(11): 2345–2376
|
288 |
Xiong J, Das S N, Shin B, Kar J P, Choi J H, Myoung J M. Biomimetic hierarchical ZnO structure with superhydrophobic and antireflective properties. Journal of Colloid and Interface Science, 2010, 350(1): 344–347
|
289 |
Hajdu K, Gergely C, Martin M, Cloitre T, Zimányi L, Tenger K, Khoroshyy P, Palestino G, Agarwal V, Hernádi K, Németh Z, Nagy L, HernAdi K, Nemeth Z. Porous silicon/photosynthetic reaction center hybrid nanostructure. Langmuir, 2012, 28(32): 11866–11873
|
290 |
Léonard A, Dandoy P, Danloy E, Leroux G, Meunier C F, Rooke J C, Su B L. Whole-cell based hybrid materials for green energy production, environmental remediation and smart cell-therapy. Chemical Society Reviews, 2011, 40(2): 860–885
|
291 |
Rooke J C, Léonard A, Meunier C F, Su B L. Designing photobioreactors based on living cells immobilized in silica gel for carbon dioxide mitigation. ChemSusChem, 2011, 4(9): 1249–1257
|
292 |
Zhou H, Li P, Guo J, Yan R, Fan T, Zhang D, Ye J. Artificial photosynthesis on tree trunk derived alkaline tantalates with hierarchical anatomy: Towards CO2 photo-fixation into CO and CH4. Nanoscale, 2015, 7(1): 113–120
|
293 |
Steele B C H, Heinze A. Materials for fuel-cell technologies. Nature, 2001, 414(6861): 345–352
|
294 |
Winter M, Brodd R J. What are batteries, fuel cells, and supercapacitors? Chemical Reviews, 2004, 104(10): 4245–4270
|
295 |
Bang J H, Han K, Skrabalak S E, Kim H, Suslick K S. Porous carbon supports prepared by ultrasonic spray pyrolysis for direct methanol fuel cell electrodes. Journal of Physical Chemistry C, 2007, 111(29): 10959–10964
|
296 |
Chai G S, Yoon S B, Yu J S, Choi J H, Sung Y E. Ordered porous carbons with tunable pore sizes as catalyst supports in direct methanol fuel cell. Physical of Chemistry B, 2004, 108(22): 7074–7079
|
297 |
Walcarius A. Mesoporous materials and electrochemistry. Chemical Society Reviews, 2013, 42(9): 4098–4140
|
298 |
Jin J, Huang S Z, Li Y, Tian H, Wang H E, Yu Y, Chen L H, Hasan T, Su B L. Hierarchical nanosheet-constructed yolk-shell TiO2 porous microspheres for lithium batteries with high capacity, superior rate and long cycle capability. Nanoscale, 2015, 7(30): 12979–12989
|
299 |
Huang S Z, Cai Y, Jin J, Liu J, Li Y, Yu Y, Wang H E, Chen L H, Su B L. Hierarchical mesoporous urchin-like Mn3O4/carbon microspheres with highly enhanced lithium battery performance by in-situ carbonization of new lamellar manganese alkoxide (Mn-DEG). Nano Energy, 2015, 12: 833–844
|
300 |
Jin J, Huang S Z, Liu J, Li Y, Chen L H, Yu Y, Wang H E, Grey C P, Su B L. Phases hybriding and hierarchical structuring of mesoporous TiO2 nanowire bundles for high rate and high capacity lithium batteries. Advancement of Science, 2015, 2: 1500070
|
301 |
Huang S Z, Cai Y, Jin J, Li Y, Zheng X F, Wang H E, Wu M, Chen L H, Su B L. Annealed vanadium oxide nanowires and nanotubes as high performance cathode materials for lithium ion battery. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(34): 14099–14108
|
302 |
Jin J, Huang S Z, Liu J, Li Y, Chen D S, Wang H E, Yu Y, Chen L H, Su B L. Design of new anode material structure on the basis of hierarchically three dimensionally ordered macro-mesoporous TiO2 for high performance lithium ion batteries. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(25): 9699–9708
|
303 |
Huang S Z, Jin J, Cai Y, Li Y, Tan H Y, Wang H E, Van Tendeloo G, Su B L. Engineering single crystalline Mn3O4 nano-octahedra with exposed highly active {011} facets for high performance lithium ion batteries. Nanoscale, 2014, 6(12): 6819–6827
|
304 |
Zheng X F, Shen G F, Li Y, Duan H N, Yang X Y, Huang S Z, Wang H E, Wang C, Deng Z, Su B L. Self-templated synthesis of microporous CoO nanoparticles with highly enhanced performance for both photocatalysis and lithium-ion batteries. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(4): 1394–1400
|
305 |
Wang H E, Chen D S, Cai Y, Zhang R L, Xu J M, Deng Z, Zheng X F, Li Y, Bello I, Su B L. Facile synthesis of hierarchical and porous V2O5 microspheres as cathode materials for lithium ion batteries. Journal of Colloid and Interface Science, 2014, 418: 74–80
|
306 |
Wang H E, Jin J, Cai Y, Xu J M, Chen D S, Zheng X F, Deng Z, Li Y, Bello I, Su B L. Facile and fast synthesis of porous TiO2 spheres for use in lithium ion batteries. Journal of Colloid and Interface Science, 2014, 417: 144–151
|
307 |
Cai Y, Wang H E, Huang S Z, Jin J, Wang C, Yu Y, Li Y, Su B L. Hierarchical nanotube-constructed porous TiO2-B spheres for high performance lithium ion batteries. Scientific Reports, 2015, 5: 11557
|
308 |
Zhou H, Zhu S, Hibino M, Honma I, Ichihara M. Lithium storage in ordered mesoporous carbon (CMK-3) with high reversible specific energy capacity and good cycling performance. Advanced Materials, 2003, 15(24): 2107–2111
|
309 |
Wang Z, Li F, Ergang N S, Stein A. Effects of hierarchical architecture on electronic and mechanical properties of nanocast monolithic porous carbons and carbon-carbon nanocomposites. Chemistry of Materials, 2006, 18(23): 5543–5553
|
310 |
Hu Y S, Adelhelm P, Smarsly B M, Hore S, Antonietti M, Maier J. Synthesis of hierarchically porous carbon monoliths with highly ordered microstructure and their application in rechargeable lithium batteries with high-rate capability. Advanced Functional Materials, 2007, 17(12): 1873–1878
|
311 |
Hao G P, Li W C, Qian D, Wang G H, Zhang W P, Zhang T, Wang A Q, Schüth F, Bongard H J, Lu A H. Structurally designed synthesis of mechanically stable poly (benzoxazine-co-resol)-based porous carbon monoliths and their application as high-performance CO2 capture sorbents. Journal of the American Chemical Society, 2011, 133(29): 11378–11388
|
312 |
Xia Y, Yoshio M, Noguchi H. Improved electrochemical performance of LiFePO4 by increasing its specific surface area. Electrochimica Acta, 2006, 52(1): 240–245
|
313 |
Doherty C M, Caruso R A, Smarsly B M, Drummond C J. Colloidal crystal templating to produce hierarchically porous LiFePO4 electrode materials for high power lithium ion batteries. Chemistry of Materials, 2009, 21(13): 2895–2903
|
314 |
Doherty C M, Caruso R A, Smarsly B M, Adelhelm P, Drummond C J, Doherty C M, Caruso R A, Smarsly B M. Hierarchically porous monolithic LiFePO4/carbon composite electrode materials for high power lithium ion batteries. Chemistry of Materials, 2009, 21(21): 5300–5306
|
315 |
Sinha N N, Shivakumara C, Munichandraiah N. High rate capability of a dual-porosity LiFePO4/C composite. ACS Applied Materials & Interfaces, 2010, 2(7): 2031–2038
|
316 |
Liu J, Conry T E, Song X, Doeff M M, Richardson T J. Nanoporous spherical LiFePO4 for high performance cathodes. Energy & Environmental Science, 2011, 4(3): 885–888
|
317 |
Jiao F, Bao J, Hill A H, Bruce P G. Synthesis of ordered mesoporous Li-Mn-O spinel as a positive electrode for rechargeable lithium batteries. Angewandte Chemie International Edition, 2008, 47(50): 9711–9716
|
318 |
Luo J, Wang Y, Xiong H, Xia Y. Ordered mesoporous spinel LiMn2O4 by a soft-chemical process as a cathode material for lithium-ion batteries. Chemistry of Materials, 2007, 19(19): 4791–4795
|
319 |
Xia X H, Tu J P, Wang X L, Gu C D, Zhao X B. Hierarchically porous NiO film grown by chemical bath deposition via a colloidal crystal template as an electrochemical pseudocapacitor material. Journal of Materials Chemistry, 2011, 21(3): 671–679
|
320 |
Elimelech M, Phillip W A. The future of seawater desalination: Energy, technology, and the environment. Science, 2011, 333(6043): 712–717
|
321 |
Xia X, Tu J, Xiang J, Huang X, Wang X, Zhao X. Hierarchical porous cobalt oxide array films prepared by electrodeposition through polystyrene sphere template and their applications for lithium ion batteries. Journal of Power Sources, 2010, 195(7): 2014–2022
|
322 |
Yuan Y, Xia X, Wu J, Yang J, Chen Y, Guo S. Hierarchically ordered porous nickel oxide array film with enhanced electrochemical properties for lithium ion batteries. Electrochemistry Communications, 2010, 12(7): 890–893
|
323 |
Jung H G, Oh S W, Ce J, Jayaprakash N, Sun Y K. Mesoporous TiO2 nano networks: Anode for high power lithium battery applications. Electrochemistry Communications, 2009, 11(4): 756–759
|
324 |
Yan H, Sokolov S, Lytle J C, Stein A, Zhang F, Smyrl W H. Colloidal-crystal-templated synthesis of ordered macroporous electrode materials for lithium secondary batteries. Journal of the Electrochemical Society, 2003, 150(8): A1102–A1107
|
325 |
Jiao F, Shaju K M, Bruce P G. Synthesis of nanowire and mesoporous low-temperature LiCoO2 by a post-templating reaction. Angewandte Chemie International Edition, 2005, 44(40): 6550–6553
|
326 |
Fan L Z, Hu Y S, Maier J, Adelhelm P, Smarsly B, Antonietti M, Fan L Z, Hu Y S, Maier J. High electroactivity of polyaniline in supercapacitors by using a hierarchically porous carbon monolith as a support. Advanced Functional Materials, 2007, 17(16): 3083–3087
|
327 |
Song H K, Jung Y H, Lee K H, Dao L H. Electrochemical impedance spectroscopy of porous electrodes: The effect of pore size distribution. Electrochimica Acta, 1999, 44(20): 3513–3519
|
328 |
Rose M, Korenblit Y, Kockrick E, Borchardt L, Oschatz M, Kaskel S, Yushin G. Hierarchical micro-and mesoporous carbide-derived carbon as a high-performance electrode material in supercapacitors. Small, 2011, 7(8): 1108–1117
|
329 |
Xia K, Gao Q, Jiang J, Hu J. Hierarchical porous carbons with controlled micropores and mesopores for supercapacitor electrode materials. Carbon, 2008, 46(13): 1718–1726
|
330 |
Eliaz N. Degradation of implant materials. Springer Science Business Media, 2012, 151–173
|
331 |
Xu M, Li H, Zhai D, Chang J, Chen S, Wu C. Hierarchically porous nagelschmidtite bioceramic-silk scaffolds for bone tissue engineering. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 2015, 3(18): 3799–3809
|
332 |
Fu Q, Saiz E, Rahaman M N, Tomsia A P. Bioactive glass scaffolds for bone tissue engineering: State of the art and future perspectives. Materials Science and Engineering C, 2011, 31(7): 1245–1256
|
333 |
Manzano M, Vallet-Regí M. Revisiting bioceramics: Bone regenerative and local drug delivery systems. Progress in Solid State Chemistry, 2012, 40(3): 17–30
|
334 |
Saiz E, Zimmermann E A, Lee J S, Wegst U G, Tomsia A P. Perspectives on the role of nanotechnology in bone tissue engineering. Dental Materials, 2013, 29(1): 103–115
|
335 |
Porter J R, Ruckh T T, Popat K C. Bone tissue engineering: A review in bone biomimetics and drug delivery strategies. Biotechnology Progress, 2009, 25(6): 1539–1560
|
336 |
Hollister S J. Porous scaffold design for tissue engineering. Nature Materials, 2005, 4(7): 518–524
|
337 |
Chen Q Z, Thompson I D, Boccaccini A R. 45S5 Bioglass®-derived glass-ceramic scaffolds for bone tissue engineering. Biomaterials, 2006, 27(11): 2414–2425
|
338 |
Baino F, Vitale-Brovarone C. Three-dimensional glass-derived scaffolds for bone tissue engineering: Current trends and forecasts for the future. Journal of Biomedical Materials Research. Part A, 2011, 97(4): 514–535
|
339 |
Anselme K. Osteoblast adhesion on biomaterials. Biomaterials, 2000, 21(7): 667–681
|
340 |
Jones J R, Lee P D, Hench L L. Hierarchical porous materials for tissue engineering. Philosophical Transactions of the Royal Society of London A: Mathematical. Physical and Engineering Sciences, 1838, 2006(364): 263–281
|
341 |
Hench L L. Bioceramics: From concept to clinic. Journal of the American Ceramic Society, 1991, 74(7): 1487–1510
|
342 |
Brinker C J, Scherer G W. Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing. United States: Academic press, 2013, 130–178
|
343 |
Sepulveda P, Jones J R, Hench L L. In vitro dissolution of melt-derived 45S5 and sol-gel derived 58S bioactive glasses. Journal of Biomedical Materials Research, 2002, 61(2): 301–311
|
344 |
Yuan H, de Bruijn J D, Zhang X, Blitterswijk C A, de Groot K. Bone induction by porous glass ceramic made from Bioglassw (45S5). Journal of Biomedical Materials Research, 2001, 58(3): 270–276
|
345 |
Sepulveda P, Jones J R, Hench L L. Bioactive sol-gel foams for tissue repair. Journal of Biomedical Materials Research, 2002, 59(2): 340–348
|
346 |
Tian G, Gu Z, Liu X, Zhou L, Yin W, Yan L, Jin S, Ren W, Xing G, Li S, ZhaoY. Facile fabrication of rare-earth-doped Gd2O3 hollow spheres with upconversion luminescence, magnetic resonance, and drug delivery properties. Journal of Physical Chemistry C, 2011, 115(48): 23790–23796
|
347 |
Xu Z H, Ma P A, Li C X, Hou Z Y, Zhai X F, Huang S S, Lin J. Monodisperse core-shell structured up-conversion Yb (OH) CO3@ YbPO4: Er3+ hollow spheres as drug carriers. Biomaterials, 2011, 32(17): 4161–4173
|
348 |
Allen T M, Cullis P R. Drug delivery systems: Entering the mainstream. Science, 2004, 303(5665): 1818–1822
|
349 |
Ye F, Guo H, Zhang H, He X. Polymeric micelle-templated synthesis of hydroxyapatite hollow nanoparticles for a drug delivery system. Acta Biomaterialia, 2010, 6(6): 2212–2218
|
350 |
Zhang H, Sun J, Ma D, Bao X, Klein-Hoffmann A, Weinberg G, Su D, Schlögl R. Unusual mesoporous SBA-15 with parallel channels running along the short axis. Journal of the American Chemical Society, 2004, 126(24): 7440–7441
|
351 |
Liu J, Hartono S B, Jin Y G, Li Z, Lu G Q M, Qiao S Z. A facile vesicle template route to multi-shelled mesoporous silica hollow nanospheres. Journal of Materials Chemistry, 2010, 20(22): 4595–4601
|
352 |
Piao Y, Kim J, Na H B, Kim D, Baek J S, Ko M K, Lee J H, Shokouhimehr M, Hyeon T. Wrap-bake-peel process for nanostructural transformation from β-FeOOH nanorods to biocompatible iron oxide nanocapsules. Nature Materials, 2008, 7(3): 242–247
|
353 |
Son J S, Appleford M, Ong J L, Wenke J C, Kim J M, Choi S H, Oh D S. Porous hydroxyapatite scaffold with three-dimensional localized drug delivery system using biodegradable microspheres. Journal of Controlled Release, 2011, 153(2): 133–140
|
354 |
Giger E V, Puigmarti L J, Schlatter R, Castagner B, Dittrich P S, Leroux J C. Gene delivery with bisphosphonate-stabilized calcium phosphate nanoparticles. Journal of Controlled Release, 2011, 150(1): 87–93
|
355 |
Yang H, Hao L, Zhao N, Du C, Wang Y. Hierarchical porous hydroxyapatite microsphere as drug delivery carrier. CrystEngComm, 2013, 15(29): 5760–5763
|
356 |
Zhao W, Chen H, Li Y, Li L, Lang M, Shi J. Uniform rattle-type hollow magnetic mesoporous apheres as drug delivery carriers and their sustained-release property. Advanced Functional Materials, 2008, 18(18): 2780–2788
|
357 |
Wang T, Chai F, Fu Q, Zhang L, Liu H, Li L, Liao Y, Su Z, Wang C, Duan B, Ren D. Uniform hollow mesoporous silica nanocages for drug delivery in vitro and in vivo for liver cancer therapy. Journal of Materials Chemistry, 2011, 21(14): 5299–5306
|
358 |
Gai S L, Yang P, Li P, Wang C X, Dai W X, Niu Y L, Lin N. Synthesis of magnetic, up-conversion luminescent, and mesoporous core-shell-structured nanocomposites as drug carriers. Advanced Functional Materials, 2010, 20(7): 1166–1172
|
359 |
Liu J, Qiao S Z, Chen J S, Lou X W, Xing X, Lu G Q. Yolk/shell nanoparticles: New platforms for nanoreactors, drug delivery and lithium-ion batteries. Chemical Communications, 2011, 47(47): 12578–12591
|
360 |
Chen D, Li L, Tang F, Qi S. Facile and scalable synthesis of tailored silica ‘nanorattle’ structures. Advanced Materials, 2009, 21(37): 3804–3807
|
361 |
Hu S H, Chen Y Y, Liu T C, Tung T H, Liu M D, Chen S Y. Remotely nano-rupturable yolk/shell capsules for magnetically-triggered drug release. Chemical Communications, 2011, 47(6): 1776–1778
|
362 |
Chen Y, Chen H R, Zhang S J, Chen F, Zhang L X, Zhang J M, Zhu M, Wu H X, Guo L M, Feng J W, Shi J L. Multifunctional mesoporous nanoellipsoids for biological bimodal imaging and magnetically targeted delivery of anticancer drugs. Advanced Functional Materials, 2011, 21(2): 270–278
|
363 |
Wu H X, Zhang S J, Zhang J M, Liu G, Shi J L, Zhang L X, Cui X Z, Ruan M L, He Q J, Bu W B A. Hollow-core, magnetic, and mesoporous double-shell nanostructure: In situ decomposition/reduction synthesis, bioimaging, and drug-delivery properties. Advanced Functional Materials, 2011, 21(10): 1850–1862
|
364 |
Zhang X F, Clime L, Roberge H, Normandin F, Yahia L H, Sacher E, Veres T. pH-triggered doxorubicin delivery based on hollow nanoporous silica nanoparticles with free-standing superparamagnetic Fe3O4 cores. Journal of Physical Chemistry C, 2011, 115(5): 1436–1443
|
365 |
Lu Y, Zhao Y, Yu L, Dong L, Shi C, Hu M J, Xu Y J, Wen L P, Yu S H. Hydrophilic Co@ Au yolk/shell nanospheres: Synthesis, assembly, and application to gene delivery. Advanced Materials, 2010, 22(12): 1407–1411
|
366 |
Suh W H, Jang A R, Suh Y H, Suslick K S. Porous hollow, ball-in-ball metal oxide microspheres: Preparation, endocytosis, and cytotoxicity. Advanced Materials, 2006, 18(14): 1832–1837
|
367 |
Li L L, Tang F Q, Li Y H, Liu T L, Hao N J, Chen D, Teng X, He J Q. In vivo delivery of silica nanorattle encapsulated docetaxel for liver cancer therapy with low toxicity and high efficacy. ACS Nano, 2010, 4(11): 6874–6882
|
368 |
Chen Y, Chen H R, Guo L M, He Q J, Chen F, Zhou J, Feng J W, Shi J L. Hollow/rattle-type mesoporous nanostructures by a structural difference-based selective etching strategy. ACS Nano, 2010, 4(1): 529–539
|
/
〈 | 〉 |