REVIEW ARTICLE

Hierarchically porous materials: Synthesis strategies and emerging applications

  • Minghui Sun 1 ,
  • Chen Chen 1 ,
  • Lihua Chen , 1 ,
  • Baolian Su , 1,2
Expand
  • 1. State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
  • 2. Laboratory of Inorganic Materials Chemistry, Namur B-5000, Belgium

Received date: 09 Apr 2016

Accepted date: 07 Jun 2016

Published date: 23 Aug 2016

Copyright

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Great interests have arisen over the last decade in the development of hierarchically porous materials. The hierarchical structure enables materials to have maximum structural functions owing to enhanced accessibility and mass transport properties, leading to improved performances in various applications. Hierarchical porous materials are in high demand for applications in catalysis, adsorption, separation, energy and biochemistry. In the present review, recent advances in synthesis routes to hierarchically porous materials are reviewed together with their catalytic contributions.

Cite this article

Minghui Sun , Chen Chen , Lihua Chen , Baolian Su . Hierarchically porous materials: Synthesis strategies and emerging applications[J]. Frontiers of Chemical Science and Engineering, 2016 , 10(3) : 301 -347 . DOI: 10.1007/s11705-016-1578-y

Acknowledgements

This work was carried out in the framework of a program for Changjiang Scholars and Innovative Research Team (IRT_15R52) of the Chinese Ministry of Education. B. L. Su acknowledges the Chinese Central Government for an “Expert of the State” position in the Program of the “Thousand Talents”, the Chinese Ministry of Education for a “Changjiang Chaire Professor” position and a Clare Hall Life Membership at the Clare Hall College and the financial support of the Department of Chemistry, University of Cambridge. L.H. Chen acknowledges Hubei Provincial Department of Education for the “Chutian Scholar” program. This work was also financially supported by NFSC-21301133, NFSC-51472190, ISTC-2015DFE52870, SRF for ROCS SEM ([2015]311), Hubei Provincial Natural Science Foundation (2015CFB428, 2014CFB160).
1
Baerlocher C, Meier W, Olson D. Atlas of Zeolite Framework Types. Elsevier, 2007, 10–45

2
Kresge C T, Leonowicz M E, Roth W J, Vrtuli J C, Beck J S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 1992, 359(6397): 710–712

DOI

3
Zhao D, Feng J, Huo Q, Melosh W, Fredrickson G H, Chmelka B F, Stucky G D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science, 1998, 279(5350): 548–552

DOI

4
Holland B, Blanford C, Stein A. Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids. Science, 1998, 281(5376): 538–540

DOI

5
Sing K, Everett D, Haul R, Moscou L, Pierotti R, Rouquerol J, Siemieniewska T. Reporting physisorption data for gas solid system. Pure and Applied Chemistry, 1985, 57: 603–619

6
Su B L, Sanchez C, Yang X Y. Hierarchically structured porous materials: From nanoscience to catalysis, separation, optics, energy, and life science. Germany: Wiley-VCH, 2012, 15–45

7
Yang P, Tao D, Zhao D, Feng P, Pine D, Chmelka B, Whitesides G, Stucky G. Hierarchically ordered oxides. Science, 1998, 282(5397): 2244–2246

DOI

8
Yuan Z, Su B L. Insights into hierarchically meso-macroporous structured material. Journal of Materials Chemsitry A, 2006, 16(7): 663–677

DOI

9
Pérez Ramirez J, Christensen C, Egeblad K, Christensen H, Groen J. Hierarchical zeolites: Enhanced utilisation of microporous crystals in catalysis by advances in materials design. Chemical Society Reviews, 2008, 37: 2530–2542

10
Yang X Y, Li Y, Lemaire A, Yu J, Su B L. Hierarchically structured functional materials: Synthesis strategies for multimodal porous networks. Pure and Applied Chemistry, 2009, 81(12): 2265–2307

DOI

11
Yang X Y, Alexandre L, Arnaud L, Tian G, Su B L. Self-formation phenomenon to hierarchically structured porous materials: Design, synthesis, formation mechanism and applications, Chemical Communications, 2011, 47(10): 2763–2786

12
Jacobsen C J H, Madsen C, Houzvicka J, Schmidt I, Carlsson A. Mesoporous zeolite single crystals. Journal of the American Chemical Society, 2000, 122(29): 7116–7117

DOI

13
Schmidt I, Boisen A, Gustavsson E, Stahl K, Pehrson S, Dahl S, Carlsson A, Jacobsen C J H. Carbon nanotube templated growth of mesoporous zeolite single crystals. Chemistry of Materials, 2001, 13(12): 4416–4418

DOI

14
Cho H S, Ryoo R. Synthesis of ordered mesoporous MFI zeolite using CMK carbon templates. Microporous and Mesoporous Materials, 2012, 151: 107–112

DOI

15
Chen H, Wydra J, Zhang X, Lee P S, Wang Z, Fan W, Tsapatsis M. Hydrothermal synthesis of zeolites with three-dimensionally ordered mesoporous-imprinted structure. Journal of Materials Chemsitry A, 2011, 133: 12390–12393

16
Kustova M, Egeblad K, Zhu K, Christensen C H. Versatile route to zeolite single crystals with controlled mesoporosity: In situ sugar decomposition for templating of hierarchical zeolites. Chemistry of Materials, 2007, 19(12): 2915–2917

DOI

17
Chu N B, Wang J Q, Zhang Y, Yang J H, Lu J M, Yin D H. Nestlike hollow hierarchical MCM-22 microspheres: Synthesis and exceptional catalytic properties. Chemistry of Materials, 2010, 22(9): 2757–2763

DOI

18
Wang X D, Yang W L, Tang Y, Wang Y J, Fu S K, Gao Z. Fabrication of hollow zeolite spheres. Chemical Communications, 2000, 21: 2161–2162

DOI

19
Valtchev V. Core-shell polystyrene/zeolite A microbeads. Chemistry of Materials, 2002, 14(3): 956–958

DOI

20
Petkovich N D, Stein A. Controlling macro- and mesostructures with hierarchical porosity through combined hard and soft templating. Chemical Society reviews, 2013, 42: 3721–3739

DOI

21
Huang L, Wang Z, Sun J, Miao L, Li Q, Yan Y, Zhao D. Fabrication of ordered porous structures by self-assembly of zeolite nanocrystals. Journal of the American Chemical Society, 2000, 122(14): 3530–3531

DOI

22
Zhu G, Qiu S, Gao F, Li D, Li Y, Wang R, Terasaki O. Template-assisted self-assembly of macro-micro bifunctional porous materials. Journal of Materials Chemistry, 2001, 11(6): 1687–1693

DOI

23
Sanchez C, Arribart H, Guille M M G. Biomimetism and bioinspiration as tools for the design of innovative materials and systems. Nature Materials, 2005, 4: 277–288

DOI

24
Dong A, Wang Y, Tang Y, Zhang Y, Hong A, Ren N, Gao Z. Mechanically stable zeolite monoliths with three-dimensional ordered macropores by the transformation of mesoporous silica spheres. Advanced Materials, 2002, 14(20): 1506–1510

DOI

25
Justin Thomas K R, Lin J T, Velusamy M, Tao Y T, Chuen C H. Color tuning in benzo [1, 2, 5] thiadiazole-based small molecules by amino conjugation/deconjugation: Bright red-light-emitting diode. Advanced Functional Materials, 2004, 14(1): 83–90

DOI

26
Song W, Kanthasamy R, Grassian V H, Larsen S C. Hexagonal, hollow, aluminium-containing ZSM-5 tubes prepared from mesoporous silica templates. Chemical Communications, 2004, 17: 1920–1921

DOI

27
Ren N, Yang Y H, Zhang Y H, Wang Q R, Tang Y. Heck coupling in zeolitic microcapsular reactor: A test for encaged quasi-homogeneous catalysis. Journal of Catalysis, 2007, 246(1): 215–222

DOI

28
Machoke A G, Beltrán A M, Inayat A, Winter B, Weissenberger T, Kruse N, Güttel R, Spiecker E, Schwieger W. Micro/macroporous system: MFI-type zeolite crystals with embedded macropores. Advanced Materials, 2015, 27(6): 1066–1070

DOI

29
Zhang X, Yan W, Yang H, Liu B, Li H. Gaseous infiltration method for preparation of three-dimensionally ordered macroporous polyethylene. Polymer, 2008, 49(25): 5446–5451

DOI

30
Lodge T P, Rasdal A, Li Z, Hillmyer M A. Simultaneous, segregated storage of two agents in a multicompartment micelle. Journal of the American Chemical Society, 2005, 127(50): 17608–17609

DOI

31
Sun J H, Shan Z, Maschmeyer T, Coppens M O. Synthesis of bimodal nanostructured silicas with independently controlled small and large mesopore sizes. Langmuir, 2003, 19(20): 8395–8402

DOI

32
Antonietti M, Berton B, Göltner C, Hentze H P. Synthesis of mesoporous silica with large pores and bimodal pore size distribution by templating of polymer latices. Advanced Materials, 1998, 10(2): 154–159

DOI

33
Groenewolt M, Antonietti M, Polarz S. Mixed micellar phases of nonmiscible surfactants: Mesoporous silica with bimodal pore size distribution via the nanocasting process. Langmuir, 2004, 20(18): 7811–7819

DOI

34
Avera S, Boissiere C, Grosso D, Asakawa T, Sanchez C, Linden M. One-pot aerosol synthesis of ordered hierarchical mesoporous core-shell silica nanoparticles. Chemical Communications, 2004, 10(14): 1630–1631

35
Zhou Y, Antonietti M. A novel tailored bimodal porous silica with well-defined inverse opal microstructure and super-microporous lamellar nanostructure. Chemical Communications, 2003, 20(20): 2564–2565

DOI

36
Kuang D, Brezesinski T, Smarsly B. Hierarchical porous silica materials with a trimodal pore system using surfactant templates. Journal of the American Chemical Society, 2004, 126(34): 10534–10535

DOI

37
Liu J, Yang T Y, Wang D W, Lu G Q, Zhao D Y, Qiao S Z. A facile soft-template synthesis of mesoporous polymeric and carbonaceous nanospheres. Nature Communications, 2013, 4: 2798

38
Cao S, Gody G, Zhao W, Perrier S, Peng X Y, Ducati C, Zhao D Y, Cheetham A K. Hierarchical bicontinuous porosity in metal-organic frameworks templated from functional block co-oligomer micelles. Chemical Science (Cambridge), 2013, 4(9): 3573–3577

DOI

39
Martins L, Rosa M M A, Pulcinelli S H, Santilli C V. Preparation of hierarchically structured porous aluminas by a dual soft template method. Microporous and Mesoporous Materials, 2010, 132(1-2): 268–275

DOI

40
Choi M, Cho H S, Srivastava R, Venkatesan C, Choi D H, Ryoo R. Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity. Nature Materials, 2006, 5(9): 718–723

DOI

41
Cho K, Cho H S, De Menorval L C, Ryoo R. Generation of mesoporosity in LTA zeolites by organosilane surfactant for rapid molecular transport in catalytic application. Chemistry of Materials, 2009, 21(23): 5664–5673

DOI

42
Wang H, Pinnavaia T J. MFI zeolite with small and uniform intracrystal mesopores. Angewandte Chemie International Edition, 2006, 45(45): 7603–7606

DOI

43
Choi M, Na K, Kim J, Sakamoto Y, Terasaki O, Ryoo R. Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature, 2009, 461(7261): 246–249

DOI

44
Na K, Choi M, Park W, Sakamoto Y, Terasaki O, Ryoo R. Pillared MFI zeolite nanosheets of a single-unit-cell thickness. Journal of the American Chemical Society, 2010, 132(12): 4169–4177

DOI

45
Na K, Jo C, Kim J, Cho K, Jung J, Seo Y, Messinger R J, Chmelka B F, Ryoo R. Directing zeolite structures into hierarchically nanoporous architectures. Science, 2011, 333(6040): 328–332

DOI

46
Xiao F S, Wang L, Yin C, Lin K, Di Y, Li J, Xu R, Su D S, Schlögl R, Yokoi T, Tatsumi T. Catalytic properties of hierarchical mesoporous zeolites templated with a mixture of small organic ammonium salts and mesoscale cationic polymers. Angewandte Chemie, 2006, 118(19): 3162–3165

DOI

47
Song J, Ren L, Yin C, Ji Y, Wu Z, Li J, Xiao F S. Stable, porous, and bulky particles with high external surface and large pore volume from self-assembly of zeolite nanocrystals with cationic polymer. Journal of Physical Chemistry C, 2008, 112(23): 8609–8613

DOI

48
Zhong L S, Hu J S, Liang H P, Cao A M, Song W G, Wan L J. Self-Assembled 3D flowerlike iron oxide nanostructures and their application in water treatment. Advanced Materials, 2006, 18(18): 2426–2431

DOI

49
Xu L, Sithambaram S, Zhang Y, Chen C H, Jin L, Joesten R, Suib S L. Novel urchin-like CuO synthesized by a facile reflux method with efficient olefin epoxidation catalytic performance. Chemistry of Materials, 2009, 21(7): 1253–1259

DOI

50
Holland B T, Abrams L, Stein A. Dual templating of macroporous silicates with zeolitic microporous frameworks. Journal of the American Chemical Society, 1999, 121(17): 4308–4309

DOI

51
Bian S W, Ma Z, Zhang L S, Niu F, Song W G. Silica nanotubes with mesoporous walls and various internal morphologies using hard/soft dual templates. Chemical Communications, 2009, 10(10): 1261–1263

DOI

52
Stein A, Rudisill S G, Petkovich N D. Perspective on the influence of interactions between hard and soft templates and precursors on morphology of hierarchically structured porous materials. Chemistry of Materials, 2014, 26(1): 259–276

DOI

53
Yang R C, Ma F Y, Tang D X. Template synthesis to fabrication of 3D ordered hierarchical materials. Advanced Materials Research, 2013, 602: 1355–1358

54
Zhao Q L, Wang X Y, Liu J, Wang H, Zhang Y W, Gao J, Lu Q, Zhou H Y. Design and synthesis of three-dimensional hierarchical ordered porous carbons for supercapacitors. Electrochimica Acta, 2015, 154: 110–118

DOI

55
Gundiah G. Macroporous silica-alumina composites with mesoporous walls. Bulletin of Materials Science, 2001, 24(2): 211–214

DOI

56
Drisko G L, Zelcer A, Luca V, Caruso R A, Soler-Illia G J D A. One-pot synthesis of hierarchically structured ceramic monoliths with adjustable porosity. Chemistry of Materials, 2010, 22(15): 4379–4385

DOI

57
Mandlmeier B, Szeifert J M, Fattakhova-Rohlfing D, Amenitsch H, Bein T. Formation of interpenetrating hierarchical titania structures by confined synthesis in inverse opal. Journal of the American Chemical Society, 2011, 133(43): 17274–17282

DOI

58
Petkovich N D, Stein A. Controlling macro-and mesostructures with hierarchical porosity through combined hard and soft templating. Chemical Society Reviews, 2013, 42(9): 3721–3739

DOI

59
Danumah C, Vaudreuil S, Bonneviot L, Bousmina M, Giasson S, Kaliaguine S. Synthesis of macrostructured MCM-48 molecular sieves. Microporous and Mesoporous Materials, 2001, 44: 241–247

DOI

60
Oh C G, Baek Y, Ihm S K. Synthesis of skeletal-structured biporous silicate powders through microcolloidal crystal templating. Advanced Materials, 2005, 17(3): 270–273

DOI

61
Deng Y, Liu C, Yu T, Liu F, Zhang F, Wan Y, Zhang L, Wang C, Tu B, Webley P A, Wang H, Zhao D. Facile synthesis of hierarchically porous carbons from dual colloidal crystal/block copolymer template approach. Chemistry of Materials, 2007, 19(13): 3271–3277

DOI

62
Zhang S, Chen L, Zhou S, Zhao D, Wu L. Facile synthesis of hierarchically ordered porous carbon via in situ self-assembly of colloidal polymer and silica spheres and its use as a catalyst support. Chemistry of Materials, 2010, 22(11): 3433–3440

DOI

63
Zhang F, Wang K X, Li G D, Chen J S. Hierarchical porous carbon derived from rice straw for lithium ion batteries with high-rate performance. Electrochemistry Communications, 2009, 11(1): 130–133

DOI

64
Huang W T, Zhang H, Huang Y Q, Wang W K, Wei S H. Hierarchical porous carbon obtained from animal bone and evaluation in electric double-layer capacitors. Carbon, 2011, 49(3): 838–843

DOI

65
Smith C J, Field M, Coakley C J, Awschalom D D. Organizing nanometer-scale magnets with bacterial threads. IEEE Transactions on Magnetics, 1998, 34(4): 988–990

DOI

66
Zhi L, Zhang L, Schalchi A B , Tan X H, Xu Z W, Wang H L, Olsen B C, Holt C M B, David M. Carbonized Chicken Eggshell Membranes with 3D Architectures as High-Performance Electrode Materials for Supercapacitors. Advanced Energy Materials, 2012, 2(4): 431–437

DOI

67
Song N, Jiang H, Cui T, Chang L, Wang X. Synthesis and enhanced gas-sensing properties of mesoporous hierarchical α-Fe2O3 architectures from an eggshell membrane. Micro & Nano Letters, 2012, 7(9): 943–946

DOI

68
Zhang W, Zhang D, Fan T J, Gu J J, Ding J, Wang H, Guo Q X, Ogawa H. Novel photoanode structure templated from butterfly wing scales. Chemistry of Materials, 2009, 21(1): 33–40

DOI

69
Zhu W J, Huang H, Zhang W K, Tao X Y, Gan Y P, Xia Y, Yang H, Guo X Z. Synthesis of MnO/C composites derived from pollen template for advanced lithium-ion batteries. Electrochimica Acta, 2015, 152(10): 286–293

DOI

70
Kim H, Kim H J, Huh H K, Hwang H J, Lee S J. Structural design of a double-layered porous hydrogel for effective mass transport. Biomicrofluidics, 2015, 9(2): 18–24

DOI

71
Wang L Q, Shin Y, Samuels W D, Exarhos G J, Moudrakovski I L, Terskikh V V, Ripmeester J A. Magnetic resonance studies of hierarchically ordered replicas of wood cellular structures prepared by surfactant-mediated mineralization. Journal of Physical Chemistry B, 2003, 107(50): 13793–13802

DOI

72
You J, Cao G. Synthesis and characterization of hierarchical biomorphic mesoporous TiO2 nanosheets using caltrop-stem as biotemplate. Journal of Inorganic and Organometallic Polymers and Materials, 2013, 23(6): 1417–1424

DOI

73
Yang X Y, Li Z Q, Liu B, Klein-Hofmann A, Tian G, Feng Y F, Ding Y, Su D S, Xiao F S. “Fish-in-Net” encapsulation of enzymes in macroporous cages for stable, reusable, and active heterogeneous biocatalysts. Advanced Materials, 2006, 18(4): 410–414

DOI

74
Huang L, Wang H, Hayashi C Y, Tian B, Zhao D, Yan Y. Single-strand spider silk templating for the formation of hierarchically ordered hollow mesoporous silica fibers. Journal of Materials Chemistry, 2003, 13(4): 666–668

DOI

75
Zhu S, Zhang D, Chen Z, Zhou G, Jiang H, Li J. Sonochemical fabrication of morpho-genetic TiO2 with hierarchical structures for photocatalyst. Journal of Nanoparticle Research, 2010, 12(7): 2445–2456

DOI

76
Ogasawara W, Shenton W, Davis S A, Mann S. Template mineralization of ordered macroporous chitin-silica composites using a cuttlebone-derived organic matrix. Chemistry of Materials, 2000, 12(10): 2835–2837

DOI

77
Pedroni V, Schulz P C, Gschaider de Ferreira M E, Morini M A. A chitosan-templated monolithic siliceous mesoporous-macroporous material. Colloid & Polymer Science, 2000, 278(10): 964–971

DOI

78
Walsh D, Arcelli L, Ikoma T, Tanaka J, Mann S. Dextran templating for the synthesis of metallic and metal oxide sponges. Nature Materials, 2003, 2(6): 386–390

DOI

79
Caruso R A, Antonietti M. Silica films with bimodal pore structure prepared by using membranes as templates and amphiphiles as porogens. Advanced Functional Materials, 2002, 12(4): 307–312

DOI

80
Giunta P R, Washington R P, Campbell T D, Steinbock O, Stiegman A E. Preparation of mesoporous silica monoliths with ordered arrays of macrochannels templated from electric-field-oriented hydrogels. Angewandte Chemie International Edition, 2004, 43(12): 1505–1507

DOI

81
Zhao D, Yang P, Chmelka B, Stucky G. Multiphase assembly of mesoporous-macroporous membranes. Chemistry of Materials, 1999, 11(5): 1174–1178

DOI

82
Stubenrauch C, Tessendorf R, Strey R, Lynch I, Dawson K A. Gelled polymerizable microemulsions phase behavior. Langmuir, 2007, 23(14): 7730–7737

DOI

83
Li X, Sun G, Li Y, Yu J C, Wu J, Ma G H, Ngai T. Porous TiO2 materials through pickering high-internal phase emulsion templating. Langmuir, 2014, 30(10): 2676–2683

DOI

84
Carn F, Colin A, Achard M F, Deleuze H, Sellier E, Birot M, Backov R, Capadona J R, Shanmuganathan K, Tyler D J, Rowan S J, Weder C. General synthesis of ordered crystallized metal oxide nanoarrays replicated by microwave-digested mesoporous silica. Journal of the American Chemical Society, 2014, 14(9): 1370–1374

85
Sen T, Tiddy G J T, Casci J L, Anderson M W. Macro-cellular silica foams: Synthesis during the natural creaming process of an oil-in-water emulsion. Chemical Communications, 2003, 17: 2182–2183

DOI

86
Zhang H F, Hardy G C, Rosseinsky M J, Cooper A I. Uniform emulsion-templated silica beads with high pore volume and hierarchical porosity. Advanced Materials, 2003, 15(1): 78–81

DOI

87
Carn F, Colin A, Achard M F, Deleuze H, Sellier E, Birot M, Backov R. Inorganic monoliths hierarchically textured via concentrated direct emulsion and micellar templates. Journal of Materials Chemistry, 2004, 14(9): 1370–1376

DOI

88
Li H, Jin J, Wu W, Chen C, Li L, Li Y, Zhao W, Gu J, Chen G, Shi J. Synthesis of a hierarchically macro-/mesoporous zeolite based on a micro-emulsion mechanism. Journal of Materials Chemistry, 2011, 21(48): 19395–19401

DOI

89
Hu X F, Cheng F Y, Han X P, Zhang T R, Chen J. Oxygen bubble-templated hierarchical porous ε-MnO2 as a superior catalyst for rechargeable Li-O2 batteries. Small, 2015, 11(7): 809–813

DOI

90
Bagshaw S A. Morphosynthesis of macrocellular mesoporous silicate foams. Chemical Communications, 1999, 9(9): 767–768

DOI

91
Carn F, Colin A, Achard M F, Deleuze H, Saadi Z, Backov R. Rational design of macrocellular silica scaffolds obtained by a tunable sol-gel foaming process. Advanced Materials, 2004, 16(2): 140–144

DOI

92
Carn F, Colin A, Achard M F, Deleuze H, Sanchez C, Backov R. Anatase and rutile TiO2 macrocellular foams: Air-liquid foaming sol-gel process towards controlling cell sizes, morphologies, and topologies. Advanced Materials, 2005, 17(1): 62–66

DOI

93
Suzuki K, Ikari K, Imai H. Synthesis of mesoporous silica foams with hierarchical trimodal pore structures. Journal of Materials Chemistry, 2003, 13(7): 1812–1816

DOI

94
Wang J G, Li F, Zhou H J, Sun P C, Ding D T, Chen T H. Silica hollow spheres with ordered and radially oriented amino-functionalized mesochannels. Chemistry of Materials, 2009, 21(4): 612–620

DOI

95
Li Y, Shi J. Hollow-structured mesoporous materials: Chemical synthesis, functionalization and applications. Advanced Materials, 2014, 26(20): 3176–3205

DOI

96
Miyamoto M, Kamei T, Nishiyama N, Egashira Y, Ueyama K. Single crystals of ZSM-5/silicalite composites. Advanced Materials, 2005, 17(16): 1985–1988

DOI

97
Porcher F, Dusausoy Y, Souhassou M, Lecomte C. Epitaxial growth of zeolite X on zeolite A and twinning in zeolite A: Structural and topological analysis. Mineralogical Magazine, 2000, 64(1): 1–8

DOI

98
Thomas J M, Millward G R. Direct, real-space determination of intergrowths in ZSM-5/ZSM-11 catalysts. Journal of the Chemical Society. Chemical Communications, 1982, (24): 1380–1383

DOI

99
Goossens A M, Wouters B H, Buschmann V, Martens J A. Oriented FAU zeolite films on micrometer-sized EMT crystals. Advanced Materials, 1999, 11(7): 561–564

DOI

100
Lillerud K P, Raeder J H. On the synthesis of erionite-offretite intergrowth zeolites. Zeolites, 1986, 6(6): 474–483

DOI

101
Bouizi Y, Rouleau L, Valtchev V P. Bi-phase MOR/MFI-type zeolite core-shell composite. Microporous and Mesoporous Materials, 2006, 91(1-3): 70–77

DOI

102
Yonkeu A L, Miehe G, Fuess H, Goossens A M, Martens J A. A new overgrowth of mazzite on faujasite zeolite crystal investigated by X-ray diffraction and electron microscopy. Microporous and Mesoporous Materials, 2006, 96(1-3): 396–404

DOI

103
Wakihara T, Yamakita S, Iezumi K, Okubo T. Heteroepitaxial growth of a zeolite film with a patterned surface-texture. Journal of Americal Chemistry Society, 2003, 125(41): 12388–12389

DOI

104
Bouizi Y, Diaz I, Rouleau L, Valtchev V P. Core-shell zeolite microcomposites. Advanced Functional Materials, 2005, 15(12): 1955–1960

DOI

105
Zheng J J, Zeng Q H, Ma J H, Zhang X W, Sun W F, Li R F. Synthesis of hollow zeolite composite spheres by using. BETA zeolite crystal as template. Chemistry Letters, 2010, 39(4): 330–331

DOI

106
Tsang C, Dai P, Petty R H. Upgrading and catalytic cracking catalyst. US Patent 5888921, <Date>1999-03-30</Date>

107
Lei Q, Zhao T B, Li F, Wang Y Y, Zheng M F. Fabrication of hierarchically structured monolithic silicalite-1 through steam-assisted conversion of macroporous silica gel. Chemistry Letters, 2006, 35(5): 490–491

DOI

108
Lei Q, Zhao T L F, Li Y, Zhang L L, Wang Y. Catalytic cracking of large molecules over hierarchical zeolites. Chemical Communications, 2006, 16: 1769–1771

DOI

109
Lei Q, Zhao T, Li F, Wang Y F, Hou L. Zeolite beta monoliths with hierarchical porosity by the transformation of bimodal pore silica gel. Journal of Porous Materials, 2008, 15(6): 643–646

DOI

110
Sachse A, Galarneau A, Di Renzo F, Fajula F, Coq B. Synthesis of zeolite monoliths for flow continuous processes: The case of sodalite as a basic catalyst. Chemistry of Materials, 2010, 22(14): 4123–4125

DOI

111
Yang X Y, Tian G, Chen L H, Li Y, Rooke J C, Wei Y X, Liu Z M, Deng Z, Van Tendeloo G, SuB L. Well organized zeolite nanocrystal aggregates with interconnected hierarchically micro-meso- macropore systems showing enhanced catalytic performance. Chemistry European Journal A, 2011, 17(52): 14987–14995

DOI

112
SUN M H, Huang S Z, Chen L H, Li Y, Yang X Y, Yuan Z Y, Su B L. Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine Chemical Society reviews, 2016, 45: 3479–3563

DOI

113
Li X Y, Chen L H, Li Y, Rooke J C, Deng Z, Hu Z Y, Liu J, Krief A, Yang X Y, Su B L. Tuning the structure of a hierarchically porous ZrO2 for dye molecule depollution. Microporous and Mesoporous Materials, 2012, 152: 110–121

DOI

114
Li X Y, Chen L H, Li Y, Rooke J C, Wang C, Lu Y, Krief A, Yang X Y, Su B L. Self-generated hierarchically porous titania with high surface area: Photocatalytic activity enhancement by macrochannel structure. Journal of Colloid and Interface Science, 2012, 368(1): 128–138

DOI

115
Chen L H, Li X Y, Tian G, Li Y, Tan H Y, Van Tendeloo G, Zhu G S, Qiu S L, Yang X Y, Su B L. Multimodal zeolite-beta-based catalysts with a hierarchical, three-level pore structure. ChemSusChem, 2011, 4(10): 1452–1456

DOI

116
Chen L H, Li X Y, Tian G, Li Y, Rooke J C, Zhu G S, Qiu S L, Yang X Y, Su B L. Highly stable and reusable multimodal zeolite TS-1 based catalysts with hierarchically interconnected three-level micro-meso-macroporous structure. Angewandte Chemie International Edition, 2011, 50(47): 11156–11161

DOI

117
Chen L H, Xu S T, Li X Y, Tian G, Li Y, Rooke J C, Su B L. Multimodal Zr-Silicalite-1 zeolite nanocrystal aggregates with interconnected hierarchically micro-meso-macroporous architecture and enhanced mass transport property. Journal of Colloid and Interface Science, 2012, 377(1): 368–374

DOI

118
Blin J L, Leonard A, Yuan Z Y, Gigot L, Vantomme A, Cheetham A K, Su B L. Hierarchically mesoporous/macroporous metal oxides templated from polyethylene oxide surfactant assemblies. Angewand Chemie International Edit ion, 2003, 42: 2872–2875

119
Li Y, Yang X Y, Tian G, Vantomme A, Yu J, Van T G, Su B L. Chemistry of trimethyl aluminum: A spontaneous route to thermally stable 3D crystalline macroporous alumina foams with a hierarchy of pore sizes. Chemistry of Materials, 2010, 22(10): 3251–3258

DOI

120
Yuan Z Y, Vantomme A, Léonard A, Su B L. Surfactant-assisted synthesis of unprecedented hierarchical meso-macrostructured zirconia. Chemical Communications, 2003, 9(13): 1558–1559

DOI

121
Deng W, Toepke M W, Shanks B H. Surfactant-assisted synthesis of alumina with hierarchical nanopores. Advanced Functional Materials, 2003, 13(1): 61–65

DOI

122
Collins A, Carriazo D, Davis S A, Mann S. Spontaneous template-free assembly of ordered macroporous titania. Chemical Communications, 2004, 5(5): 568–569

DOI

123
Léonard A, Blin J L, Su B L. One-pot surfactant assisted synthesis of aluminosilicate macrochannels with tunable micro- or mesoporous wall structure. Chemistry Communications, 2003: 2568–2569

DOI

124
Ren T Z, Yuan Z Y, Su B L. Microwave-assisted preparation of hierarchical mesoporous-macroporous boehmite AlOOH and g-Al2O3. Langmuir, 2004, 20(4): 1531–1534

DOI

125
Ren T Z, Yuan Z Y, Su B L. A novel macroporous structure of mesoporous titanias: Synthesis and characterisation. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2004, 241(1-3): 67–73

DOI

126
Deng W, Shanks B H. Synthesis of hierarchically structured aluminas under controlled hydrodynamic conditions. Chemistry of Materials, 2005, 17(12): 3092–3100

DOI

127
Su B L, Léonard A, Yuan Z Y. Highly ordered mesoporous CMI-n materials and hierarchically structured meso-macroporous compositions. Comptes Rendus. Chimie, 2005, 8(3-4): 713–726

DOI

128
Yuan Z Y, Ren T Z, Azioune A, Pireaux J J, Su B L. Marvelous self-assembly of hierarchically nanostructured porous zirconium phosphate solid acids with high thermal stability. Catalysis Today, 2005, 105(105): 647–654

DOI

129
Lemaire A, Wang Q Y, Wei Y X, Liu Z M, Su B L. Hierarchically structured meso-macroporous aluminosilicates with high tetrahedral aluminium content in acid catalysed esterification of fatty acids. Journal of Colloid & Interface Science, 2011, 363: 511–520

DOI

130
Vantomme A, Léonard A, Yuan Z Y, Su B L. Hierarchically nanostructured porous functional ceramics key. Engineering Materials, 2007, 336: 1933–1938

131
Lemaire A, Su B L. Tailoring the porous hierarchy and the tetrahedral aluminum content by using carboxylate ligands: hierarchically structured macro-mesoporous aluminosilicates from a single molecular source. Langmuir, 2010, 26(22): 17603–17616

DOI

132
Lemaire A, Rooke J C, Chen L H, Su B L. Direct observation of macrostructure formation of hierarchically structured meso-macroporous aluminosilicates with 3D interconnectivity by optical microscope. Langmuir, 2011, 27(6): 3030–3043

DOI

133
Zhang K B, Fu Z Y, Nakayama T, Suzuki T, Suematsu H, Niihara K. One-pot synthesis of hierarchically macro/mesoporous Al2O3 monoliths from a facile sol–gel process. Materials Research Bulletin, 2011, 46(11): 2155–2162

DOI

134
Yang X Y, Li Y, Van T G, Xiao F, Su B L. One-pot synthesis of catalytically stable and active nanoreactors: Encapsulation of size-controlled nanoparticles within a hierarchically macroporous core@ ordered mesoporous shell system. Advanced Materials, 2009, 21(13): 1368–1372

DOI

135
Kloestra K R, van Bekkum H, Jansen J C. Mesoporous material containing framework tectosilicate by pore-wall recrystallization. Chemical Communications, 1997, 23(23): 2281–2282

DOI

136
Hu M C, Zielke J T, Byers C H, Lin J S, Harris M T. Probing the early-stage/rapid processes in hydrolysis and condensation of metal alkoxides. Journal of Materials Science, 2000, 35(8): 1957–1971

DOI

137
Su B L, Vantomme A, Surahy L, Pirard R, Pirard J P. Hierarchical multimodal mesoporous carbon materials with parallel macrochannels. Chemistry of Materials, 2007, 19(13): 3325–3333

DOI

138
Vantomme A, Yuan Z Y, Su B L. One-pot synthesis of a high-surface-area zirconium oxide material with hierarchically three-length-scaled pore structure. New Journal of Chemistry, 2004, 28(9): 1083–1085

DOI

139
Léonard A, Su B L. Hierarchical aluminosilicate macrochannels with structured mesoporous walls: Towards a single catalyst for multistep reactions. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2007, 300(1-2): 129–135

DOI

140
Hakim S H, Shanks B H. A comparative study of macroporous metal oxides synthesized via a unified approach. Chemistry of Materials, 2009, 21(10): 2027–2038

DOI

141
Léonard A, Vantomme A, Bouvy C, Moniotte N, Mariaulle P, Su B L. Highly ordered mesoporous and hierarchically nanostructured meso-macroporous materials for nanotechnology, biotechnology, information technology and medical applications. Nanopages, 2006, 1(1): 1–44

DOI

142
Yuan Z Y, Ren T Z, Su B L. Hierarchically mesostructured titania materials with an unusual interior macroporous structure. Advanced Materials, 2003, 15(17): 1462–1465

DOI

143
Ren T Z, Yuan Z Y, Su B L. Template-free synthesis of hierarchical mesoporous alumina-based materials with uniform channel-like macrostructures. Studies in Surface Science & Catalysis, 2007, 165: 287–290

DOI

144
Yuan Z Y, Ren T Z, Vantomme A, Su B L. Facile and generalized preparation of hierarchically mesoporous-macroporous binary metal oxide materials. Chemistry of Materials, 2004, 16(24): 5096–5106

DOI

145
Ren T Z, Yuan Z Y, Su B L. Thermally stable macroporous zirconium phosphates with supermicroporous walls: A self-formation phenomenon of hierarchy. Chemical Communications, 2004, (23): 2730–2731

DOI

146
Ren T Z, Yuan Z Y, Azioun A, Pireaux J J, Su B L. Tailoring the porous hierarchy of titanium phosphates. Langmuir, 2006, 22(8): 3886–3894

DOI

147
Yuan Z Y, Ren T Z, Azioune A, Pireaux J J, Su B L. Self-assembly of hierarchically mesoporous-macroporous phosphated nanocrystalline aluminum (oxyhydr) oxide materials. Chemistry of Materials, 2006, 18(7): 1753–1767

DOI

148
Wan Y, Zhao D. On the controllable soft-templating approach to mesoporous silicates. Chemical Reviews, 2007, 107(7): 2821–2860

DOI

149
Zhao D, Huo Q, Feng J, Chmelka B F, Stucky G D. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. Journal of the American Chemical Society, 1998, 120(24): 6024–6036

DOI

150
Ryoo R, Ko C H, Kruk M, Antochshuk V, Jaroniec M. Block-copolymer- templated ordered mesoporous silica: Array of uniform mesopores or mesopore-micropore network. Journal of Physical Chemistry B, 2000, 104(48): 11465–11471

DOI

151
Imperor-Clerc M, Davidson P, Davidson A. Existence of a microporous corona around the mesopores of silica-based SBA-15 materials templated by triblock copolymers. Journal of the American Chemical Society, 2000, 122(48): 11925–11933

DOI

152
Wang J, Feng S, Song Y, Li W, Gao W, Elzatahry A A, Aldhayan D, Xia Y, Zhao D. Elzatahry, Zhao A A. Synthesis of hierarchically porous carbon spheres with yolk-shell structure for high performance supercapacitors. Catalysis Today, 2015, 243: 199–208

DOI

153
Haskouri E I, de Zárate J, Guillem D O, Latorre C, Caldés J, Beltrán M, Beltrán A, Descalzo D, Rodríguez-López A B, Gertrudis Martínez-Máñez R. Silica-based powders and monoliths with bimodal pore systems. Chemical Communications, 2002, 4(4): 330–331

154
Kim J H, Fang B, Song M Y, Yu J S. Topological transformation of thioether-bridged organosilicas into nanostructured functional materials. Chemistry of Materials, 2012, 24(12): 2256–2264

DOI

155
Wu D, Fu R, Dresselhaus M S, Dresselhaus G. Nano-structure control of carbon aerogels via a microemulsion-templated sol-gel polymerization method. Carbon, 2006, 44(4): 675–681

DOI

156
Fu R, Zheng B, Liu J, Dresselhaus M S, Dresselhaus G, Satcher J H, Baumann T F. The fabrication and characterization of carbon aerogels by gelation and supercritical drying in isopropanol. Advanced Functional Materials, 2003, 13(7): 558–562

DOI

157
Nakanishi K, Soga N. Phase separation in gelling silica-organic polymer solution: Systems containing poly(sodium styrenesulfonate). Journal of the American Ceramic Society, 1991, 74(10): 2518–2530

DOI

158
Sun Y. Porous zirconium phosphates prepared by surfactant-assistedprecipitation. Journal of Materials Chemistry, 2000, 10(10): 2320–2324

DOI

159
Unger K K, Tanaka N, Machtejevas E. Monolithic silicas in separation science: Concepts, syntheses, characterization, modeling and applications. Germany: Wiley-VCH, 2010, 125–161

160
Inagaki S, Guan S, Fukushima Y, Ohsuna T, Terasaki O. Novel mesoporous materials with a uniform distribution of organic groups and inorganic oxide in their frameworks. Journal of the American Chemical Society, 1999, 121(41): 9611–9614

DOI

161
Sun X H, Zheng C M, Qiao M Q, Yan J L, Wang X P, Guan N J. Bioinspired synthesis of hierarchical macro-mesoporous titania with tunable macroporous morphology using cell-assemblies as macrotemplates. Chemical Communications, 2009: 4750–4752

DOI

162
Konishi J, Fujit K, Nakanishi K, Hirao K. Monolithic TiO2 with controlled multiscale porosity via a template-free sol-gel process accompanied by phase separation. Chemistry of Materials, 2006, 18(25): 6069–6074

DOI

163
Smått J H, Schunk S, Lindén M. Versatile double-templating synthesis route to silica monoliths exhibiting a multimodal hierarchical porosity. Chemistry of Materials, 2003, 15(12): 2354–2361

DOI

164
Takahashi R, Sato S, Sodesawa T, Suzuki K, Tafu M, Nakanishi K, Soga N. Phase separation in sol-gel process of alkoxide-derived silica-zirconia in the presence of polyethylene oxide. Journal of the American Ceramic Society, 2001, 84(9): 1968–1976

DOI

165
Murai S, Fujita K, Nakanishi K, Hirao K. Morphology control of phase-separation-induced alumina-silica macroporous gels for rare-earth-doped scattering media. Journal of Physical Chemistry B, 2004, 108(43): 16670–16676

DOI

166
Nakanishi K, Kobayashi Y, Amatani T, Hirao K, Kodaira T. Spontaneous formation of hierarchical macro-mesoporous ethane-silica monolith. Chemistry of Materials, 2004, 16(19): 3652–3658

DOI

167
Amatani T, Nakanishi K, Hirao K, Kodaira T. Monolithic periodic mesoporous silica with well-defined macropores. Chemistry of Materials, 2005, 17(8): 2114–2119

DOI

168
Brandhuber D, Torma V, Raab C, Peterlik H, Kulak A, Hüsing N. Glycol-modified silanes in the synthesis of mesoscopically organized silica monoliths with hierarchical porosity. Chemistry of Materials, 2005, 17(16): 4262–4271

DOI

169
Konishi J, Fujita K, Nakanishi K, Hirao K, Komarneni S, Parker J C. Macroporous Morphology Induced by Phase Separation in Sol-Gel Systems Derived from Titania Colloid, MRS Proceedings. Cambridge: Cambridge University Press, 2003, 788: 8–11

170
Huesing N, Raab C, Torma V, Roig A, Peterlik H. Periodically mesostructured silica monoliths from diol-modified silanes. Chemistry of Materials, 2003, 15(14): 2690–2692

DOI

171
Wu Q L, Subramanian N, Rankin S E. Hierarchically porous titania thin film prepared by controlled phase separation and surfactant templating. Langmuir, 2011, 27(15): 9557–9566

DOI

172
François B, Pitois O, François J. Polymer films with a self-organized honeycomb morphology. Advanced Materials, 1995, 7(12): 1041–1044

DOI

173
Saito Y, Shimomura M, Yabu H. Dispersion of Al2O3 nanoparticles stabilized with mussel-inspired amphiphilic copolymers in organic solvents and formation of hierarchical porous films by the breath figure technique. Chemical Communications, 2013, 49(54): 6081–6083

DOI

174
Kon K, Brauer C N, Hidaka K, Löhmannsröben H G, Karthaus O. Preparation of patterned zinc oxide films by breath figure templating. Langmuir, 2010, 26(14): 12173–12176

DOI

175
Peng J, Han Y, Yang Y, Li B. The influencing factors on the macroporous formation in polymer films by water droplet templating. Polymer, 2004, 45(2): 447–452

DOI

176
Sel O, Laberty-Robert C, Azais T, Sanchez C. Designing meso-and macropore architectures in hybrid organic-inorganic membranes by combining surfactant and breath figure templating (BFT). Physical Chemistry Chemical Physics, 2009, 11(19): 3733–3741

DOI

177
Böker A, Lin Y, Chiapperini K, Horowitz R, Thompson M, Carreon V, Xu T, Abetz C, Skaff H, Dinsmore A D, Emrick T, RussellT P. Hierarchical nanoparticle assemblies formed by decorating breath figures. Nature Materials, 2004, 3(5): 302–306

DOI

178
Srinivasarao M, Collings D, Philips A, Patel S. Three-dimensionally ordered array of air bubbles in a polymer film. Science, 2001, 292(5514): 79–83

DOI

179
Gao Y, Hou Y, Beaujuge P M. Arrays of hollow silica half-nanospheres via the breath figure approach. Advanced Materials Interfaces, 2015, 2(9): 1500078

180
Deville S. Freeze-casting of porous ceramics: A review of current achievements and issues. Advanced Engineering Materials, 2008, 10(3): 155–169

DOI

181
Chatterji S. Aspects of the freezing process in a porous material–water system: Part 1. Freezing and the properties of water and ice. Cement and Concrete Research, 1999, 29(4): 627–630

DOI

182
DeSimone J M, Guan Z, Elsbernd C S. Synthesis of fluoropolymers in supercritical carbon dioxide. Science, 1992, 257(5072): 945–947

DOI

183
Ho M H, Kuo P Y, Hsieh H J, Hsien T Y, Hou L T, Lai J Y, Wang D M. Preparation of porous scaffolds by using freeze-extraction and freeze-gelation methods. Biomaterials, 2004, 25(1): 129–138

DOI

184
Kang H W, Tabata Y, Ikada Y. Fabrication of porous gelatin scaffolds for tissue engineering. Biomaterials, 1999, 20(14): 1339–1344

DOI

185
Hsieh C Y, Tsai S P, Ho M H, Wang D M, Liu C E, Hsieh C H, Hsieh H J. Analysis of freeze-gelation and cross-linking processes for preparing porous chitosan scaffolds. Carbohydrate Polymers, 2007, 67(1): 124–132

DOI

186
Daamen W F, Van Moerkerk H T B, Hafmans T, Buttafoco L, Poot A A, Veerkamp J H, Van Kuppevelt T H. Preparation and evaluation of molecularly-defined collagen-elastin-glycosaminoglycan scaffolds for tissue engineering. Biomaterials, 2003, 24(22): 4001–4009

DOI

187
Yannas I V, Burke J F, Gordon P L, Huang C, Rubenstein R H. Design of an artificial skin. II. Control of chemical composition. Journal of Biomedical Materials Research, 1980, 14(2): 107–132

DOI

188
Shalaby W S W, Peck G E, Park K. Release of dextromethorphan hydrobromide from freeze-dried enzyme-degradable hydrogels. Journal of Controlled Release, 1991, 16(3): 355–363

DOI

189
Mukai S R, Nishihara H, Tamon H. Formation of monolithic silica gel microhoneycombs (SMHs) using pseudosteady state growth of microstructural ice crystals. Chemical Communications, 2004, 7(7): 874–875

DOI

190
Nishihara H, Mukai S R, Yamashita D, Tamon H. Ordered macroporous silica by ice templating. Chemistry of Materials, 2005, 17(3): 683–689

DOI

191
Mahler W, Bechtold M F. Freeze-formed silica fibres. Nature, 1980, 285(5759): 27–28

DOI

192
Fukasawa T, Ando M, Ohji T, Kanzaki S. Synthesis of porous ceramics with complex pore structure by freeze-dry processing. Journal of the American Ceramic Society, 2001, 84(1): 230–232

DOI

193
Sofie S W, Dogan F. Freeze casting of aqueous alumina slurries with glycerol. Journal of the American Ceramic Society, 2001, 84(7): 1459–1464

DOI

194
Gutiérrez M C, Jobbágy M, Rapún N, Ferrer M L, del Monte F A. Biocompatible bottom-up route for the preparation of hierarchical biohybrid materials. Advanced Materials, 2006, 18(9): 1137–1140

DOI

195
Zhang H, Hussain I, Brust M, Butler M F, Rannard S P, Cooper A I. Aligned two-and three-dimensional structures by directional freezing of polymers and nanoparticles. Nature Materials, 2005, 4(10): 787–793

DOI

196
Perriman A W, Brogan A P, Cölfen H, Tsoureas N, Owen G R, Mann S. Reversible dioxygen binding in solvent-free liquid myoglobin. Nature Chemistry, 2010, 2(8): 622–626

DOI

197
Eckert C A, Knutson B L, Debenedetti P G. Supercritical fluids as solvents for chemical and materials processing. Nature, 1996, 383(6598): 313–318

DOI

198
Cooper A I. Porous materials and supercritical fluids. Advanced Materials, 2003, 15(13): 1049–1059

DOI

199
DeSimone J M, Maury E E, Menceloglu Y Z, McClain J B, Romack T J, Combes J R. Dispersion polymerizations in supercritical carbon dioxide. Science, 1994, 265(5170): 356–359

DOI

200
Kendall J L, Canelas D A, Young J L, DeSimone J M. Polymerizations in supercritical carbon dioxide. Chemical Reviews, 1999, 99(2): 543–564

DOI

201
DeSimone J M. Practical approaches to green solvents. Science, 2002, 297(5582): 799–803

DOI

202
Partap S, Rehman I, Jones J R, Darr J A. Supercritical carbon dioxide in water emulsion-templated synthesis of porous calcium alginate hydrogels. Advanced Materials, 2006, 18(4): 501–504

DOI

203
Palocci C, Barbetta A, La Grotta A, Dentini M. Porous biomaterials obtained using supercritical CO2-water emulsions. Langmuir, 2007, 23(15): 8243–8251

DOI

204
Butler R, Hopkinson I, Cooper A I. Synthesis of porous emulsion-templated polymers using high internal phase CO2-in-water emulsions. Journal of the American Chemical Society, 2003, 125(47): 14473–14481

DOI

205
Langer R, Vacanti J. Tissue engineering. Science, 1993, 260(5110): 920–926

DOI

206
Sui R, Charpentier P. Synthesis of metal oxide nanostructures by direct sol-gel chemistry in supercritical fluids. Chemical Reviews, 2012, 112(6): 3057–3082

DOI

207
Xu S, Yang H, Wang K, Wang B, Xu Q. Effect of supercritical CO2 on fabrication of free-standing hierarchical graphene oxide/carbon nanofiber/polypyrrole film and its electrochemical property. Physical Chemistry Chemical Physics, 2014, 16(16): 7350–7357

DOI

208
Wang M, Zhao B, Xu S, Lin L, Liu S, He D. Synthesis of hierarchically structured ZnO nanomaterials via a supercritical assisted solvothermal process. Chemical Communications, 2014, 50(8): 930–932

DOI

209
Nugroho A, Kim S J, Chang W, Chung K Y, Kim J. Design and fabrication of hierarchically porous carbon with a template-free method. Scientific Reports, 2014, 4: 6349

210
Wang L, Zhuo L, Zhang C, Zhao F. Supercritical carbon dioxide assisted deposition of Fe3O4 nanoparticles on hierarchical porous carbon and their lithium-storage performance. Chemistry (Weinheim an der Bergstrasse, Germany), 2014, 20(15): 4308–4315

DOI

211
Nugroho A, Yoon D, Joo O S, Chung K Y, Kim J. Continuous synthesis of Li4Ti5O12 nanoparticles in supercritical fluids and their electrochemical performance for anode in Li-ion batteries. Chemical Engineering Journal, 2014, 258: 357–366

DOI

212
Davis S A, Burkett S L, Mendelson N H, Mann S. Bacterial templating of ordered macrostructures in silica and silica-surfactant mesophases. Nature, 1997, 385(6615): 420–423

DOI

213
Meldrum F C, Seshadri R. Porous gold structures through templating by echinoidskeletal plates. Chemical Communications, 2000, 1(1): 29–30

DOI

214
Qi L, Li J, Ma J. Biomimetic morphogenesis of calcium carbonate in mixed solutions of surfactants and double-hydrophilic block copolymers. Advanced Materials, 2002, 14(4): 300–303

DOI

215
Cook G, Timms P L, Göltner Spickermann C. Exact replication of biological structures by chemical vapor deposition of silica. Angewandte Chemie International Edition, 2003, 42(5): 557–559

DOI

216
Hall S R, Bolger H, Mann S. Morphosynthesis of complex inorganic forms using pollen grain templates. Chemical Communications, 2003, 22(22): 2784–2785

DOI

217
Valtchev V P, Smaihi M, Faust A C, Vidal L. Biomineral-silica-induced zeolitzation of equisetum arvense. Angewandte Chemie International Edition, 2003, 42(24): 2782–2785

DOI

218
Sim K, Youn H J. Preparation of porous sheets with high mechanical strength by the addition of cellulose nanofibrils. Cellulose, 2016, 23(2): 1383–1392

DOI

219
Farin D, Peleg S, Yavin D, Avnir D. Applications and limitations of boundary-line fractal analysis of irregular surfaces: Proteins, aggregates, and porous materials. Langmuir, 1985, 1(4): 399–407

DOI

220
Shim I K, Jung M R, Kim K H, Seol Y J B, Park Y J D, Park W H, Lee S J. Novel three-dimensional scaffolds of poly(L-lactic acid) microfibers using electrospinning and mechanical expansion: Fabrication and bone regeneration. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2010, 95(1): 150–160

DOI

221
Jia Y, Han W, Xiong G, Yang W. Layer-by-layer assembly of TiO2 colloids onto diatomite to build hierarchical porous materials. Journal of Colloid and Interface Science, 2008, 323(2): 326–331

DOI

222
Zampieri A, Mabande G T P, Selvam T, Schwieger W, Rudolph A, Hermann R, Sieber H, Greil P. Biotemplating of Luffa cylindrica sponges to self-supporting hierarchical zeolite macrostructures for bio-inspired structured catalytic reactors. Materials Science and Engineering, 2006, 26(1): 130–135

DOI

223
Holmes S M, Graniel-Garcia B E, Foran P, Hill P, Roberts E P L, Sakakini B H, Newton J M. A novel porous carbon based on diatomaceous earth. Chemical Communications, 2006, 25(25): 2662–2663

DOI

224
Vrieling E G, Beelen T P M, van Santen R A, Gieskes W W. Mesophases of (bio) polymer-silica particles inspire a model for silica biomineralization in diatoms. Angewandte Chemie International Edition, 2002, 41(9): 1543–1546

DOI

225
Wang Y, Tang Y, Dong A, Wang X, Ren N, Gao Z. Zeolitization of diatomite to prepare hierarchical porous zeolite materials through a vapor-phase transport process. Journal of Materials Chemistry, 2002, 12(6): 1812–1818

DOI

226
Yang H, Zhao D. Synthesis of replica mesostructures by the nanocasting strategy. Journal of Materials Chemistry, 2005, 15: 1217–1231

227
Polarz S, Antonietti M. Porous materials via nanocasting procedures: Innovative materials and learning about soft-matter organization. Chemical Communications, 2002, 22(22): 2593–2604

DOI

228
Kyotani T, Nagai T, Inoue S, Tomita A. Formation of new type of porous carbon by carbonization in zeolite nanochannels. Chemistry of Materials, 1997, 9(2): 609–615

DOI

229
Lu A, Schmidt W, Spliethoff B, Schüth F. Synthesis and characterization of nanocast silica NCS-1 with CMK-3 as a template. Chemistry (Weinheim an der Bergstrasse, Germany), 2004, 10(23): 6085–6092

DOI

230
Ryoo R, Joo S H, Jun S. Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation. Journal of Physical Chemistry B, 1999, 103(37): 7743–7746

DOI

231
Schüth F. Endo- und exotemplate zur erzeugung von anorganischen materialien mit großer spezifischer oberfläChe. Angewandte Chemie, 2003, 115(31): 3730–3750

DOI

232
Velev O D, Jede T A, Lobo R F, Lenhoff A M. Porous silica via colloidal crystallization. Nature, 1997, 389(6650): 447–448

DOI

233
Lu A H, Schüth F. Nanocasting: A versatile strategy for creating nanostructured porous materials. Advanced Materials, 2006, 18(14): 1793–1805

DOI

234
Jun S, Joo S H, Ryoo R, Kruk M, Jaroniec M, Liu Z, Ohsuna T, Terasaki O. Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure. Journal of the American Chemical Society, 2000, 122(43): 10712–10713

DOI

235
Ryoo R, Joo S H, Kruk M, Jaroniec M. Ordered mesoporous carbons. Advanced Materials, 2001, 13(9): 677–681

DOI

236
Kang M, Kim D, Yi S H, Han J U, Yie J E, Kim J M. Preparation of stable mesoporous inorganic oxides via nano-replication technique. Catalysis Today, 2004, 93-95: 695–699

DOI

237
Marsh H, Heintz E A, Rodriguez R F. Introduction to Carbon Technologies. Spain: University of Alicante, Secretariado de Publicaciones, 1997, 151–167

238
Lee J, Kim J, Hyeon T. A facile synthesis of bimodal mesoporous silica and its replication for bimodal mesoporous carbon. Chemical Communications, 2003, 10(10): 1138–1139

DOI

239
Taguchi A, Smått J H, Lindén M. Carbon monoliths possessing a hierarchical, fully interconnected porosity. Advanced Materials, 2003, 15(14): 1209–1211

DOI

240
Lu A H, Smått J H, Lindén M. Combined surface and volume templating of highly porous nanocast carbon monoliths. Advanced Functional Materials, 2005, 15(5): 865–871

DOI

241
Chai G S, Shin I S, Yu J S. Synthesis of ordered, uniform, macroporous carbons with mesoporous walls templated by aggregates of polystyrene spheres and silica particles for use as catalyst supports in direct methanol fuel cells. Advanced Materials, 2004, 16(22): 2057–2061

DOI

242
Yoon S B, Sohn K, Kim J Y, Shin C H, Yu J S, Hyeon T. Fabrication of carbon capsules with hollow macroporous core/mesoporous shell structures. Advanced Materials, 2002, 14(1): 19–21

DOI

243
Kim M, Sohn K, Na H B, Hyeon T. Synthesis of nanorattles composed of gold nanoparticles encapsulated in mesoporous carbon and polymer shells. Nano Letters, 2002, 2(12): 1383–1387

DOI

244
Zhang X, Tu K N, Xie Y H, Tung C H, Xu S. Single-step fabrication of nickel films with arrayed macropores and nanostructured skeletons. Advanced Materials, 2006, 18(14): 1905–1909

DOI

245
Martin C R, Che G, Lakshmi B B, Fisher E R. Carbon nanotubule membranes for electrochemical energy storage and production. Nature, 1998, 393(6683): 346–349

DOI

246
Chen X, Steinhart M, Hess C, Gösele U. Ordered arrays of mesoporous microrods from recyclable macroporous silicon templates. Advanced Materials, 2006, 18(16): 2153–2156

DOI

247
Panda M, Seshadri R, Gopalakrishnan J. Preparation of PbZrO3/AsO4 composites (A= Ca, Sr, Ba) and PbZrO3 by metathetic reactions in the solid state: Metathetic exchange of divalent species. Chemistry of Materials, 2003, 15(7): 1554–1559

DOI

248
Panda M, Rajamathi M, Seshadri R. A template-free, combustion-chemical route to macroporous nickel monoliths displaying a hierarchy of pore sizes. Chemistry of Materials, 2002, 14(11): 4762–4767

DOI

249
Toberer E S, Schladt T D, Seshadri R. Macroporous manganese oxides with regenerative mesopores. Journal of the American Chemical Society, 2006, 128(5): 1462–1463

DOI

250
Muir D M. A review of the selective leaching of gold from oxidised copper-gold ores with ammonia-cyanide and new insights for plant control and operation. Minerals Engineering, 2011, 24(6): 576–582

DOI

251
Zhang L, Wu H B, Liu B, Lou X W D. Formation of porous SnO2 microboxes via selective leaching for highly reversible lithium storage. Energy & Environmental Science, 2014, 7(3): 1013–1017

DOI

252
Yuan Z Y, Blin J L, Su B L. Design of bimodal mesoporous silicas with interconnected pore systems by ammonia post-hydrothermal treatment in the mild-temperature range. Chemical Communications, 2002, 5(5): 504–505

DOI

253
Sun Z, Liu Y, Li B, Wei J, Wang M, Yue Q, Deng Y, Kaliaguine S, Zhao D. General synthesis of discrete mesoporous carbon microspheres through a confined self-assembly process in inverse opals. ACS Nano, 2013, 7(10): 8706–8714

DOI

254
Tao Y, Kanoh H, Abrams L, Kaneko K. Mesopore-modified zeolites: Preparation, characterization, and applications. Chemical Reviews, 2006, 106(3): 896–910

DOI

255
van Donk S, Janssen A H, Bitter J H, deJong K P. Generation, characterization, and impact of mesopores in zeolite catalysts. Catalysis Reviews, 2003, 45(2): 297–319

DOI

256
Mei C, Liu Z, Wen P, Xie Z, Hua W, Gao Z. Regular HZSM-5 microboxes prepared via a mild alkaline treatment. Journal of Materials Chemistry, 2008, 18(29): 3496–3500

DOI

257
Zhou J, Hua Z, Shi J, He Q, Guo L, Ruan M. Synthesis of a hierarchical micro/mesoporous structure by steam-assisted post-crystallization. Chemistry (Weinheim an der Bergstrasse, Germany), 2009, 15(47): 12949–12954

DOI

258
Groen J C, Bach T, Ziese U, Paulaime-van Donk A M, de Jong K P, Moulijn J A, Pérez-Ramírez J. Creation of hollow zeolite architectures by controlled desilication of Al-zoned ZSM-5 crystals. Journal of the American Chemical Society, 2005, 127(31): 10792–10793

DOI

259
Verboekend D, Vilé G, Pérez-Ramírez J. Hierarchical Y and USY zeolites designed by post-synthetic strategies. Advanced Functional Materials, 2012, 22(5): 916–928

DOI

260
Dähne L, Leporatti S, Donath E, Möhwald H. Fabrication of micro reaction cages with tailored properties. Journal of the American Chemical Society, 2001, 123(23): 5431–5436

DOI

261
Lin K J, Chen L J, Prasad M R, Cheng C Y. Core-shell synthesis of a novel, spherical, mesoporous silica/platinum nanocomposite: Pt/PVP@ MCM-41. Advanced Materials, 2004, 16(20): 1845–1849

DOI

262
Liu Y, Zhang W, Pinnavaia T J. Steam-stable MSU-S aluminosilicate mesostructures assembled from zeolite ZSM-5 and zeolite beta seeds. Angewandte Chemie International Edition, 2001, 40(7): 1255–1258

DOI

263
Xiao F S, Han Y, Yu Y, Meng X, Yang M, Wu S. Hydrothermally stable ordered mesoporous titanosilicates with highly active catalytic sites. Journal of the American Chemical Society, 2002, 124(6): 888–889

DOI

264
Chal R, Gerardin C, Bulut M, van Donk S. Overview and industrial assessment of synthesis strategies towards zeolites with mesopores. ChemCatChem, 2011, 3(1): 67–81

DOI

265
Möller K, Bein T. Mesoporosity—A new dimension for zeolites. Chemical Society Reviews, 2013, 42(9): 3689–3707

DOI

266
Rolison D R. Catalytic nanoarchitectures—The importance of nothing and the unimportance of periodicity. Science, 2003, 299(5613): 1698–1701

DOI

267
Wang X, Yu J C, Ho C, Hou Y, Fu X. Photocatalytic activity of a hierarchically macro/mesoporous titania. Langmuir, 2005, 21(6): 2552–2559

DOI

268
Shi J W, Zong X, Wu X, Cui H J, Xu B, Wang L Z, Fu M L. Carbon-doped titania hollow spheres with tunable hierarchical macroporous channels and enhanced visible light-induced photocatalytic activity. Chemcatchem, 2012, 4(4): 488–491

DOI

269
Yu J G, Su Y R, Cheng B. Template-free fabrication and enhanced photocatalytic activity of hierarchical macro-mesoporous titania. Advanced Functional Materials, 2007, 17(12): 1984–1990

DOI

270
Zhou H, Ding L, Fan T, Ding J, Zhang D, Guo Q. Leaf-inspired hierarchical porous CdS/Au/N-TiO2 heterostructures for visible light photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2014, 147: 221–228

DOI

271
Schnepp Z, Yang W, Antonietti M, Giordano C. Biotemplating of metal carbide microstructures: The magnetic leaf. Angewandte Chemie International Edition, 2010, 49(37): 6564–6566

DOI

272
Zhu J, Zhu Y, Zhu L, Rigutto M, van der Made A, Yang C, Pan S, Wang L, Zhu L, Jin Y, Sun Q, Wu Q, Meng X, Zhang D, Han Y, Li J, Chu Y, Zheng A, Qiu S, Zheng X, Xiao F S, van der Made A, Yang C, Pan S X, Xiao F S. Highly mesoporous single-crystalline zeolite beta synthesized using a nonsurfactant cationic polymer as a dual-function template. Journal of the American Chemical Society, 2014, 136(6): 2503–2510

DOI

273
Corma A, Diaz-Cabanas M J, Martínez-Triguero J, Rey F, Rius J. A large-cavity zeolite with wide pore windows and potential as an oil refining catalyst. Nature, 2002, 418(6897): 514–517

DOI

274
Tang T, Yin C, Wang L, Ji Y, Xiao F S. Superior performance in deep saturation of bulky aromatic pyrene over acidic mesoporous beta zeolite-supported palladium catalyst. Journal of Catalysis, 2007, 249(1): 111–115

DOI

275
Serrano D P, Sanz R, Pizarro P, Moreno I, Medina S. Hierarchical TS-1 zeolite as an efficient catalyst for oxidative desulphurization of hydrocarbon fractions. Applied Catalysis B: Environmental, 2014, 146: 35–42

DOI

276
Zhang S, Xu W, Zeng M, Li J, Li J, Xu J, Wang X. Superior adsorption capacity of hierarchical iron oxide @ magnesium silicate magnetic nanorods for fast removal of organic pollutants from aqueous solution. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(38): 11691–11697

DOI

277
Ma T Y, Zhang X J, Yuan Z Y. Hierarchical meso-/macroporous aluminum phosphonate hybrid materials as multifunctional adsorbents. Journal of Physical Chemistry C, 2009, 113(29): 12854–12862

DOI

278
Xiao H, Ai Z, Zhang L. Nonaqueous sol-gel synthesized hierarchical CeO2 nanocrystal microspheres as novel adsorbents for wastewater treatment. Journal of Physical Chemistry C, 2009, 113(38): 16625–16630

DOI

279
Han S, Sohn K, Hyeon T. Fabrication of new nanoporous carbons through silica templates and their application to the adsorption of bulky dyes. Chemistry of Materials, 2000, 12(11): 3337–3341

DOI

280
Ayad M, Zaghlol S. Nanostructured crosslinked polyaniline with high surface area: Synthesis, characterization and adsorption for organic dye. Chemical Engineering Journal, 2012, 79: 204–206

281
Iwasaki M, Miwa S, Ikegami T, Tomita M, Tanaka N, Ishihama Y. One-dimensional capillary liquid chromatographic separation coupled with tandem mass spectrometry unveils the Escherichia coli proteome on a microarray scale. Analytical Chemistry, 2010, 82(7): 2616–2620

DOI

282
Miyamoto K, Hara T, Kobayashi H, Morisaka H, Tokuda D, Horie K, Koduki K, Makino S, Núñez O, Yang C, Kawabe T, Ikegami T, Takubo H, Ishihama Y, TanakaN. High-efficiency liquid chromatographic separation utilizing long monolithic silica capillary columns. Analytical Chemistry, 2008, 80(22): 8741–8750

DOI

283
Meunier C F, Rooke J C, Léonard A, Van Cutsem P, Su B L. Design of photochemical materials for carbohydrate production via the immobilisation of whole plant cells into a porous silica matrix. Journal of Materials Chemistry, 2010, 20(5): 929–936

DOI

284
Léonard A, Rooke J C, Meunier C F, Sarmento H, Descy J P, Su B L. Cyanobacteria immobilised in porous silica gels: Exploring biocompatible synthesis routes for the development of photobioreactors. Energy & Environmental Science, 2010, 3(3): 370–377

DOI

285
Meunier C F, Rooke J C, Léonard A, Xie H, Su B L. Living hybrid materials capable of energy conversion and CO2 assimilation. Chemical Communications, 2010, 46(22): 3843–3859

DOI

286
Rooke J C, Léonard A, Meunier C F, Sarmento H, Descy J P, Su B L. Hybrid photosynthetic materials derived from microalgae cyanidium caldarium encapsulated within silica gel. Journal of Colloid and Interface Science, 2010, 344(2): 348–352

DOI

287
Rooke J C, Meunier C, Léonard A, Su B L. Energy from photobioreactors: Bioencapsulation of photosynthetically active molecules, organelles, and whole cells within biologically inert matrices. Pure and Applied Chemistry, 2008, 80(11): 2345–2376

DOI

288
Xiong J, Das S N, Shin B, Kar J P, Choi J H, Myoung J M. Biomimetic hierarchical ZnO structure with superhydrophobic and antireflective properties. Journal of Colloid and Interface Science, 2010, 350(1): 344–347

DOI

289
Hajdu K, Gergely C, Martin M, Cloitre T, Zimányi L, Tenger K, Khoroshyy P, Palestino G, Agarwal V, Hernádi K, Németh Z, Nagy L, HernAdi K, Nemeth Z. Porous silicon/photosynthetic reaction center hybrid nanostructure. Langmuir, 2012, 28(32): 11866–11873

DOI

290
Léonard A, Dandoy P, Danloy E, Leroux G, Meunier C F, Rooke J C, Su B L. Whole-cell based hybrid materials for green energy production, environmental remediation and smart cell-therapy. Chemical Society Reviews, 2011, 40(2): 860–885

DOI

291
Rooke J C, Léonard A, Meunier C F, Su B L. Designing photobioreactors based on living cells immobilized in silica gel for carbon dioxide mitigation. ChemSusChem, 2011, 4(9): 1249–1257

DOI

292
Zhou H, Li P, Guo J, Yan R, Fan T, Zhang D, Ye J. Artificial photosynthesis on tree trunk derived alkaline tantalates with hierarchical anatomy: Towards CO2 photo-fixation into CO and CH4. Nanoscale, 2015, 7(1): 113–120

DOI

293
Steele B C H, Heinze A. Materials for fuel-cell technologies. Nature, 2001, 414(6861): 345–352

DOI

294
Winter M, Brodd R J. What are batteries, fuel cells, and supercapacitors? Chemical Reviews, 2004, 104(10): 4245–4270

DOI

295
Bang J H, Han K, Skrabalak S E, Kim H, Suslick K S. Porous carbon supports prepared by ultrasonic spray pyrolysis for direct methanol fuel cell electrodes. Journal of Physical Chemistry C, 2007, 111(29): 10959–10964

DOI

296
Chai G S, Yoon S B, Yu J S, Choi J H, Sung Y E. Ordered porous carbons with tunable pore sizes as catalyst supports in direct methanol fuel cell. Physical of Chemistry B, 2004, 108(22): 7074–7079

DOI

297
Walcarius A. Mesoporous materials and electrochemistry. Chemical Society Reviews, 2013, 42(9): 4098–4140

DOI

298
Jin J, Huang S Z, Li Y, Tian H, Wang H E, Yu Y, Chen L H, Hasan T, Su B L. Hierarchical nanosheet-constructed yolk-shell TiO2 porous microspheres for lithium batteries with high capacity, superior rate and long cycle capability. Nanoscale, 2015, 7(30): 12979–12989

DOI

299
Huang S Z, Cai Y, Jin J, Liu J, Li Y, Yu Y, Wang H E, Chen L H, Su B L. Hierarchical mesoporous urchin-like Mn3O4/carbon microspheres with highly enhanced lithium battery performance by in-situ carbonization of new lamellar manganese alkoxide (Mn-DEG). Nano Energy, 2015, 12: 833–844

DOI

300
Jin J, Huang S Z, Liu J, Li Y, Chen L H, Yu Y, Wang H E, Grey C P, Su B L. Phases hybriding and hierarchical structuring of mesoporous TiO2 nanowire bundles for high rate and high capacity lithium batteries. Advancement of Science, 2015, 2: 1500070

301
Huang S Z, Cai Y, Jin J, Li Y, Zheng X F, Wang H E, Wu M, Chen L H, Su B L. Annealed vanadium oxide nanowires and nanotubes as high performance cathode materials for lithium ion battery. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(34): 14099–14108

DOI

302
Jin J, Huang S Z, Liu J, Li Y, Chen D S, Wang H E, Yu Y, Chen L H, Su B L. Design of new anode material structure on the basis of hierarchically three dimensionally ordered macro-mesoporous TiO2 for high performance lithium ion batteries. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(25): 9699–9708

DOI

303
Huang S Z, Jin J, Cai Y, Li Y, Tan H Y, Wang H E, Van Tendeloo G, Su B L. Engineering single crystalline Mn3O4 nano-octahedra with exposed highly active {011} facets for high performance lithium ion batteries. Nanoscale, 2014, 6(12): 6819–6827

DOI

304
Zheng X F, Shen G F, Li Y, Duan H N, Yang X Y, Huang S Z, Wang H E, Wang C, Deng Z, Su B L. Self-templated synthesis of microporous CoO nanoparticles with highly enhanced performance for both photocatalysis and lithium-ion batteries. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(4): 1394–1400

DOI

305
Wang H E, Chen D S, Cai Y, Zhang R L, Xu J M, Deng Z, Zheng X F, Li Y, Bello I, Su B L. Facile synthesis of hierarchical and porous V2O5 microspheres as cathode materials for lithium ion batteries. Journal of Colloid and Interface Science, 2014, 418: 74–80

DOI

306
Wang H E, Jin J, Cai Y, Xu J M, Chen D S, Zheng X F, Deng Z, Li Y, Bello I, Su B L. Facile and fast synthesis of porous TiO2 spheres for use in lithium ion batteries. Journal of Colloid and Interface Science, 2014, 417: 144–151

DOI

307
Cai Y, Wang H E, Huang S Z, Jin J, Wang C, Yu Y, Li Y, Su B L. Hierarchical nanotube-constructed porous TiO2-B spheres for high performance lithium ion batteries. Scientific Reports, 2015, 5: 11557

DOI

308
Zhou H, Zhu S, Hibino M, Honma I, Ichihara M. Lithium storage in ordered mesoporous carbon (CMK-3) with high reversible specific energy capacity and good cycling performance. Advanced Materials, 2003, 15(24): 2107–2111

DOI

309
Wang Z, Li F, Ergang N S, Stein A. Effects of hierarchical architecture on electronic and mechanical properties of nanocast monolithic porous carbons and carbon-carbon nanocomposites. Chemistry of Materials, 2006, 18(23): 5543–5553

DOI

310
Hu Y S, Adelhelm P, Smarsly B M, Hore S, Antonietti M, Maier J. Synthesis of hierarchically porous carbon monoliths with highly ordered microstructure and their application in rechargeable lithium batteries with high-rate capability. Advanced Functional Materials, 2007, 17(12): 1873–1878

DOI

311
Hao G P, Li W C, Qian D, Wang G H, Zhang W P, Zhang T, Wang A Q, Schüth F, Bongard H J, Lu A H. Structurally designed synthesis of mechanically stable poly (benzoxazine-co-resol)-based porous carbon monoliths and their application as high-performance CO2 capture sorbents. Journal of the American Chemical Society, 2011, 133(29): 11378–11388

DOI

312
Xia Y, Yoshio M, Noguchi H. Improved electrochemical performance of LiFePO4 by increasing its specific surface area. Electrochimica Acta, 2006, 52(1): 240–245

DOI

313
Doherty C M, Caruso R A, Smarsly B M, Drummond C J. Colloidal crystal templating to produce hierarchically porous LiFePO4 electrode materials for high power lithium ion batteries. Chemistry of Materials, 2009, 21(13): 2895–2903

DOI

314
Doherty C M, Caruso R A, Smarsly B M, Adelhelm P, Drummond C J, Doherty C M, Caruso R A, Smarsly B M. Hierarchically porous monolithic LiFePO4/carbon composite electrode materials for high power lithium ion batteries. Chemistry of Materials, 2009, 21(21): 5300–5306

DOI

315
Sinha N N, Shivakumara C, Munichandraiah N. High rate capability of a dual-porosity LiFePO4/C composite. ACS Applied Materials & Interfaces, 2010, 2(7): 2031–2038

DOI

316
Liu J, Conry T E, Song X, Doeff M M, Richardson T J. Nanoporous spherical LiFePO4 for high performance cathodes. Energy & Environmental Science, 2011, 4(3): 885–888

DOI

317
Jiao F, Bao J, Hill A H, Bruce P G. Synthesis of ordered mesoporous Li-Mn-O spinel as a positive electrode for rechargeable lithium batteries. Angewandte Chemie International Edition, 2008, 47(50): 9711–9716

DOI

318
Luo J, Wang Y, Xiong H, Xia Y. Ordered mesoporous spinel LiMn2O4 by a soft-chemical process as a cathode material for lithium-ion batteries. Chemistry of Materials, 2007, 19(19): 4791–4795

DOI

319
Xia X H, Tu J P, Wang X L, Gu C D, Zhao X B. Hierarchically porous NiO film grown by chemical bath deposition via a colloidal crystal template as an electrochemical pseudocapacitor material. Journal of Materials Chemistry, 2011, 21(3): 671–679

DOI

320
Elimelech M, Phillip W A. The future of seawater desalination: Energy, technology, and the environment. Science, 2011, 333(6043): 712–717

DOI

321
Xia X, Tu J, Xiang J, Huang X, Wang X, Zhao X. Hierarchical porous cobalt oxide array films prepared by electrodeposition through polystyrene sphere template and their applications for lithium ion batteries. Journal of Power Sources, 2010, 195(7): 2014–2022

DOI

322
Yuan Y, Xia X, Wu J, Yang J, Chen Y, Guo S. Hierarchically ordered porous nickel oxide array film with enhanced electrochemical properties for lithium ion batteries. Electrochemistry Communications, 2010, 12(7): 890–893

DOI

323
Jung H G, Oh S W, Ce J, Jayaprakash N, Sun Y K. Mesoporous TiO2 nano networks: Anode for high power lithium battery applications. Electrochemistry Communications, 2009, 11(4): 756–759

DOI

324
Yan H, Sokolov S, Lytle J C, Stein A, Zhang F, Smyrl W H. Colloidal-crystal-templated synthesis of ordered macroporous electrode materials for lithium secondary batteries. Journal of the Electrochemical Society, 2003, 150(8): A1102–A1107

DOI

325
Jiao F, Shaju K M, Bruce P G. Synthesis of nanowire and mesoporous low-temperature LiCoO2 by a post-templating reaction. Angewandte Chemie International Edition, 2005, 44(40): 6550–6553

DOI

326
Fan L Z, Hu Y S, Maier J, Adelhelm P, Smarsly B, Antonietti M, Fan L Z, Hu Y S, Maier J. High electroactivity of polyaniline in supercapacitors by using a hierarchically porous carbon monolith as a support. Advanced Functional Materials, 2007, 17(16): 3083–3087

DOI

327
Song H K, Jung Y H, Lee K H, Dao L H. Electrochemical impedance spectroscopy of porous electrodes: The effect of pore size distribution. Electrochimica Acta, 1999, 44(20): 3513–3519

DOI

328
Rose M, Korenblit Y, Kockrick E, Borchardt L, Oschatz M, Kaskel S, Yushin G. Hierarchical micro-and mesoporous carbide-derived carbon as a high-performance electrode material in supercapacitors. Small, 2011, 7(8): 1108–1117

DOI

329
Xia K, Gao Q, Jiang J, Hu J. Hierarchical porous carbons with controlled micropores and mesopores for supercapacitor electrode materials. Carbon, 2008, 46(13): 1718–1726

DOI

330
Eliaz N. Degradation of implant materials. Springer Science Business Media, 2012, 151–173

331
Xu M, Li H, Zhai D, Chang J, Chen S, Wu C. Hierarchically porous nagelschmidtite bioceramic-silk scaffolds for bone tissue engineering. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 2015, 3(18): 3799–3809

DOI

332
Fu Q, Saiz E, Rahaman M N, Tomsia A P. Bioactive glass scaffolds for bone tissue engineering: State of the art and future perspectives. Materials Science and Engineering C, 2011, 31(7): 1245–1256

DOI

333
Manzano M, Vallet-Regí M. Revisiting bioceramics: Bone regenerative and local drug delivery systems. Progress in Solid State Chemistry, 2012, 40(3): 17–30

DOI

334
Saiz E, Zimmermann E A, Lee J S, Wegst U G, Tomsia A P. Perspectives on the role of nanotechnology in bone tissue engineering. Dental Materials, 2013, 29(1): 103–115

DOI

335
Porter J R, Ruckh T T, Popat K C. Bone tissue engineering: A review in bone biomimetics and drug delivery strategies. Biotechnology Progress, 2009, 25(6): 1539–1560

336
Hollister S J. Porous scaffold design for tissue engineering. Nature Materials, 2005, 4(7): 518–524

DOI

337
Chen Q Z, Thompson I D, Boccaccini A R. 45S5 Bioglass®-derived glass-ceramic scaffolds for bone tissue engineering. Biomaterials, 2006, 27(11): 2414–2425

DOI

338
Baino F, Vitale-Brovarone C. Three-dimensional glass-derived scaffolds for bone tissue engineering: Current trends and forecasts for the future. Journal of Biomedical Materials Research. Part A, 2011, 97(4): 514–535

DOI

339
Anselme K. Osteoblast adhesion on biomaterials. Biomaterials, 2000, 21(7): 667–681

DOI

340
Jones J R, Lee P D, Hench L L. Hierarchical porous materials for tissue engineering. Philosophical Transactions of the Royal Society of London A: Mathematical. Physical and Engineering Sciences, 1838, 2006(364): 263–281

341
Hench L L. Bioceramics: From concept to clinic. Journal of the American Ceramic Society, 1991, 74(7): 1487–1510

DOI

342
Brinker C J, Scherer G W. Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing. United States: Academic press, 2013, 130–178

343
Sepulveda P, Jones J R, Hench L L. In vitro dissolution of melt-derived 45S5 and sol-gel derived 58S bioactive glasses. Journal of Biomedical Materials Research, 2002, 61(2): 301–311

DOI

344
Yuan H, de Bruijn J D, Zhang X, Blitterswijk C A, de Groot K. Bone induction by porous glass ceramic made from Bioglassw (45S5). Journal of Biomedical Materials Research, 2001, 58(3): 270–276

DOI

345
Sepulveda P, Jones J R, Hench L L. Bioactive sol-gel foams for tissue repair. Journal of Biomedical Materials Research, 2002, 59(2): 340–348

DOI

346
Tian G, Gu Z, Liu X, Zhou L, Yin W, Yan L, Jin S, Ren W, Xing G, Li S, ZhaoY. Facile fabrication of rare-earth-doped Gd2O3 hollow spheres with upconversion luminescence, magnetic resonance, and drug delivery properties. Journal of Physical Chemistry C, 2011, 115(48): 23790–23796

DOI

347
Xu Z H, Ma P A, Li C X, Hou Z Y, Zhai X F, Huang S S, Lin J. Monodisperse core-shell structured up-conversion Yb (OH) CO3@ YbPO4: Er3+ hollow spheres as drug carriers. Biomaterials, 2011, 32(17): 4161–4173

DOI

348
Allen T M, Cullis P R. Drug delivery systems: Entering the mainstream. Science, 2004, 303(5665): 1818–1822

DOI

349
Ye F, Guo H, Zhang H, He X. Polymeric micelle-templated synthesis of hydroxyapatite hollow nanoparticles for a drug delivery system. Acta Biomaterialia, 2010, 6(6): 2212–2218

DOI

350
Zhang H, Sun J, Ma D, Bao X, Klein-Hoffmann A, Weinberg G, Su D, Schlögl R. Unusual mesoporous SBA-15 with parallel channels running along the short axis. Journal of the American Chemical Society, 2004, 126(24): 7440–7441

DOI

351
Liu J, Hartono S B, Jin Y G, Li Z, Lu G Q M, Qiao S Z. A facile vesicle template route to multi-shelled mesoporous silica hollow nanospheres. Journal of Materials Chemistry, 2010, 20(22): 4595–4601

DOI

352
Piao Y, Kim J, Na H B, Kim D, Baek J S, Ko M K, Lee J H, Shokouhimehr M, Hyeon T. Wrap-bake-peel process for nanostructural transformation from β-FeOOH nanorods to biocompatible iron oxide nanocapsules. Nature Materials, 2008, 7(3): 242–247

DOI

353
Son J S, Appleford M, Ong J L, Wenke J C, Kim J M, Choi S H, Oh D S. Porous hydroxyapatite scaffold with three-dimensional localized drug delivery system using biodegradable microspheres. Journal of Controlled Release, 2011, 153(2): 133–140

DOI

354
Giger E V, Puigmarti L J, Schlatter R, Castagner B, Dittrich P S, Leroux J C. Gene delivery with bisphosphonate-stabilized calcium phosphate nanoparticles. Journal of Controlled Release, 2011, 150(1): 87–93

DOI

355
Yang H, Hao L, Zhao N, Du C, Wang Y. Hierarchical porous hydroxyapatite microsphere as drug delivery carrier. CrystEngComm, 2013, 15(29): 5760–5763

DOI

356
Zhao W, Chen H, Li Y, Li L, Lang M, Shi J. Uniform rattle-type hollow magnetic mesoporous apheres as drug delivery carriers and their sustained-release property. Advanced Functional Materials, 2008, 18(18): 2780–2788

DOI

357
Wang T, Chai F, Fu Q, Zhang L, Liu H, Li L, Liao Y, Su Z, Wang C, Duan B, Ren D. Uniform hollow mesoporous silica nanocages for drug delivery in vitro and in vivo for liver cancer therapy. Journal of Materials Chemistry, 2011, 21(14): 5299–5306

DOI

358
Gai S L, Yang P, Li P, Wang C X, Dai W X, Niu Y L, Lin N. Synthesis of magnetic, up-conversion luminescent, and mesoporous core-shell-structured nanocomposites as drug carriers. Advanced Functional Materials, 2010, 20(7): 1166–1172

DOI

359
Liu J, Qiao S Z, Chen J S, Lou X W, Xing X, Lu G Q. Yolk/shell nanoparticles: New platforms for nanoreactors, drug delivery and lithium-ion batteries. Chemical Communications, 2011, 47(47): 12578–12591

DOI

360
Chen D, Li L, Tang F, Qi S. Facile and scalable synthesis of tailored silica ‘nanorattle’ structures. Advanced Materials, 2009, 21(37): 3804–3807

DOI

361
Hu S H, Chen Y Y, Liu T C, Tung T H, Liu M D, Chen S Y. Remotely nano-rupturable yolk/shell capsules for magnetically-triggered drug release. Chemical Communications, 2011, 47(6): 1776–1778

DOI

362
Chen Y, Chen H R, Zhang S J, Chen F, Zhang L X, Zhang J M, Zhu M, Wu H X, Guo L M, Feng J W, Shi J L. Multifunctional mesoporous nanoellipsoids for biological bimodal imaging and magnetically targeted delivery of anticancer drugs. Advanced Functional Materials, 2011, 21(2): 270–278

DOI

363
Wu H X, Zhang S J, Zhang J M, Liu G, Shi J L, Zhang L X, Cui X Z, Ruan M L, He Q J, Bu W B A. Hollow-core, magnetic, and mesoporous double-shell nanostructure: In situ decomposition/reduction synthesis, bioimaging, and drug-delivery properties. Advanced Functional Materials, 2011, 21(10): 1850–1862

DOI

364
Zhang X F, Clime L, Roberge H, Normandin F, Yahia L H, Sacher E, Veres T. pH-triggered doxorubicin delivery based on hollow nanoporous silica nanoparticles with free-standing superparamagnetic Fe3O4 cores. Journal of Physical Chemistry C, 2011, 115(5): 1436–1443

DOI

365
Lu Y, Zhao Y, Yu L, Dong L, Shi C, Hu M J, Xu Y J, Wen L P, Yu S H. Hydrophilic Co@ Au yolk/shell nanospheres: Synthesis, assembly, and application to gene delivery. Advanced Materials, 2010, 22(12): 1407–1411

DOI

366
Suh W H, Jang A R, Suh Y H, Suslick K S. Porous hollow, ball-in-ball metal oxide microspheres: Preparation, endocytosis, and cytotoxicity. Advanced Materials, 2006, 18(14): 1832–1837

DOI

367
Li L L, Tang F Q, Li Y H, Liu T L, Hao N J, Chen D, Teng X, He J Q. In vivo delivery of silica nanorattle encapsulated docetaxel for liver cancer therapy with low toxicity and high efficacy. ACS Nano, 2010, 4(11): 6874–6882

DOI

368
Chen Y, Chen H R, Guo L M, He Q J, Chen F, Zhou J, Feng J W, Shi J L. Hollow/rattle-type mesoporous nanostructures by a structural difference-based selective etching strategy. ACS Nano, 2010, 4(1): 529–539

DOI

Outlines

/