Hierarchically porous materials: Synthesis strategies and emerging applications
Minghui Sun, Chen Chen, Lihua Chen, Baolian Su
Hierarchically porous materials: Synthesis strategies and emerging applications
Great interests have arisen over the last decade in the development of hierarchically porous materials. The hierarchical structure enables materials to have maximum structural functions owing to enhanced accessibility and mass transport properties, leading to improved performances in various applications. Hierarchical porous materials are in high demand for applications in catalysis, adsorption, separation, energy and biochemistry. In the present review, recent advances in synthesis routes to hierarchically porous materials are reviewed together with their catalytic contributions.
hierarchically porous materials / synthesis / application
[1] |
Baerlocher C, Meier W, Olson D. Atlas of Zeolite Framework Types. Elsevier, 2007, 10–45
|
[2] |
Kresge C T, Leonowicz M E, Roth W J, Vrtuli J C, Beck J S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 1992, 359(6397): 710–712
CrossRef
Google scholar
|
[3] |
Zhao D, Feng J, Huo Q, Melosh W, Fredrickson G H, Chmelka B F, Stucky G D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science, 1998, 279(5350): 548–552
CrossRef
Google scholar
|
[4] |
Holland B, Blanford C, Stein A. Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids. Science, 1998, 281(5376): 538–540
CrossRef
Google scholar
|
[5] |
Sing K, Everett D, Haul R, Moscou L, Pierotti R, Rouquerol J, Siemieniewska T. Reporting physisorption data for gas solid system. Pure and Applied Chemistry, 1985, 57: 603–619
|
[6] |
Su B L, Sanchez C, Yang X Y. Hierarchically structured porous materials: From nanoscience to catalysis, separation, optics, energy, and life science. Germany: Wiley-VCH, 2012, 15–45
|
[7] |
Yang P, Tao D, Zhao D, Feng P, Pine D, Chmelka B, Whitesides G, Stucky G. Hierarchically ordered oxides. Science, 1998, 282(5397): 2244–2246
CrossRef
Google scholar
|
[8] |
Yuan Z, Su B L. Insights into hierarchically meso-macroporous structured material. Journal of Materials Chemsitry A, 2006, 16(7): 663–677
CrossRef
Google scholar
|
[9] |
Pérez Ramirez J, Christensen C, Egeblad K, Christensen H, Groen J. Hierarchical zeolites: Enhanced utilisation of microporous crystals in catalysis by advances in materials design. Chemical Society Reviews, 2008, 37: 2530–2542
|
[10] |
Yang X Y, Li Y, Lemaire A, Yu J, Su B L. Hierarchically structured functional materials: Synthesis strategies for multimodal porous networks. Pure and Applied Chemistry, 2009, 81(12): 2265–2307
CrossRef
Google scholar
|
[11] |
Yang X Y, Alexandre L, Arnaud L, Tian G, Su B L. Self-formation phenomenon to hierarchically structured porous materials: Design, synthesis, formation mechanism and applications, Chemical Communications, 2011, 47(10): 2763–2786
|
[12] |
Jacobsen C J H, Madsen C, Houzvicka J, Schmidt I, Carlsson A. Mesoporous zeolite single crystals. Journal of the American Chemical Society, 2000, 122(29): 7116–7117
CrossRef
Google scholar
|
[13] |
Schmidt I, Boisen A, Gustavsson E, Stahl K, Pehrson S, Dahl S, Carlsson A, Jacobsen C J H. Carbon nanotube templated growth of mesoporous zeolite single crystals. Chemistry of Materials, 2001, 13(12): 4416–4418
CrossRef
Google scholar
|
[14] |
Cho H S, Ryoo R. Synthesis of ordered mesoporous MFI zeolite using CMK carbon templates. Microporous and Mesoporous Materials, 2012, 151: 107–112
CrossRef
Google scholar
|
[15] |
Chen H, Wydra J, Zhang X, Lee P S, Wang Z, Fan W, Tsapatsis M. Hydrothermal synthesis of zeolites with three-dimensionally ordered mesoporous-imprinted structure. Journal of Materials Chemsitry A, 2011, 133: 12390–12393
|
[16] |
Kustova M, Egeblad K, Zhu K, Christensen C H. Versatile route to zeolite single crystals with controlled mesoporosity: In situ sugar decomposition for templating of hierarchical zeolites. Chemistry of Materials, 2007, 19(12): 2915–2917
CrossRef
Google scholar
|
[17] |
Chu N B, Wang J Q, Zhang Y, Yang J H, Lu J M, Yin D H. Nestlike hollow hierarchical MCM-22 microspheres: Synthesis and exceptional catalytic properties. Chemistry of Materials, 2010, 22(9): 2757–2763
CrossRef
Google scholar
|
[18] |
Wang X D, Yang W L, Tang Y, Wang Y J, Fu S K, Gao Z. Fabrication of hollow zeolite spheres. Chemical Communications, 2000, 21: 2161–2162
CrossRef
Google scholar
|
[19] |
Valtchev V. Core-shell polystyrene/zeolite A microbeads. Chemistry of Materials, 2002, 14(3): 956–958
CrossRef
Google scholar
|
[20] |
Petkovich N D, Stein A. Controlling macro- and mesostructures with hierarchical porosity through combined hard and soft templating. Chemical Society reviews, 2013, 42: 3721–3739
CrossRef
Google scholar
|
[21] |
Huang L, Wang Z, Sun J, Miao L, Li Q, Yan Y, Zhao D. Fabrication of ordered porous structures by self-assembly of zeolite nanocrystals. Journal of the American Chemical Society, 2000, 122(14): 3530–3531
CrossRef
Google scholar
|
[22] |
Zhu G, Qiu S, Gao F, Li D, Li Y, Wang R, Terasaki O. Template-assisted self-assembly of macro-micro bifunctional porous materials. Journal of Materials Chemistry, 2001, 11(6): 1687–1693
CrossRef
Google scholar
|
[23] |
Sanchez C, Arribart H, Guille M M G. Biomimetism and bioinspiration as tools for the design of innovative materials and systems. Nature Materials, 2005, 4: 277–288
CrossRef
Google scholar
|
[24] |
Dong A, Wang Y, Tang Y, Zhang Y, Hong A, Ren N, Gao Z. Mechanically stable zeolite monoliths with three-dimensional ordered macropores by the transformation of mesoporous silica spheres. Advanced Materials, 2002, 14(20): 1506–1510
CrossRef
Google scholar
|
[25] |
Justin Thomas K R, Lin J T, Velusamy M, Tao Y T, Chuen C H. Color tuning in benzo [1, 2, 5] thiadiazole-based small molecules by amino conjugation/deconjugation: Bright red-light-emitting diode. Advanced Functional Materials, 2004, 14(1): 83–90
CrossRef
Google scholar
|
[26] |
Song W, Kanthasamy R, Grassian V H, Larsen S C. Hexagonal, hollow, aluminium-containing ZSM-5 tubes prepared from mesoporous silica templates. Chemical Communications, 2004, 17: 1920–1921
CrossRef
Google scholar
|
[27] |
Ren N, Yang Y H, Zhang Y H, Wang Q R, Tang Y. Heck coupling in zeolitic microcapsular reactor: A test for encaged quasi-homogeneous catalysis. Journal of Catalysis, 2007, 246(1): 215–222
CrossRef
Google scholar
|
[28] |
Machoke A G, Beltrán A M, Inayat A, Winter B, Weissenberger T, Kruse N, Güttel R, Spiecker E, Schwieger W. Micro/macroporous system: MFI-type zeolite crystals with embedded macropores. Advanced Materials, 2015, 27(6): 1066–1070
CrossRef
Google scholar
|
[29] |
Zhang X, Yan W, Yang H, Liu B, Li H. Gaseous infiltration method for preparation of three-dimensionally ordered macroporous polyethylene. Polymer, 2008, 49(25): 5446–5451
CrossRef
Google scholar
|
[30] |
Lodge T P, Rasdal A, Li Z, Hillmyer M A. Simultaneous, segregated storage of two agents in a multicompartment micelle. Journal of the American Chemical Society, 2005, 127(50): 17608–17609
CrossRef
Google scholar
|
[31] |
Sun J H, Shan Z, Maschmeyer T, Coppens M O. Synthesis of bimodal nanostructured silicas with independently controlled small and large mesopore sizes. Langmuir, 2003, 19(20): 8395–8402
CrossRef
Google scholar
|
[32] |
Antonietti M, Berton B, Göltner C, Hentze H P. Synthesis of mesoporous silica with large pores and bimodal pore size distribution by templating of polymer latices. Advanced Materials, 1998, 10(2): 154–159
CrossRef
Google scholar
|
[33] |
Groenewolt M, Antonietti M, Polarz S. Mixed micellar phases of nonmiscible surfactants: Mesoporous silica with bimodal pore size distribution via the nanocasting process. Langmuir, 2004, 20(18): 7811–7819
CrossRef
Google scholar
|
[34] |
Avera S, Boissiere C, Grosso D, Asakawa T, Sanchez C, Linden M. One-pot aerosol synthesis of ordered hierarchical mesoporous core-shell silica nanoparticles. Chemical Communications, 2004, 10(14): 1630–1631
|
[35] |
Zhou Y, Antonietti M. A novel tailored bimodal porous silica with well-defined inverse opal microstructure and super-microporous lamellar nanostructure. Chemical Communications, 2003, 20(20): 2564–2565
CrossRef
Google scholar
|
[36] |
Kuang D, Brezesinski T, Smarsly B. Hierarchical porous silica materials with a trimodal pore system using surfactant templates. Journal of the American Chemical Society, 2004, 126(34): 10534–10535
CrossRef
Google scholar
|
[37] |
Liu J, Yang T Y, Wang D W, Lu G Q, Zhao D Y, Qiao S Z. A facile soft-template synthesis of mesoporous polymeric and carbonaceous nanospheres. Nature Communications, 2013, 4: 2798
|
[38] |
Cao S, Gody G, Zhao W, Perrier S, Peng X Y, Ducati C, Zhao D Y, Cheetham A K. Hierarchical bicontinuous porosity in metal-organic frameworks templated from functional block co-oligomer micelles. Chemical Science (Cambridge), 2013, 4(9): 3573–3577
CrossRef
Google scholar
|
[39] |
Martins L, Rosa M M A, Pulcinelli S H, Santilli C V. Preparation of hierarchically structured porous aluminas by a dual soft template method. Microporous and Mesoporous Materials, 2010, 132(1-2): 268–275
CrossRef
Google scholar
|
[40] |
Choi M, Cho H S, Srivastava R, Venkatesan C, Choi D H, Ryoo R. Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity. Nature Materials, 2006, 5(9): 718–723
CrossRef
Google scholar
|
[41] |
Cho K, Cho H S, De Menorval L C, Ryoo R. Generation of mesoporosity in LTA zeolites by organosilane surfactant for rapid molecular transport in catalytic application. Chemistry of Materials, 2009, 21(23): 5664–5673
CrossRef
Google scholar
|
[42] |
Wang H, Pinnavaia T J. MFI zeolite with small and uniform intracrystal mesopores. Angewandte Chemie International Edition, 2006, 45(45): 7603–7606
CrossRef
Google scholar
|
[43] |
Choi M, Na K, Kim J, Sakamoto Y, Terasaki O, Ryoo R. Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature, 2009, 461(7261): 246–249
CrossRef
Google scholar
|
[44] |
Na K, Choi M, Park W, Sakamoto Y, Terasaki O, Ryoo R. Pillared MFI zeolite nanosheets of a single-unit-cell thickness. Journal of the American Chemical Society, 2010, 132(12): 4169–4177
CrossRef
Google scholar
|
[45] |
Na K, Jo C, Kim J, Cho K, Jung J, Seo Y, Messinger R J, Chmelka B F, Ryoo R. Directing zeolite structures into hierarchically nanoporous architectures. Science, 2011, 333(6040): 328–332
CrossRef
Google scholar
|
[46] |
Xiao F S, Wang L, Yin C, Lin K, Di Y, Li J, Xu R, Su D S, Schlögl R, Yokoi T, Tatsumi T. Catalytic properties of hierarchical mesoporous zeolites templated with a mixture of small organic ammonium salts and mesoscale cationic polymers. Angewandte Chemie, 2006, 118(19): 3162–3165
CrossRef
Google scholar
|
[47] |
Song J, Ren L, Yin C, Ji Y, Wu Z, Li J, Xiao F S. Stable, porous, and bulky particles with high external surface and large pore volume from self-assembly of zeolite nanocrystals with cationic polymer. Journal of Physical Chemistry C, 2008, 112(23): 8609–8613
CrossRef
Google scholar
|
[48] |
Zhong L S, Hu J S, Liang H P, Cao A M, Song W G, Wan L J. Self-Assembled 3D flowerlike iron oxide nanostructures and their application in water treatment. Advanced Materials, 2006, 18(18): 2426–2431
CrossRef
Google scholar
|
[49] |
Xu L, Sithambaram S, Zhang Y, Chen C H, Jin L, Joesten R, Suib S L. Novel urchin-like CuO synthesized by a facile reflux method with efficient olefin epoxidation catalytic performance. Chemistry of Materials, 2009, 21(7): 1253–1259
CrossRef
Google scholar
|
[50] |
Holland B T, Abrams L, Stein A. Dual templating of macroporous silicates with zeolitic microporous frameworks. Journal of the American Chemical Society, 1999, 121(17): 4308–4309
CrossRef
Google scholar
|
[51] |
Bian S W, Ma Z, Zhang L S, Niu F, Song W G. Silica nanotubes with mesoporous walls and various internal morphologies using hard/soft dual templates. Chemical Communications, 2009, 10(10): 1261–1263
CrossRef
Google scholar
|
[52] |
Stein A, Rudisill S G, Petkovich N D. Perspective on the influence of interactions between hard and soft templates and precursors on morphology of hierarchically structured porous materials. Chemistry of Materials, 2014, 26(1): 259–276
CrossRef
Google scholar
|
[53] |
Yang R C, Ma F Y, Tang D X. Template synthesis to fabrication of 3D ordered hierarchical materials. Advanced Materials Research, 2013, 602: 1355–1358
|
[54] |
Zhao Q L, Wang X Y, Liu J, Wang H, Zhang Y W, Gao J, Lu Q, Zhou H Y. Design and synthesis of three-dimensional hierarchical ordered porous carbons for supercapacitors. Electrochimica Acta, 2015, 154: 110–118
CrossRef
Google scholar
|
[55] |
Gundiah G. Macroporous silica-alumina composites with mesoporous walls. Bulletin of Materials Science, 2001, 24(2): 211–214
CrossRef
Google scholar
|
[56] |
Drisko G L, Zelcer A, Luca V, Caruso R A, Soler-Illia G J D A. One-pot synthesis of hierarchically structured ceramic monoliths with adjustable porosity. Chemistry of Materials, 2010, 22(15): 4379–4385
CrossRef
Google scholar
|
[57] |
Mandlmeier B, Szeifert J M, Fattakhova-Rohlfing D, Amenitsch H, Bein T. Formation of interpenetrating hierarchical titania structures by confined synthesis in inverse opal. Journal of the American Chemical Society, 2011, 133(43): 17274–17282
CrossRef
Google scholar
|
[58] |
Petkovich N D, Stein A. Controlling macro-and mesostructures with hierarchical porosity through combined hard and soft templating. Chemical Society Reviews, 2013, 42(9): 3721–3739
CrossRef
Google scholar
|
[59] |
Danumah C, Vaudreuil S, Bonneviot L, Bousmina M, Giasson S, Kaliaguine S. Synthesis of macrostructured MCM-48 molecular sieves. Microporous and Mesoporous Materials, 2001, 44: 241–247
CrossRef
Google scholar
|
[60] |
Oh C G, Baek Y, Ihm S K. Synthesis of skeletal-structured biporous silicate powders through microcolloidal crystal templating. Advanced Materials, 2005, 17(3): 270–273
CrossRef
Google scholar
|
[61] |
Deng Y, Liu C, Yu T, Liu F, Zhang F, Wan Y, Zhang L, Wang C, Tu B, Webley P A, Wang H, Zhao D. Facile synthesis of hierarchically porous carbons from dual colloidal crystal/block copolymer template approach. Chemistry of Materials, 2007, 19(13): 3271–3277
CrossRef
Google scholar
|
[62] |
Zhang S, Chen L, Zhou S, Zhao D, Wu L. Facile synthesis of hierarchically ordered porous carbon via in situ self-assembly of colloidal polymer and silica spheres and its use as a catalyst support. Chemistry of Materials, 2010, 22(11): 3433–3440
CrossRef
Google scholar
|
[63] |
Zhang F, Wang K X, Li G D, Chen J S. Hierarchical porous carbon derived from rice straw for lithium ion batteries with high-rate performance. Electrochemistry Communications, 2009, 11(1): 130–133
CrossRef
Google scholar
|
[64] |
Huang W T, Zhang H, Huang Y Q, Wang W K, Wei S H. Hierarchical porous carbon obtained from animal bone and evaluation in electric double-layer capacitors. Carbon, 2011, 49(3): 838–843
CrossRef
Google scholar
|
[65] |
Smith C J, Field M, Coakley C J, Awschalom D D. Organizing nanometer-scale magnets with bacterial threads. IEEE Transactions on Magnetics, 1998, 34(4): 988–990
CrossRef
Google scholar
|
[66] |
Zhi L, Zhang L, Schalchi A B , Tan X H, Xu Z W, Wang H L, Olsen B C, Holt C M B, David M. Carbonized Chicken Eggshell Membranes with 3D Architectures as High-Performance Electrode Materials for Supercapacitors. Advanced Energy Materials, 2012, 2(4): 431–437
CrossRef
Google scholar
|
[67] |
Song N, Jiang H, Cui T, Chang L, Wang X. Synthesis and enhanced gas-sensing properties of mesoporous hierarchical α-Fe2O3 architectures from an eggshell membrane. Micro & Nano Letters, 2012, 7(9): 943–946
CrossRef
Google scholar
|
[68] |
Zhang W, Zhang D, Fan T J, Gu J J, Ding J, Wang H, Guo Q X, Ogawa H. Novel photoanode structure templated from butterfly wing scales. Chemistry of Materials, 2009, 21(1): 33–40
CrossRef
Google scholar
|
[69] |
Zhu W J, Huang H, Zhang W K, Tao X Y, Gan Y P, Xia Y, Yang H, Guo X Z. Synthesis of MnO/C composites derived from pollen template for advanced lithium-ion batteries. Electrochimica Acta, 2015, 152(10): 286–293
CrossRef
Google scholar
|
[70] |
Kim H, Kim H J, Huh H K, Hwang H J, Lee S J. Structural design of a double-layered porous hydrogel for effective mass transport. Biomicrofluidics, 2015, 9(2): 18–24
CrossRef
Google scholar
|
[71] |
Wang L Q, Shin Y, Samuels W D, Exarhos G J, Moudrakovski I L, Terskikh V V, Ripmeester J A. Magnetic resonance studies of hierarchically ordered replicas of wood cellular structures prepared by surfactant-mediated mineralization. Journal of Physical Chemistry B, 2003, 107(50): 13793–13802
CrossRef
Google scholar
|
[72] |
You J, Cao G. Synthesis and characterization of hierarchical biomorphic mesoporous TiO2 nanosheets using caltrop-stem as biotemplate. Journal of Inorganic and Organometallic Polymers and Materials, 2013, 23(6): 1417–1424
CrossRef
Google scholar
|
[73] |
Yang X Y, Li Z Q, Liu B, Klein-Hofmann A, Tian G, Feng Y F, Ding Y, Su D S, Xiao F S. “Fish-in-Net” encapsulation of enzymes in macroporous cages for stable, reusable, and active heterogeneous biocatalysts. Advanced Materials, 2006, 18(4): 410–414
CrossRef
Google scholar
|
[74] |
Huang L, Wang H, Hayashi C Y, Tian B, Zhao D, Yan Y. Single-strand spider silk templating for the formation of hierarchically ordered hollow mesoporous silica fibers. Journal of Materials Chemistry, 2003, 13(4): 666–668
CrossRef
Google scholar
|
[75] |
Zhu S, Zhang D, Chen Z, Zhou G, Jiang H, Li J. Sonochemical fabrication of morpho-genetic TiO2 with hierarchical structures for photocatalyst. Journal of Nanoparticle Research, 2010, 12(7): 2445–2456
CrossRef
Google scholar
|
[76] |
Ogasawara W, Shenton W, Davis S A, Mann S. Template mineralization of ordered macroporous chitin-silica composites using a cuttlebone-derived organic matrix. Chemistry of Materials, 2000, 12(10): 2835–2837
CrossRef
Google scholar
|
[77] |
Pedroni V, Schulz P C, Gschaider de Ferreira M E, Morini M A. A chitosan-templated monolithic siliceous mesoporous-macroporous material. Colloid & Polymer Science, 2000, 278(10): 964–971
CrossRef
Google scholar
|
[78] |
Walsh D, Arcelli L, Ikoma T, Tanaka J, Mann S. Dextran templating for the synthesis of metallic and metal oxide sponges. Nature Materials, 2003, 2(6): 386–390
CrossRef
Google scholar
|
[79] |
Caruso R A, Antonietti M. Silica films with bimodal pore structure prepared by using membranes as templates and amphiphiles as porogens. Advanced Functional Materials, 2002, 12(4): 307–312
CrossRef
Google scholar
|
[80] |
Giunta P R, Washington R P, Campbell T D, Steinbock O, Stiegman A E. Preparation of mesoporous silica monoliths with ordered arrays of macrochannels templated from electric-field-oriented hydrogels. Angewandte Chemie International Edition, 2004, 43(12): 1505–1507
CrossRef
Google scholar
|
[81] |
Zhao D, Yang P, Chmelka B, Stucky G. Multiphase assembly of mesoporous-macroporous membranes. Chemistry of Materials, 1999, 11(5): 1174–1178
CrossRef
Google scholar
|
[82] |
Stubenrauch C, Tessendorf R, Strey R, Lynch I, Dawson K A. Gelled polymerizable microemulsions phase behavior. Langmuir, 2007, 23(14): 7730–7737
CrossRef
Google scholar
|
[83] |
Li X, Sun G, Li Y, Yu J C, Wu J, Ma G H, Ngai T. Porous TiO2 materials through pickering high-internal phase emulsion templating. Langmuir, 2014, 30(10): 2676–2683
CrossRef
Google scholar
|
[84] |
Carn F, Colin A, Achard M F, Deleuze H, Sellier E, Birot M, Backov R, Capadona J R, Shanmuganathan K, Tyler D J, Rowan S J, Weder C. General synthesis of ordered crystallized metal oxide nanoarrays replicated by microwave-digested mesoporous silica. Journal of the American Chemical Society, 2014, 14(9): 1370–1374
|
[85] |
Sen T, Tiddy G J T, Casci J L, Anderson M W. Macro-cellular silica foams: Synthesis during the natural creaming process of an oil-in-water emulsion. Chemical Communications, 2003, 17: 2182–2183
CrossRef
Google scholar
|
[86] |
Zhang H F, Hardy G C, Rosseinsky M J, Cooper A I. Uniform emulsion-templated silica beads with high pore volume and hierarchical porosity. Advanced Materials, 2003, 15(1): 78–81
CrossRef
Google scholar
|
[87] |
Carn F, Colin A, Achard M F, Deleuze H, Sellier E, Birot M, Backov R. Inorganic monoliths hierarchically textured via concentrated direct emulsion and micellar templates. Journal of Materials Chemistry, 2004, 14(9): 1370–1376
CrossRef
Google scholar
|
[88] |
Li H, Jin J, Wu W, Chen C, Li L, Li Y, Zhao W, Gu J, Chen G, Shi J. Synthesis of a hierarchically macro-/mesoporous zeolite based on a micro-emulsion mechanism. Journal of Materials Chemistry, 2011, 21(48): 19395–19401
CrossRef
Google scholar
|
[89] |
Hu X F, Cheng F Y, Han X P, Zhang T R, Chen J. Oxygen bubble-templated hierarchical porous ε-MnO2 as a superior catalyst for rechargeable Li-O2 batteries. Small, 2015, 11(7): 809–813
CrossRef
Google scholar
|
[90] |
Bagshaw S A. Morphosynthesis of macrocellular mesoporous silicate foams. Chemical Communications, 1999, 9(9): 767–768
CrossRef
Google scholar
|
[91] |
Carn F, Colin A, Achard M F, Deleuze H, Saadi Z, Backov R. Rational design of macrocellular silica scaffolds obtained by a tunable sol-gel foaming process. Advanced Materials, 2004, 16(2): 140–144
CrossRef
Google scholar
|
[92] |
Carn F, Colin A, Achard M F, Deleuze H, Sanchez C, Backov R. Anatase and rutile TiO2 macrocellular foams: Air-liquid foaming sol-gel process towards controlling cell sizes, morphologies, and topologies. Advanced Materials, 2005, 17(1): 62–66
CrossRef
Google scholar
|
[93] |
Suzuki K, Ikari K, Imai H. Synthesis of mesoporous silica foams with hierarchical trimodal pore structures. Journal of Materials Chemistry, 2003, 13(7): 1812–1816
CrossRef
Google scholar
|
[94] |
Wang J G, Li F, Zhou H J, Sun P C, Ding D T, Chen T H. Silica hollow spheres with ordered and radially oriented amino-functionalized mesochannels. Chemistry of Materials, 2009, 21(4): 612–620
CrossRef
Google scholar
|
[95] |
Li Y, Shi J. Hollow-structured mesoporous materials: Chemical synthesis, functionalization and applications. Advanced Materials, 2014, 26(20): 3176–3205
CrossRef
Google scholar
|
[96] |
Miyamoto M, Kamei T, Nishiyama N, Egashira Y, Ueyama K. Single crystals of ZSM-5/silicalite composites. Advanced Materials, 2005, 17(16): 1985–1988
CrossRef
Google scholar
|
[97] |
Porcher F, Dusausoy Y, Souhassou M, Lecomte C. Epitaxial growth of zeolite X on zeolite A and twinning in zeolite A: Structural and topological analysis. Mineralogical Magazine, 2000, 64(1): 1–8
CrossRef
Google scholar
|
[98] |
Thomas J M, Millward G R. Direct, real-space determination of intergrowths in ZSM-5/ZSM-11 catalysts. Journal of the Chemical Society. Chemical Communications, 1982, (24): 1380–1383
CrossRef
Google scholar
|
[99] |
Goossens A M, Wouters B H, Buschmann V, Martens J A. Oriented FAU zeolite films on micrometer-sized EMT crystals. Advanced Materials, 1999, 11(7): 561–564
CrossRef
Google scholar
|
[100] |
Lillerud K P, Raeder J H. On the synthesis of erionite-offretite intergrowth zeolites. Zeolites, 1986, 6(6): 474–483
CrossRef
Google scholar
|
[101] |
Bouizi Y, Rouleau L, Valtchev V P. Bi-phase MOR/MFI-type zeolite core-shell composite. Microporous and Mesoporous Materials, 2006, 91(1-3): 70–77
CrossRef
Google scholar
|
[102] |
Yonkeu A L, Miehe G, Fuess H, Goossens A M, Martens J A. A new overgrowth of mazzite on faujasite zeolite crystal investigated by X-ray diffraction and electron microscopy. Microporous and Mesoporous Materials, 2006, 96(1-3): 396–404
CrossRef
Google scholar
|
[103] |
Wakihara T, Yamakita S, Iezumi K, Okubo T. Heteroepitaxial growth of a zeolite film with a patterned surface-texture. Journal of Americal Chemistry Society, 2003, 125(41): 12388–12389
CrossRef
Google scholar
|
[104] |
Bouizi Y, Diaz I, Rouleau L, Valtchev V P. Core-shell zeolite microcomposites. Advanced Functional Materials, 2005, 15(12): 1955–1960
CrossRef
Google scholar
|
[105] |
Zheng J J, Zeng Q H, Ma J H, Zhang X W, Sun W F, Li R F. Synthesis of hollow zeolite composite spheres by using. BETA zeolite crystal as template. Chemistry Letters, 2010, 39(4): 330–331
CrossRef
Google scholar
|
[106] |
Tsang C, Dai P, Petty R H. Upgrading and catalytic cracking catalyst. US Patent 5888921, <Date>1999-03-30</Date>
|
[107] |
Lei Q, Zhao T B, Li F, Wang Y Y, Zheng M F. Fabrication of hierarchically structured monolithic silicalite-1 through steam-assisted conversion of macroporous silica gel. Chemistry Letters, 2006, 35(5): 490–491
CrossRef
Google scholar
|
[108] |
Lei Q, Zhao T L F, Li Y, Zhang L L, Wang Y. Catalytic cracking of large molecules over hierarchical zeolites. Chemical Communications, 2006, 16: 1769–1771
CrossRef
Google scholar
|
[109] |
Lei Q, Zhao T, Li F, Wang Y F, Hou L. Zeolite beta monoliths with hierarchical porosity by the transformation of bimodal pore silica gel. Journal of Porous Materials, 2008, 15(6): 643–646
CrossRef
Google scholar
|
[110] |
Sachse A, Galarneau A, Di Renzo F, Fajula F, Coq B. Synthesis of zeolite monoliths for flow continuous processes: The case of sodalite as a basic catalyst. Chemistry of Materials, 2010, 22(14): 4123–4125
CrossRef
Google scholar
|
[111] |
Yang X Y, Tian G, Chen L H, Li Y, Rooke J C, Wei Y X, Liu Z M, Deng Z, Van Tendeloo G, SuB L. Well organized zeolite nanocrystal aggregates with interconnected hierarchically micro-meso- macropore systems showing enhanced catalytic performance. Chemistry European Journal A, 2011, 17(52): 14987–14995
CrossRef
Google scholar
|
[112] |
SUN M H, Huang S Z, Chen L H, Li Y, Yang X Y, Yuan Z Y, Su B L. Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine Chemical Society reviews, 2016, 45: 3479–3563
CrossRef
Google scholar
|
[113] |
Li X Y, Chen L H, Li Y, Rooke J C, Deng Z, Hu Z Y, Liu J, Krief A, Yang X Y, Su B L. Tuning the structure of a hierarchically porous ZrO2 for dye molecule depollution. Microporous and Mesoporous Materials, 2012, 152: 110–121
CrossRef
Google scholar
|
[114] |
Li X Y, Chen L H, Li Y, Rooke J C, Wang C, Lu Y, Krief A, Yang X Y, Su B L. Self-generated hierarchically porous titania with high surface area: Photocatalytic activity enhancement by macrochannel structure. Journal of Colloid and Interface Science, 2012, 368(1): 128–138
CrossRef
Google scholar
|
[115] |
Chen L H, Li X Y, Tian G, Li Y, Tan H Y, Van Tendeloo G, Zhu G S, Qiu S L, Yang X Y, Su B L. Multimodal zeolite-beta-based catalysts with a hierarchical, three-level pore structure. ChemSusChem, 2011, 4(10): 1452–1456
CrossRef
Google scholar
|
[116] |
Chen L H, Li X Y, Tian G, Li Y, Rooke J C, Zhu G S, Qiu S L, Yang X Y, Su B L. Highly stable and reusable multimodal zeolite TS-1 based catalysts with hierarchically interconnected three-level micro-meso-macroporous structure. Angewandte Chemie International Edition, 2011, 50(47): 11156–11161
CrossRef
Google scholar
|
[117] |
Chen L H, Xu S T, Li X Y, Tian G, Li Y, Rooke J C, Su B L. Multimodal Zr-Silicalite-1 zeolite nanocrystal aggregates with interconnected hierarchically micro-meso-macroporous architecture and enhanced mass transport property. Journal of Colloid and Interface Science, 2012, 377(1): 368–374
CrossRef
Google scholar
|
[118] |
Blin J L, Leonard A, Yuan Z Y, Gigot L, Vantomme A, Cheetham A K, Su B L. Hierarchically mesoporous/macroporous metal oxides templated from polyethylene oxide surfactant assemblies. Angewand Chemie International Edit ion, 2003, 42: 2872–2875
|
[119] |
Li Y, Yang X Y, Tian G, Vantomme A, Yu J, Van T G, Su B L. Chemistry of trimethyl aluminum: A spontaneous route to thermally stable 3D crystalline macroporous alumina foams with a hierarchy of pore sizes. Chemistry of Materials, 2010, 22(10): 3251–3258
CrossRef
Google scholar
|
[120] |
Yuan Z Y, Vantomme A, Léonard A, Su B L. Surfactant-assisted synthesis of unprecedented hierarchical meso-macrostructured zirconia. Chemical Communications, 2003, 9(13): 1558–1559
CrossRef
Google scholar
|
[121] |
Deng W, Toepke M W, Shanks B H. Surfactant-assisted synthesis of alumina with hierarchical nanopores. Advanced Functional Materials, 2003, 13(1): 61–65
CrossRef
Google scholar
|
[122] |
Collins A, Carriazo D, Davis S A, Mann S. Spontaneous template-free assembly of ordered macroporous titania. Chemical Communications, 2004, 5(5): 568–569
CrossRef
Google scholar
|
[123] |
Léonard A, Blin J L, Su B L. One-pot surfactant assisted synthesis of aluminosilicate macrochannels with tunable micro- or mesoporous wall structure. Chemistry Communications, 2003: 2568–2569
CrossRef
Google scholar
|
[124] |
Ren T Z, Yuan Z Y, Su B L. Microwave-assisted preparation of hierarchical mesoporous-macroporous boehmite AlOOH and g-Al2O3. Langmuir, 2004, 20(4): 1531–1534
CrossRef
Google scholar
|
[125] |
Ren T Z, Yuan Z Y, Su B L. A novel macroporous structure of mesoporous titanias: Synthesis and characterisation. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2004, 241(1-3): 67–73
CrossRef
Google scholar
|
[126] |
Deng W, Shanks B H. Synthesis of hierarchically structured aluminas under controlled hydrodynamic conditions. Chemistry of Materials, 2005, 17(12): 3092–3100
CrossRef
Google scholar
|
[127] |
Su B L, Léonard A, Yuan Z Y. Highly ordered mesoporous CMI-n materials and hierarchically structured meso-macroporous compositions. Comptes Rendus. Chimie, 2005, 8(3-4): 713–726
CrossRef
Google scholar
|
[128] |
Yuan Z Y, Ren T Z, Azioune A, Pireaux J J, Su B L. Marvelous self-assembly of hierarchically nanostructured porous zirconium phosphate solid acids with high thermal stability. Catalysis Today, 2005, 105(105): 647–654
CrossRef
Google scholar
|
[129] |
Lemaire A, Wang Q Y, Wei Y X, Liu Z M, Su B L. Hierarchically structured meso-macroporous aluminosilicates with high tetrahedral aluminium content in acid catalysed esterification of fatty acids. Journal of Colloid & Interface Science, 2011, 363: 511–520
CrossRef
Google scholar
|
[130] |
Vantomme A, Léonard A, Yuan Z Y, Su B L. Hierarchically nanostructured porous functional ceramics key. Engineering Materials, 2007, 336: 1933–1938
|
[131] |
Lemaire A, Su B L. Tailoring the porous hierarchy and the tetrahedral aluminum content by using carboxylate ligands: hierarchically structured macro-mesoporous aluminosilicates from a single molecular source. Langmuir, 2010, 26(22): 17603–17616
CrossRef
Google scholar
|
[132] |
Lemaire A, Rooke J C, Chen L H, Su B L. Direct observation of macrostructure formation of hierarchically structured meso-macroporous aluminosilicates with 3D interconnectivity by optical microscope. Langmuir, 2011, 27(6): 3030–3043
CrossRef
Google scholar
|
[133] |
Zhang K B, Fu Z Y, Nakayama T, Suzuki T, Suematsu H, Niihara K. One-pot synthesis of hierarchically macro/mesoporous Al2O3 monoliths from a facile sol–gel process. Materials Research Bulletin, 2011, 46(11): 2155–2162
CrossRef
Google scholar
|
[134] |
Yang X Y, Li Y, Van T G, Xiao F, Su B L. One-pot synthesis of catalytically stable and active nanoreactors: Encapsulation of size-controlled nanoparticles within a hierarchically macroporous core@ ordered mesoporous shell system. Advanced Materials, 2009, 21(13): 1368–1372
CrossRef
Google scholar
|
[135] |
Kloestra K R, van Bekkum H, Jansen J C. Mesoporous material containing framework tectosilicate by pore-wall recrystallization. Chemical Communications, 1997, 23(23): 2281–2282
CrossRef
Google scholar
|
[136] |
Hu M C, Zielke J T, Byers C H, Lin J S, Harris M T. Probing the early-stage/rapid processes in hydrolysis and condensation of metal alkoxides. Journal of Materials Science, 2000, 35(8): 1957–1971
CrossRef
Google scholar
|
[137] |
Su B L, Vantomme A, Surahy L, Pirard R, Pirard J P. Hierarchical multimodal mesoporous carbon materials with parallel macrochannels. Chemistry of Materials, 2007, 19(13): 3325–3333
CrossRef
Google scholar
|
[138] |
Vantomme A, Yuan Z Y, Su B L. One-pot synthesis of a high-surface-area zirconium oxide material with hierarchically three-length-scaled pore structure. New Journal of Chemistry, 2004, 28(9): 1083–1085
CrossRef
Google scholar
|
[139] |
Léonard A, Su B L. Hierarchical aluminosilicate macrochannels with structured mesoporous walls: Towards a single catalyst for multistep reactions. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2007, 300(1-2): 129–135
CrossRef
Google scholar
|
[140] |
Hakim S H, Shanks B H. A comparative study of macroporous metal oxides synthesized via a unified approach. Chemistry of Materials, 2009, 21(10): 2027–2038
CrossRef
Google scholar
|
[141] |
Léonard A, Vantomme A, Bouvy C, Moniotte N, Mariaulle P, Su B L. Highly ordered mesoporous and hierarchically nanostructured meso-macroporous materials for nanotechnology, biotechnology, information technology and medical applications. Nanopages, 2006, 1(1): 1–44
CrossRef
Google scholar
|
[142] |
Yuan Z Y, Ren T Z, Su B L. Hierarchically mesostructured titania materials with an unusual interior macroporous structure. Advanced Materials, 2003, 15(17): 1462–1465
CrossRef
Google scholar
|
[143] |
Ren T Z, Yuan Z Y, Su B L. Template-free synthesis of hierarchical mesoporous alumina-based materials with uniform channel-like macrostructures. Studies in Surface Science & Catalysis, 2007, 165: 287–290
CrossRef
Google scholar
|
[144] |
Yuan Z Y, Ren T Z, Vantomme A, Su B L. Facile and generalized preparation of hierarchically mesoporous-macroporous binary metal oxide materials. Chemistry of Materials, 2004, 16(24): 5096–5106
CrossRef
Google scholar
|
[145] |
Ren T Z, Yuan Z Y, Su B L. Thermally stable macroporous zirconium phosphates with supermicroporous walls: A self-formation phenomenon of hierarchy. Chemical Communications, 2004, (23): 2730–2731
CrossRef
Google scholar
|
[146] |
Ren T Z, Yuan Z Y, Azioun A, Pireaux J J, Su B L. Tailoring the porous hierarchy of titanium phosphates. Langmuir, 2006, 22(8): 3886–3894
CrossRef
Google scholar
|
[147] |
Yuan Z Y, Ren T Z, Azioune A, Pireaux J J, Su B L. Self-assembly of hierarchically mesoporous-macroporous phosphated nanocrystalline aluminum (oxyhydr) oxide materials. Chemistry of Materials, 2006, 18(7): 1753–1767
CrossRef
Google scholar
|
[148] |
Wan Y, Zhao D. On the controllable soft-templating approach to mesoporous silicates. Chemical Reviews, 2007, 107(7): 2821–2860
CrossRef
Google scholar
|
[149] |
Zhao D, Huo Q, Feng J, Chmelka B F, Stucky G D. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. Journal of the American Chemical Society, 1998, 120(24): 6024–6036
CrossRef
Google scholar
|
[150] |
Ryoo R, Ko C H, Kruk M, Antochshuk V, Jaroniec M. Block-copolymer- templated ordered mesoporous silica: Array of uniform mesopores or mesopore-micropore network. Journal of Physical Chemistry B, 2000, 104(48): 11465–11471
CrossRef
Google scholar
|
[151] |
Imperor-Clerc M, Davidson P, Davidson A. Existence of a microporous corona around the mesopores of silica-based SBA-15 materials templated by triblock copolymers. Journal of the American Chemical Society, 2000, 122(48): 11925–11933
CrossRef
Google scholar
|
[152] |
Wang J, Feng S, Song Y, Li W, Gao W, Elzatahry A A, Aldhayan D, Xia Y, Zhao D. Elzatahry, Zhao A A. Synthesis of hierarchically porous carbon spheres with yolk-shell structure for high performance supercapacitors. Catalysis Today, 2015, 243: 199–208
CrossRef
Google scholar
|
[153] |
Haskouri E I, de Zárate J, Guillem D O, Latorre C, Caldés J, Beltrán M, Beltrán A, Descalzo D, Rodríguez-López A B, Gertrudis Martínez-Máñez R. Silica-based powders and monoliths with bimodal pore systems. Chemical Communications, 2002, 4(4): 330–331
|
[154] |
Kim J H, Fang B, Song M Y, Yu J S. Topological transformation of thioether-bridged organosilicas into nanostructured functional materials. Chemistry of Materials, 2012, 24(12): 2256–2264
CrossRef
Google scholar
|
[155] |
Wu D, Fu R, Dresselhaus M S, Dresselhaus G. Nano-structure control of carbon aerogels via a microemulsion-templated sol-gel polymerization method. Carbon, 2006, 44(4): 675–681
CrossRef
Google scholar
|
[156] |
Fu R, Zheng B, Liu J, Dresselhaus M S, Dresselhaus G, Satcher J H, Baumann T F. The fabrication and characterization of carbon aerogels by gelation and supercritical drying in isopropanol. Advanced Functional Materials, 2003, 13(7): 558–562
CrossRef
Google scholar
|
[157] |
Nakanishi K, Soga N. Phase separation in gelling silica-organic polymer solution: Systems containing poly(sodium styrenesulfonate). Journal of the American Ceramic Society, 1991, 74(10): 2518–2530
CrossRef
Google scholar
|
[158] |
Sun Y. Porous zirconium phosphates prepared by surfactant-assistedprecipitation. Journal of Materials Chemistry, 2000, 10(10): 2320–2324
CrossRef
Google scholar
|
[159] |
Unger K K, Tanaka N, Machtejevas E. Monolithic silicas in separation science: Concepts, syntheses, characterization, modeling and applications. Germany: Wiley-VCH, 2010, 125–161
|
[160] |
Inagaki S, Guan S, Fukushima Y, Ohsuna T, Terasaki O. Novel mesoporous materials with a uniform distribution of organic groups and inorganic oxide in their frameworks. Journal of the American Chemical Society, 1999, 121(41): 9611–9614
CrossRef
Google scholar
|
[161] |
Sun X H, Zheng C M, Qiao M Q, Yan J L, Wang X P, Guan N J. Bioinspired synthesis of hierarchical macro-mesoporous titania with tunable macroporous morphology using cell-assemblies as macrotemplates. Chemical Communications, 2009: 4750–4752
CrossRef
Google scholar
|
[162] |
Konishi J, Fujit K, Nakanishi K, Hirao K. Monolithic TiO2 with controlled multiscale porosity via a template-free sol-gel process accompanied by phase separation. Chemistry of Materials, 2006, 18(25): 6069–6074
CrossRef
Google scholar
|
[163] |
Smått J H, Schunk S, Lindén M. Versatile double-templating synthesis route to silica monoliths exhibiting a multimodal hierarchical porosity. Chemistry of Materials, 2003, 15(12): 2354–2361
CrossRef
Google scholar
|
[164] |
Takahashi R, Sato S, Sodesawa T, Suzuki K, Tafu M, Nakanishi K, Soga N. Phase separation in sol-gel process of alkoxide-derived silica-zirconia in the presence of polyethylene oxide. Journal of the American Ceramic Society, 2001, 84(9): 1968–1976
CrossRef
Google scholar
|
[165] |
Murai S, Fujita K, Nakanishi K, Hirao K. Morphology control of phase-separation-induced alumina-silica macroporous gels for rare-earth-doped scattering media. Journal of Physical Chemistry B, 2004, 108(43): 16670–16676
CrossRef
Google scholar
|
[166] |
Nakanishi K, Kobayashi Y, Amatani T, Hirao K, Kodaira T. Spontaneous formation of hierarchical macro-mesoporous ethane-silica monolith. Chemistry of Materials, 2004, 16(19): 3652–3658
CrossRef
Google scholar
|
[167] |
Amatani T, Nakanishi K, Hirao K, Kodaira T. Monolithic periodic mesoporous silica with well-defined macropores. Chemistry of Materials, 2005, 17(8): 2114–2119
CrossRef
Google scholar
|
[168] |
Brandhuber D, Torma V, Raab C, Peterlik H, Kulak A, Hüsing N. Glycol-modified silanes in the synthesis of mesoscopically organized silica monoliths with hierarchical porosity. Chemistry of Materials, 2005, 17(16): 4262–4271
CrossRef
Google scholar
|
[169] |
Konishi J, Fujita K, Nakanishi K, Hirao K, Komarneni S, Parker J C. Macroporous Morphology Induced by Phase Separation in Sol-Gel Systems Derived from Titania Colloid, MRS Proceedings. Cambridge: Cambridge University Press, 2003, 788: 8–11
|
[170] |
Huesing N, Raab C, Torma V, Roig A, Peterlik H. Periodically mesostructured silica monoliths from diol-modified silanes. Chemistry of Materials, 2003, 15(14): 2690–2692
CrossRef
Google scholar
|
[171] |
Wu Q L, Subramanian N, Rankin S E. Hierarchically porous titania thin film prepared by controlled phase separation and surfactant templating. Langmuir, 2011, 27(15): 9557–9566
CrossRef
Google scholar
|
[172] |
François B, Pitois O, François J. Polymer films with a self-organized honeycomb morphology. Advanced Materials, 1995, 7(12): 1041–1044
CrossRef
Google scholar
|
[173] |
Saito Y, Shimomura M, Yabu H. Dispersion of Al2O3 nanoparticles stabilized with mussel-inspired amphiphilic copolymers in organic solvents and formation of hierarchical porous films by the breath figure technique. Chemical Communications, 2013, 49(54): 6081–6083
CrossRef
Google scholar
|
[174] |
Kon K, Brauer C N, Hidaka K, Löhmannsröben H G, Karthaus O. Preparation of patterned zinc oxide films by breath figure templating. Langmuir, 2010, 26(14): 12173–12176
CrossRef
Google scholar
|
[175] |
Peng J, Han Y, Yang Y, Li B. The influencing factors on the macroporous formation in polymer films by water droplet templating. Polymer, 2004, 45(2): 447–452
CrossRef
Google scholar
|
[176] |
Sel O, Laberty-Robert C, Azais T, Sanchez C. Designing meso-and macropore architectures in hybrid organic-inorganic membranes by combining surfactant and breath figure templating (BFT). Physical Chemistry Chemical Physics, 2009, 11(19): 3733–3741
CrossRef
Google scholar
|
[177] |
Böker A, Lin Y, Chiapperini K, Horowitz R, Thompson M, Carreon V, Xu T, Abetz C, Skaff H, Dinsmore A D, Emrick T, RussellT P. Hierarchical nanoparticle assemblies formed by decorating breath figures. Nature Materials, 2004, 3(5): 302–306
CrossRef
Google scholar
|
[178] |
Srinivasarao M, Collings D, Philips A, Patel S. Three-dimensionally ordered array of air bubbles in a polymer film. Science, 2001, 292(5514): 79–83
CrossRef
Google scholar
|
[179] |
Gao Y, Hou Y, Beaujuge P M. Arrays of hollow silica half-nanospheres via the breath figure approach. Advanced Materials Interfaces, 2015, 2(9): 1500078
|
[180] |
Deville S. Freeze-casting of porous ceramics: A review of current achievements and issues. Advanced Engineering Materials, 2008, 10(3): 155–169
CrossRef
Google scholar
|
[181] |
Chatterji S. Aspects of the freezing process in a porous material–water system: Part 1. Freezing and the properties of water and ice. Cement and Concrete Research, 1999, 29(4): 627–630
CrossRef
Google scholar
|
[182] |
DeSimone J M, Guan Z, Elsbernd C S. Synthesis of fluoropolymers in supercritical carbon dioxide. Science, 1992, 257(5072): 945–947
CrossRef
Google scholar
|
[183] |
Ho M H, Kuo P Y, Hsieh H J, Hsien T Y, Hou L T, Lai J Y, Wang D M. Preparation of porous scaffolds by using freeze-extraction and freeze-gelation methods. Biomaterials, 2004, 25(1): 129–138
CrossRef
Google scholar
|
[184] |
Kang H W, Tabata Y, Ikada Y. Fabrication of porous gelatin scaffolds for tissue engineering. Biomaterials, 1999, 20(14): 1339–1344
CrossRef
Google scholar
|
[185] |
Hsieh C Y, Tsai S P, Ho M H, Wang D M, Liu C E, Hsieh C H, Hsieh H J. Analysis of freeze-gelation and cross-linking processes for preparing porous chitosan scaffolds. Carbohydrate Polymers, 2007, 67(1): 124–132
CrossRef
Google scholar
|
[186] |
Daamen W F, Van Moerkerk H T B, Hafmans T, Buttafoco L, Poot A A, Veerkamp J H, Van Kuppevelt T H. Preparation and evaluation of molecularly-defined collagen-elastin-glycosaminoglycan scaffolds for tissue engineering. Biomaterials, 2003, 24(22): 4001–4009
CrossRef
Google scholar
|
[187] |
Yannas I V, Burke J F, Gordon P L, Huang C, Rubenstein R H. Design of an artificial skin. II. Control of chemical composition. Journal of Biomedical Materials Research, 1980, 14(2): 107–132
CrossRef
Google scholar
|
[188] |
Shalaby W S W, Peck G E, Park K. Release of dextromethorphan hydrobromide from freeze-dried enzyme-degradable hydrogels. Journal of Controlled Release, 1991, 16(3): 355–363
CrossRef
Google scholar
|
[189] |
Mukai S R, Nishihara H, Tamon H. Formation of monolithic silica gel microhoneycombs (SMHs) using pseudosteady state growth of microstructural ice crystals. Chemical Communications, 2004, 7(7): 874–875
CrossRef
Google scholar
|
[190] |
Nishihara H, Mukai S R, Yamashita D, Tamon H. Ordered macroporous silica by ice templating. Chemistry of Materials, 2005, 17(3): 683–689
CrossRef
Google scholar
|
[191] |
Mahler W, Bechtold M F. Freeze-formed silica fibres. Nature, 1980, 285(5759): 27–28
CrossRef
Google scholar
|
[192] |
Fukasawa T, Ando M, Ohji T, Kanzaki S. Synthesis of porous ceramics with complex pore structure by freeze-dry processing. Journal of the American Ceramic Society, 2001, 84(1): 230–232
CrossRef
Google scholar
|
[193] |
Sofie S W, Dogan F. Freeze casting of aqueous alumina slurries with glycerol. Journal of the American Ceramic Society, 2001, 84(7): 1459–1464
CrossRef
Google scholar
|
[194] |
Gutiérrez M C, Jobbágy M, Rapún N, Ferrer M L, del Monte F A. Biocompatible bottom-up route for the preparation of hierarchical biohybrid materials. Advanced Materials, 2006, 18(9): 1137–1140
CrossRef
Google scholar
|
[195] |
Zhang H, Hussain I, Brust M, Butler M F, Rannard S P, Cooper A I. Aligned two-and three-dimensional structures by directional freezing of polymers and nanoparticles. Nature Materials, 2005, 4(10): 787–793
CrossRef
Google scholar
|
[196] |
Perriman A W, Brogan A P, Cölfen H, Tsoureas N, Owen G R, Mann S. Reversible dioxygen binding in solvent-free liquid myoglobin. Nature Chemistry, 2010, 2(8): 622–626
CrossRef
Google scholar
|
[197] |
Eckert C A, Knutson B L, Debenedetti P G. Supercritical fluids as solvents for chemical and materials processing. Nature, 1996, 383(6598): 313–318
CrossRef
Google scholar
|
[198] |
Cooper A I. Porous materials and supercritical fluids. Advanced Materials, 2003, 15(13): 1049–1059
CrossRef
Google scholar
|
[199] |
DeSimone J M, Maury E E, Menceloglu Y Z, McClain J B, Romack T J, Combes J R. Dispersion polymerizations in supercritical carbon dioxide. Science, 1994, 265(5170): 356–359
CrossRef
Google scholar
|
[200] |
Kendall J L, Canelas D A, Young J L, DeSimone J M. Polymerizations in supercritical carbon dioxide. Chemical Reviews, 1999, 99(2): 543–564
CrossRef
Google scholar
|
[201] |
DeSimone J M. Practical approaches to green solvents. Science, 2002, 297(5582): 799–803
CrossRef
Google scholar
|
[202] |
Partap S, Rehman I, Jones J R, Darr J A. Supercritical carbon dioxide in water emulsion-templated synthesis of porous calcium alginate hydrogels. Advanced Materials, 2006, 18(4): 501–504
CrossRef
Google scholar
|
[203] |
Palocci C, Barbetta A, La Grotta A, Dentini M. Porous biomaterials obtained using supercritical CO2-water emulsions. Langmuir, 2007, 23(15): 8243–8251
CrossRef
Google scholar
|
[204] |
Butler R, Hopkinson I, Cooper A I. Synthesis of porous emulsion-templated polymers using high internal phase CO2-in-water emulsions. Journal of the American Chemical Society, 2003, 125(47): 14473–14481
CrossRef
Google scholar
|
[205] |
Langer R, Vacanti J. Tissue engineering. Science, 1993, 260(5110): 920–926
CrossRef
Google scholar
|
[206] |
Sui R, Charpentier P. Synthesis of metal oxide nanostructures by direct sol-gel chemistry in supercritical fluids. Chemical Reviews, 2012, 112(6): 3057–3082
CrossRef
Google scholar
|
[207] |
Xu S, Yang H, Wang K, Wang B, Xu Q. Effect of supercritical CO2 on fabrication of free-standing hierarchical graphene oxide/carbon nanofiber/polypyrrole film and its electrochemical property. Physical Chemistry Chemical Physics, 2014, 16(16): 7350–7357
CrossRef
Google scholar
|
[208] |
Wang M, Zhao B, Xu S, Lin L, Liu S, He D. Synthesis of hierarchically structured ZnO nanomaterials via a supercritical assisted solvothermal process. Chemical Communications, 2014, 50(8): 930–932
CrossRef
Google scholar
|
[209] |
Nugroho A, Kim S J, Chang W, Chung K Y, Kim J. Design and fabrication of hierarchically porous carbon with a template-free method. Scientific Reports, 2014, 4: 6349
|
[210] |
Wang L, Zhuo L, Zhang C, Zhao F. Supercritical carbon dioxide assisted deposition of Fe3O4 nanoparticles on hierarchical porous carbon and their lithium-storage performance. Chemistry (Weinheim an der Bergstrasse, Germany), 2014, 20(15): 4308–4315
CrossRef
Google scholar
|
[211] |
Nugroho A, Yoon D, Joo O S, Chung K Y, Kim J. Continuous synthesis of Li4Ti5O12 nanoparticles in supercritical fluids and their electrochemical performance for anode in Li-ion batteries. Chemical Engineering Journal, 2014, 258: 357–366
CrossRef
Google scholar
|
[212] |
Davis S A, Burkett S L, Mendelson N H, Mann S. Bacterial templating of ordered macrostructures in silica and silica-surfactant mesophases. Nature, 1997, 385(6615): 420–423
CrossRef
Google scholar
|
[213] |
Meldrum F C, Seshadri R. Porous gold structures through templating by echinoidskeletal plates. Chemical Communications, 2000, 1(1): 29–30
CrossRef
Google scholar
|
[214] |
Qi L, Li J, Ma J. Biomimetic morphogenesis of calcium carbonate in mixed solutions of surfactants and double-hydrophilic block copolymers. Advanced Materials, 2002, 14(4): 300–303
CrossRef
Google scholar
|
[215] |
Cook G, Timms P L, Göltner Spickermann C. Exact replication of biological structures by chemical vapor deposition of silica. Angewandte Chemie International Edition, 2003, 42(5): 557–559
CrossRef
Google scholar
|
[216] |
Hall S R, Bolger H, Mann S. Morphosynthesis of complex inorganic forms using pollen grain templates. Chemical Communications, 2003, 22(22): 2784–2785
CrossRef
Google scholar
|
[217] |
Valtchev V P, Smaihi M, Faust A C, Vidal L. Biomineral-silica-induced zeolitzation of equisetum arvense. Angewandte Chemie International Edition, 2003, 42(24): 2782–2785
CrossRef
Google scholar
|
[218] |
Sim K, Youn H J. Preparation of porous sheets with high mechanical strength by the addition of cellulose nanofibrils. Cellulose, 2016, 23(2): 1383–1392
CrossRef
Google scholar
|
[219] |
Farin D, Peleg S, Yavin D, Avnir D. Applications and limitations of boundary-line fractal analysis of irregular surfaces: Proteins, aggregates, and porous materials. Langmuir, 1985, 1(4): 399–407
CrossRef
Google scholar
|
[220] |
Shim I K, Jung M R, Kim K H, Seol Y J B, Park Y J D, Park W H, Lee S J. Novel three-dimensional scaffolds of poly(L-lactic acid) microfibers using electrospinning and mechanical expansion: Fabrication and bone regeneration. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2010, 95(1): 150–160
CrossRef
Google scholar
|
[221] |
Jia Y, Han W, Xiong G, Yang W. Layer-by-layer assembly of TiO2 colloids onto diatomite to build hierarchical porous materials. Journal of Colloid and Interface Science, 2008, 323(2): 326–331
CrossRef
Google scholar
|
[222] |
Zampieri A, Mabande G T P, Selvam T, Schwieger W, Rudolph A, Hermann R, Sieber H, Greil P. Biotemplating of Luffa cylindrica sponges to self-supporting hierarchical zeolite macrostructures for bio-inspired structured catalytic reactors. Materials Science and Engineering, 2006, 26(1): 130–135
CrossRef
Google scholar
|
[223] |
Holmes S M, Graniel-Garcia B E, Foran P, Hill P, Roberts E P L, Sakakini B H, Newton J M. A novel porous carbon based on diatomaceous earth. Chemical Communications, 2006, 25(25): 2662–2663
CrossRef
Google scholar
|
[224] |
Vrieling E G, Beelen T P M, van Santen R A, Gieskes W W. Mesophases of (bio) polymer-silica particles inspire a model for silica biomineralization in diatoms. Angewandte Chemie International Edition, 2002, 41(9): 1543–1546
CrossRef
Google scholar
|
[225] |
Wang Y, Tang Y, Dong A, Wang X, Ren N, Gao Z. Zeolitization of diatomite to prepare hierarchical porous zeolite materials through a vapor-phase transport process. Journal of Materials Chemistry, 2002, 12(6): 1812–1818
CrossRef
Google scholar
|
[226] |
Yang H, Zhao D. Synthesis of replica mesostructures by the nanocasting strategy. Journal of Materials Chemistry, 2005, 15: 1217–1231
|
[227] |
Polarz S, Antonietti M. Porous materials via nanocasting procedures: Innovative materials and learning about soft-matter organization. Chemical Communications, 2002, 22(22): 2593–2604
CrossRef
Google scholar
|
[228] |
Kyotani T, Nagai T, Inoue S, Tomita A. Formation of new type of porous carbon by carbonization in zeolite nanochannels. Chemistry of Materials, 1997, 9(2): 609–615
CrossRef
Google scholar
|
[229] |
Lu A, Schmidt W, Spliethoff B, Schüth F. Synthesis and characterization of nanocast silica NCS-1 with CMK-3 as a template. Chemistry (Weinheim an der Bergstrasse, Germany), 2004, 10(23): 6085–6092
CrossRef
Google scholar
|
[230] |
Ryoo R, Joo S H, Jun S. Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation. Journal of Physical Chemistry B, 1999, 103(37): 7743–7746
CrossRef
Google scholar
|
[231] |
Schüth F. Endo- und exotemplate zur erzeugung von anorganischen materialien mit großer spezifischer oberfläChe. Angewandte Chemie, 2003, 115(31): 3730–3750
CrossRef
Google scholar
|
[232] |
Velev O D, Jede T A, Lobo R F, Lenhoff A M. Porous silica via colloidal crystallization. Nature, 1997, 389(6650): 447–448
CrossRef
Google scholar
|
[233] |
Lu A H, Schüth F. Nanocasting: A versatile strategy for creating nanostructured porous materials. Advanced Materials, 2006, 18(14): 1793–1805
CrossRef
Google scholar
|
[234] |
Jun S, Joo S H, Ryoo R, Kruk M, Jaroniec M, Liu Z, Ohsuna T, Terasaki O. Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure. Journal of the American Chemical Society, 2000, 122(43): 10712–10713
CrossRef
Google scholar
|
[235] |
Ryoo R, Joo S H, Kruk M, Jaroniec M. Ordered mesoporous carbons. Advanced Materials, 2001, 13(9): 677–681
CrossRef
Google scholar
|
[236] |
Kang M, Kim D, Yi S H, Han J U, Yie J E, Kim J M. Preparation of stable mesoporous inorganic oxides via nano-replication technique. Catalysis Today, 2004, 93-95: 695–699
CrossRef
Google scholar
|
[237] |
Marsh H, Heintz E A, Rodriguez R F. Introduction to Carbon Technologies. Spain: University of Alicante, Secretariado de Publicaciones, 1997, 151–167
|
[238] |
Lee J, Kim J, Hyeon T. A facile synthesis of bimodal mesoporous silica and its replication for bimodal mesoporous carbon. Chemical Communications, 2003, 10(10): 1138–1139
CrossRef
Google scholar
|
[239] |
Taguchi A, Smått J H, Lindén M. Carbon monoliths possessing a hierarchical, fully interconnected porosity. Advanced Materials, 2003, 15(14): 1209–1211
CrossRef
Google scholar
|
[240] |
Lu A H, Smått J H, Lindén M. Combined surface and volume templating of highly porous nanocast carbon monoliths. Advanced Functional Materials, 2005, 15(5): 865–871
CrossRef
Google scholar
|
[241] |
Chai G S, Shin I S, Yu J S. Synthesis of ordered, uniform, macroporous carbons with mesoporous walls templated by aggregates of polystyrene spheres and silica particles for use as catalyst supports in direct methanol fuel cells. Advanced Materials, 2004, 16(22): 2057–2061
CrossRef
Google scholar
|
[242] |
Yoon S B, Sohn K, Kim J Y, Shin C H, Yu J S, Hyeon T. Fabrication of carbon capsules with hollow macroporous core/mesoporous shell structures. Advanced Materials, 2002, 14(1): 19–21
CrossRef
Google scholar
|
[243] |
Kim M, Sohn K, Na H B, Hyeon T. Synthesis of nanorattles composed of gold nanoparticles encapsulated in mesoporous carbon and polymer shells. Nano Letters, 2002, 2(12): 1383–1387
CrossRef
Google scholar
|
[244] |
Zhang X, Tu K N, Xie Y H, Tung C H, Xu S. Single-step fabrication of nickel films with arrayed macropores and nanostructured skeletons. Advanced Materials, 2006, 18(14): 1905–1909
CrossRef
Google scholar
|
[245] |
Martin C R, Che G, Lakshmi B B, Fisher E R. Carbon nanotubule membranes for electrochemical energy storage and production. Nature, 1998, 393(6683): 346–349
CrossRef
Google scholar
|
[246] |
Chen X, Steinhart M, Hess C, Gösele U. Ordered arrays of mesoporous microrods from recyclable macroporous silicon templates. Advanced Materials, 2006, 18(16): 2153–2156
CrossRef
Google scholar
|
[247] |
Panda M, Seshadri R, Gopalakrishnan J. Preparation of PbZrO3/AsO4 composites (A= Ca, Sr, Ba) and PbZrO3 by metathetic reactions in the solid state: Metathetic exchange of divalent species. Chemistry of Materials, 2003, 15(7): 1554–1559
CrossRef
Google scholar
|
[248] |
Panda M, Rajamathi M, Seshadri R. A template-free, combustion-chemical route to macroporous nickel monoliths displaying a hierarchy of pore sizes. Chemistry of Materials, 2002, 14(11): 4762–4767
CrossRef
Google scholar
|
[249] |
Toberer E S, Schladt T D, Seshadri R. Macroporous manganese oxides with regenerative mesopores. Journal of the American Chemical Society, 2006, 128(5): 1462–1463
CrossRef
Google scholar
|
[250] |
Muir D M. A review of the selective leaching of gold from oxidised copper-gold ores with ammonia-cyanide and new insights for plant control and operation. Minerals Engineering, 2011, 24(6): 576–582
CrossRef
Google scholar
|
[251] |
Zhang L, Wu H B, Liu B, Lou X W D. Formation of porous SnO2 microboxes via selective leaching for highly reversible lithium storage. Energy & Environmental Science, 2014, 7(3): 1013–1017
CrossRef
Google scholar
|
[252] |
Yuan Z Y, Blin J L, Su B L. Design of bimodal mesoporous silicas with interconnected pore systems by ammonia post-hydrothermal treatment in the mild-temperature range. Chemical Communications, 2002, 5(5): 504–505
CrossRef
Google scholar
|
[253] |
Sun Z, Liu Y, Li B, Wei J, Wang M, Yue Q, Deng Y, Kaliaguine S, Zhao D. General synthesis of discrete mesoporous carbon microspheres through a confined self-assembly process in inverse opals. ACS Nano, 2013, 7(10): 8706–8714
CrossRef
Google scholar
|
[254] |
Tao Y, Kanoh H, Abrams L, Kaneko K. Mesopore-modified zeolites: Preparation, characterization, and applications. Chemical Reviews, 2006, 106(3): 896–910
CrossRef
Google scholar
|
[255] |
van Donk S, Janssen A H, Bitter J H, deJong K P. Generation, characterization, and impact of mesopores in zeolite catalysts. Catalysis Reviews, 2003, 45(2): 297–319
CrossRef
Google scholar
|
[256] |
Mei C, Liu Z, Wen P, Xie Z, Hua W, Gao Z. Regular HZSM-5 microboxes prepared via a mild alkaline treatment. Journal of Materials Chemistry, 2008, 18(29): 3496–3500
CrossRef
Google scholar
|
[257] |
Zhou J, Hua Z, Shi J, He Q, Guo L, Ruan M. Synthesis of a hierarchical micro/mesoporous structure by steam-assisted post-crystallization. Chemistry (Weinheim an der Bergstrasse, Germany), 2009, 15(47): 12949–12954
CrossRef
Google scholar
|
[258] |
Groen J C, Bach T, Ziese U, Paulaime-van Donk A M, de Jong K P, Moulijn J A, Pérez-Ramírez J. Creation of hollow zeolite architectures by controlled desilication of Al-zoned ZSM-5 crystals. Journal of the American Chemical Society, 2005, 127(31): 10792–10793
CrossRef
Google scholar
|
[259] |
Verboekend D, Vilé G, Pérez-Ramírez J. Hierarchical Y and USY zeolites designed by post-synthetic strategies. Advanced Functional Materials, 2012, 22(5): 916–928
CrossRef
Google scholar
|
[260] |
Dähne L, Leporatti S, Donath E, Möhwald H. Fabrication of micro reaction cages with tailored properties. Journal of the American Chemical Society, 2001, 123(23): 5431–5436
CrossRef
Google scholar
|
[261] |
Lin K J, Chen L J, Prasad M R, Cheng C Y. Core-shell synthesis of a novel, spherical, mesoporous silica/platinum nanocomposite: Pt/PVP@ MCM-41. Advanced Materials, 2004, 16(20): 1845–1849
CrossRef
Google scholar
|
[262] |
Liu Y, Zhang W, Pinnavaia T J. Steam-stable MSU-S aluminosilicate mesostructures assembled from zeolite ZSM-5 and zeolite beta seeds. Angewandte Chemie International Edition, 2001, 40(7): 1255–1258
CrossRef
Google scholar
|
[263] |
Xiao F S, Han Y, Yu Y, Meng X, Yang M, Wu S. Hydrothermally stable ordered mesoporous titanosilicates with highly active catalytic sites. Journal of the American Chemical Society, 2002, 124(6): 888–889
CrossRef
Google scholar
|
[264] |
Chal R, Gerardin C, Bulut M, van Donk S. Overview and industrial assessment of synthesis strategies towards zeolites with mesopores. ChemCatChem, 2011, 3(1): 67–81
CrossRef
Google scholar
|
[265] |
Möller K, Bein T. Mesoporosity—A new dimension for zeolites. Chemical Society Reviews, 2013, 42(9): 3689–3707
CrossRef
Google scholar
|
[266] |
Rolison D R. Catalytic nanoarchitectures—The importance of nothing and the unimportance of periodicity. Science, 2003, 299(5613): 1698–1701
CrossRef
Google scholar
|
[267] |
Wang X, Yu J C, Ho C, Hou Y, Fu X. Photocatalytic activity of a hierarchically macro/mesoporous titania. Langmuir, 2005, 21(6): 2552–2559
CrossRef
Google scholar
|
[268] |
Shi J W, Zong X, Wu X, Cui H J, Xu B, Wang L Z, Fu M L. Carbon-doped titania hollow spheres with tunable hierarchical macroporous channels and enhanced visible light-induced photocatalytic activity. Chemcatchem, 2012, 4(4): 488–491
CrossRef
Google scholar
|
[269] |
Yu J G, Su Y R, Cheng B. Template-free fabrication and enhanced photocatalytic activity of hierarchical macro-mesoporous titania. Advanced Functional Materials, 2007, 17(12): 1984–1990
CrossRef
Google scholar
|
[270] |
Zhou H, Ding L, Fan T, Ding J, Zhang D, Guo Q. Leaf-inspired hierarchical porous CdS/Au/N-TiO2 heterostructures for visible light photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2014, 147: 221–228
CrossRef
Google scholar
|
[271] |
Schnepp Z, Yang W, Antonietti M, Giordano C. Biotemplating of metal carbide microstructures: The magnetic leaf. Angewandte Chemie International Edition, 2010, 49(37): 6564–6566
CrossRef
Google scholar
|
[272] |
Zhu J, Zhu Y, Zhu L, Rigutto M, van der Made A, Yang C, Pan S, Wang L, Zhu L, Jin Y, Sun Q, Wu Q, Meng X, Zhang D, Han Y, Li J, Chu Y, Zheng A, Qiu S, Zheng X, Xiao F S, van der Made A, Yang C, Pan S X, Xiao F S. Highly mesoporous single-crystalline zeolite beta synthesized using a nonsurfactant cationic polymer as a dual-function template. Journal of the American Chemical Society, 2014, 136(6): 2503–2510
CrossRef
Google scholar
|
[273] |
Corma A, Diaz-Cabanas M J, Martínez-Triguero J, Rey F, Rius J. A large-cavity zeolite with wide pore windows and potential as an oil refining catalyst. Nature, 2002, 418(6897): 514–517
CrossRef
Google scholar
|
[274] |
Tang T, Yin C, Wang L, Ji Y, Xiao F S. Superior performance in deep saturation of bulky aromatic pyrene over acidic mesoporous beta zeolite-supported palladium catalyst. Journal of Catalysis, 2007, 249(1): 111–115
CrossRef
Google scholar
|
[275] |
Serrano D P, Sanz R, Pizarro P, Moreno I, Medina S. Hierarchical TS-1 zeolite as an efficient catalyst for oxidative desulphurization of hydrocarbon fractions. Applied Catalysis B: Environmental, 2014, 146: 35–42
CrossRef
Google scholar
|
[276] |
Zhang S, Xu W, Zeng M, Li J, Li J, Xu J, Wang X. Superior adsorption capacity of hierarchical iron oxide @ magnesium silicate magnetic nanorods for fast removal of organic pollutants from aqueous solution. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(38): 11691–11697
CrossRef
Google scholar
|
[277] |
Ma T Y, Zhang X J, Yuan Z Y. Hierarchical meso-/macroporous aluminum phosphonate hybrid materials as multifunctional adsorbents. Journal of Physical Chemistry C, 2009, 113(29): 12854–12862
CrossRef
Google scholar
|
[278] |
Xiao H, Ai Z, Zhang L. Nonaqueous sol-gel synthesized hierarchical CeO2 nanocrystal microspheres as novel adsorbents for wastewater treatment. Journal of Physical Chemistry C, 2009, 113(38): 16625–16630
CrossRef
Google scholar
|
[279] |
Han S, Sohn K, Hyeon T. Fabrication of new nanoporous carbons through silica templates and their application to the adsorption of bulky dyes. Chemistry of Materials, 2000, 12(11): 3337–3341
CrossRef
Google scholar
|
[280] |
Ayad M, Zaghlol S. Nanostructured crosslinked polyaniline with high surface area: Synthesis, characterization and adsorption for organic dye. Chemical Engineering Journal, 2012, 79: 204–206
|
[281] |
Iwasaki M, Miwa S, Ikegami T, Tomita M, Tanaka N, Ishihama Y. One-dimensional capillary liquid chromatographic separation coupled with tandem mass spectrometry unveils the Escherichia coli proteome on a microarray scale. Analytical Chemistry, 2010, 82(7): 2616–2620
CrossRef
Google scholar
|
[282] |
Miyamoto K, Hara T, Kobayashi H, Morisaka H, Tokuda D, Horie K, Koduki K, Makino S, Núñez O, Yang C, Kawabe T, Ikegami T, Takubo H, Ishihama Y, TanakaN. High-efficiency liquid chromatographic separation utilizing long monolithic silica capillary columns. Analytical Chemistry, 2008, 80(22): 8741–8750
CrossRef
Google scholar
|
[283] |
Meunier C F, Rooke J C, Léonard A, Van Cutsem P, Su B L. Design of photochemical materials for carbohydrate production via the immobilisation of whole plant cells into a porous silica matrix. Journal of Materials Chemistry, 2010, 20(5): 929–936
CrossRef
Google scholar
|
[284] |
Léonard A, Rooke J C, Meunier C F, Sarmento H, Descy J P, Su B L. Cyanobacteria immobilised in porous silica gels: Exploring biocompatible synthesis routes for the development of photobioreactors. Energy & Environmental Science, 2010, 3(3): 370–377
CrossRef
Google scholar
|
[285] |
Meunier C F, Rooke J C, Léonard A, Xie H, Su B L. Living hybrid materials capable of energy conversion and CO2 assimilation. Chemical Communications, 2010, 46(22): 3843–3859
CrossRef
Google scholar
|
[286] |
Rooke J C, Léonard A, Meunier C F, Sarmento H, Descy J P, Su B L. Hybrid photosynthetic materials derived from microalgae cyanidium caldarium encapsulated within silica gel. Journal of Colloid and Interface Science, 2010, 344(2): 348–352
CrossRef
Google scholar
|
[287] |
Rooke J C, Meunier C, Léonard A, Su B L. Energy from photobioreactors: Bioencapsulation of photosynthetically active molecules, organelles, and whole cells within biologically inert matrices. Pure and Applied Chemistry, 2008, 80(11): 2345–2376
CrossRef
Google scholar
|
[288] |
Xiong J, Das S N, Shin B, Kar J P, Choi J H, Myoung J M. Biomimetic hierarchical ZnO structure with superhydrophobic and antireflective properties. Journal of Colloid and Interface Science, 2010, 350(1): 344–347
CrossRef
Google scholar
|
[289] |
Hajdu K, Gergely C, Martin M, Cloitre T, Zimányi L, Tenger K, Khoroshyy P, Palestino G, Agarwal V, Hernádi K, Németh Z, Nagy L, HernAdi K, Nemeth Z. Porous silicon/photosynthetic reaction center hybrid nanostructure. Langmuir, 2012, 28(32): 11866–11873
CrossRef
Google scholar
|
[290] |
Léonard A, Dandoy P, Danloy E, Leroux G, Meunier C F, Rooke J C, Su B L. Whole-cell based hybrid materials for green energy production, environmental remediation and smart cell-therapy. Chemical Society Reviews, 2011, 40(2): 860–885
CrossRef
Google scholar
|
[291] |
Rooke J C, Léonard A, Meunier C F, Su B L. Designing photobioreactors based on living cells immobilized in silica gel for carbon dioxide mitigation. ChemSusChem, 2011, 4(9): 1249–1257
CrossRef
Google scholar
|
[292] |
Zhou H, Li P, Guo J, Yan R, Fan T, Zhang D, Ye J. Artificial photosynthesis on tree trunk derived alkaline tantalates with hierarchical anatomy: Towards CO2 photo-fixation into CO and CH4. Nanoscale, 2015, 7(1): 113–120
CrossRef
Google scholar
|
[293] |
Steele B C H, Heinze A. Materials for fuel-cell technologies. Nature, 2001, 414(6861): 345–352
CrossRef
Google scholar
|
[294] |
Winter M, Brodd R J. What are batteries, fuel cells, and supercapacitors? Chemical Reviews, 2004, 104(10): 4245–4270
CrossRef
Google scholar
|
[295] |
Bang J H, Han K, Skrabalak S E, Kim H, Suslick K S. Porous carbon supports prepared by ultrasonic spray pyrolysis for direct methanol fuel cell electrodes. Journal of Physical Chemistry C, 2007, 111(29): 10959–10964
CrossRef
Google scholar
|
[296] |
Chai G S, Yoon S B, Yu J S, Choi J H, Sung Y E. Ordered porous carbons with tunable pore sizes as catalyst supports in direct methanol fuel cell. Physical of Chemistry B, 2004, 108(22): 7074–7079
CrossRef
Google scholar
|
[297] |
Walcarius A. Mesoporous materials and electrochemistry. Chemical Society Reviews, 2013, 42(9): 4098–4140
CrossRef
Google scholar
|
[298] |
Jin J, Huang S Z, Li Y, Tian H, Wang H E, Yu Y, Chen L H, Hasan T, Su B L. Hierarchical nanosheet-constructed yolk-shell TiO2 porous microspheres for lithium batteries with high capacity, superior rate and long cycle capability. Nanoscale, 2015, 7(30): 12979–12989
CrossRef
Google scholar
|
[299] |
Huang S Z, Cai Y, Jin J, Liu J, Li Y, Yu Y, Wang H E, Chen L H, Su B L. Hierarchical mesoporous urchin-like Mn3O4/carbon microspheres with highly enhanced lithium battery performance by in-situ carbonization of new lamellar manganese alkoxide (Mn-DEG). Nano Energy, 2015, 12: 833–844
CrossRef
Google scholar
|
[300] |
Jin J, Huang S Z, Liu J, Li Y, Chen L H, Yu Y, Wang H E, Grey C P, Su B L. Phases hybriding and hierarchical structuring of mesoporous TiO2 nanowire bundles for high rate and high capacity lithium batteries. Advancement of Science, 2015, 2: 1500070
|
[301] |
Huang S Z, Cai Y, Jin J, Li Y, Zheng X F, Wang H E, Wu M, Chen L H, Su B L. Annealed vanadium oxide nanowires and nanotubes as high performance cathode materials for lithium ion battery. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(34): 14099–14108
CrossRef
Google scholar
|
[302] |
Jin J, Huang S Z, Liu J, Li Y, Chen D S, Wang H E, Yu Y, Chen L H, Su B L. Design of new anode material structure on the basis of hierarchically three dimensionally ordered macro-mesoporous TiO2 for high performance lithium ion batteries. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(25): 9699–9708
CrossRef
Google scholar
|
[303] |
Huang S Z, Jin J, Cai Y, Li Y, Tan H Y, Wang H E, Van Tendeloo G, Su B L. Engineering single crystalline Mn3O4 nano-octahedra with exposed highly active {011} facets for high performance lithium ion batteries. Nanoscale, 2014, 6(12): 6819–6827
CrossRef
Google scholar
|
[304] |
Zheng X F, Shen G F, Li Y, Duan H N, Yang X Y, Huang S Z, Wang H E, Wang C, Deng Z, Su B L. Self-templated synthesis of microporous CoO nanoparticles with highly enhanced performance for both photocatalysis and lithium-ion batteries. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(4): 1394–1400
CrossRef
Google scholar
|
[305] |
Wang H E, Chen D S, Cai Y, Zhang R L, Xu J M, Deng Z, Zheng X F, Li Y, Bello I, Su B L. Facile synthesis of hierarchical and porous V2O5 microspheres as cathode materials for lithium ion batteries. Journal of Colloid and Interface Science, 2014, 418: 74–80
CrossRef
Google scholar
|
[306] |
Wang H E, Jin J, Cai Y, Xu J M, Chen D S, Zheng X F, Deng Z, Li Y, Bello I, Su B L. Facile and fast synthesis of porous TiO2 spheres for use in lithium ion batteries. Journal of Colloid and Interface Science, 2014, 417: 144–151
CrossRef
Google scholar
|
[307] |
Cai Y, Wang H E, Huang S Z, Jin J, Wang C, Yu Y, Li Y, Su B L. Hierarchical nanotube-constructed porous TiO2-B spheres for high performance lithium ion batteries. Scientific Reports, 2015, 5: 11557
CrossRef
Google scholar
|
[308] |
Zhou H, Zhu S, Hibino M, Honma I, Ichihara M. Lithium storage in ordered mesoporous carbon (CMK-3) with high reversible specific energy capacity and good cycling performance. Advanced Materials, 2003, 15(24): 2107–2111
CrossRef
Google scholar
|
[309] |
Wang Z, Li F, Ergang N S, Stein A. Effects of hierarchical architecture on electronic and mechanical properties of nanocast monolithic porous carbons and carbon-carbon nanocomposites. Chemistry of Materials, 2006, 18(23): 5543–5553
CrossRef
Google scholar
|
[310] |
Hu Y S, Adelhelm P, Smarsly B M, Hore S, Antonietti M, Maier J. Synthesis of hierarchically porous carbon monoliths with highly ordered microstructure and their application in rechargeable lithium batteries with high-rate capability. Advanced Functional Materials, 2007, 17(12): 1873–1878
CrossRef
Google scholar
|
[311] |
Hao G P, Li W C, Qian D, Wang G H, Zhang W P, Zhang T, Wang A Q, Schüth F, Bongard H J, Lu A H. Structurally designed synthesis of mechanically stable poly (benzoxazine-co-resol)-based porous carbon monoliths and their application as high-performance CO2 capture sorbents. Journal of the American Chemical Society, 2011, 133(29): 11378–11388
CrossRef
Google scholar
|
[312] |
Xia Y, Yoshio M, Noguchi H. Improved electrochemical performance of LiFePO4 by increasing its specific surface area. Electrochimica Acta, 2006, 52(1): 240–245
CrossRef
Google scholar
|
[313] |
Doherty C M, Caruso R A, Smarsly B M, Drummond C J. Colloidal crystal templating to produce hierarchically porous LiFePO4 electrode materials for high power lithium ion batteries. Chemistry of Materials, 2009, 21(13): 2895–2903
CrossRef
Google scholar
|
[314] |
Doherty C M, Caruso R A, Smarsly B M, Adelhelm P, Drummond C J, Doherty C M, Caruso R A, Smarsly B M. Hierarchically porous monolithic LiFePO4/carbon composite electrode materials for high power lithium ion batteries. Chemistry of Materials, 2009, 21(21): 5300–5306
CrossRef
Google scholar
|
[315] |
Sinha N N, Shivakumara C, Munichandraiah N. High rate capability of a dual-porosity LiFePO4/C composite. ACS Applied Materials & Interfaces, 2010, 2(7): 2031–2038
CrossRef
Google scholar
|
[316] |
Liu J, Conry T E, Song X, Doeff M M, Richardson T J. Nanoporous spherical LiFePO4 for high performance cathodes. Energy & Environmental Science, 2011, 4(3): 885–888
CrossRef
Google scholar
|
[317] |
Jiao F, Bao J, Hill A H, Bruce P G. Synthesis of ordered mesoporous Li-Mn-O spinel as a positive electrode for rechargeable lithium batteries. Angewandte Chemie International Edition, 2008, 47(50): 9711–9716
CrossRef
Google scholar
|
[318] |
Luo J, Wang Y, Xiong H, Xia Y. Ordered mesoporous spinel LiMn2O4 by a soft-chemical process as a cathode material for lithium-ion batteries. Chemistry of Materials, 2007, 19(19): 4791–4795
CrossRef
Google scholar
|
[319] |
Xia X H, Tu J P, Wang X L, Gu C D, Zhao X B. Hierarchically porous NiO film grown by chemical bath deposition via a colloidal crystal template as an electrochemical pseudocapacitor material. Journal of Materials Chemistry, 2011, 21(3): 671–679
CrossRef
Google scholar
|
[320] |
Elimelech M, Phillip W A. The future of seawater desalination: Energy, technology, and the environment. Science, 2011, 333(6043): 712–717
CrossRef
Google scholar
|
[321] |
Xia X, Tu J, Xiang J, Huang X, Wang X, Zhao X. Hierarchical porous cobalt oxide array films prepared by electrodeposition through polystyrene sphere template and their applications for lithium ion batteries. Journal of Power Sources, 2010, 195(7): 2014–2022
CrossRef
Google scholar
|
[322] |
Yuan Y, Xia X, Wu J, Yang J, Chen Y, Guo S. Hierarchically ordered porous nickel oxide array film with enhanced electrochemical properties for lithium ion batteries. Electrochemistry Communications, 2010, 12(7): 890–893
CrossRef
Google scholar
|
[323] |
Jung H G, Oh S W, Ce J, Jayaprakash N, Sun Y K. Mesoporous TiO2 nano networks: Anode for high power lithium battery applications. Electrochemistry Communications, 2009, 11(4): 756–759
CrossRef
Google scholar
|
[324] |
Yan H, Sokolov S, Lytle J C, Stein A, Zhang F, Smyrl W H. Colloidal-crystal-templated synthesis of ordered macroporous electrode materials for lithium secondary batteries. Journal of the Electrochemical Society, 2003, 150(8): A1102–A1107
CrossRef
Google scholar
|
[325] |
Jiao F, Shaju K M, Bruce P G. Synthesis of nanowire and mesoporous low-temperature LiCoO2 by a post-templating reaction. Angewandte Chemie International Edition, 2005, 44(40): 6550–6553
CrossRef
Google scholar
|
[326] |
Fan L Z, Hu Y S, Maier J, Adelhelm P, Smarsly B, Antonietti M, Fan L Z, Hu Y S, Maier J. High electroactivity of polyaniline in supercapacitors by using a hierarchically porous carbon monolith as a support. Advanced Functional Materials, 2007, 17(16): 3083–3087
CrossRef
Google scholar
|
[327] |
Song H K, Jung Y H, Lee K H, Dao L H. Electrochemical impedance spectroscopy of porous electrodes: The effect of pore size distribution. Electrochimica Acta, 1999, 44(20): 3513–3519
CrossRef
Google scholar
|
[328] |
Rose M, Korenblit Y, Kockrick E, Borchardt L, Oschatz M, Kaskel S, Yushin G. Hierarchical micro-and mesoporous carbide-derived carbon as a high-performance electrode material in supercapacitors. Small, 2011, 7(8): 1108–1117
CrossRef
Google scholar
|
[329] |
Xia K, Gao Q, Jiang J, Hu J. Hierarchical porous carbons with controlled micropores and mesopores for supercapacitor electrode materials. Carbon, 2008, 46(13): 1718–1726
CrossRef
Google scholar
|
[330] |
Eliaz N. Degradation of implant materials. Springer Science Business Media, 2012, 151–173
|
[331] |
Xu M, Li H, Zhai D, Chang J, Chen S, Wu C. Hierarchically porous nagelschmidtite bioceramic-silk scaffolds for bone tissue engineering. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 2015, 3(18): 3799–3809
CrossRef
Google scholar
|
[332] |
Fu Q, Saiz E, Rahaman M N, Tomsia A P. Bioactive glass scaffolds for bone tissue engineering: State of the art and future perspectives. Materials Science and Engineering C, 2011, 31(7): 1245–1256
CrossRef
Google scholar
|
[333] |
Manzano M, Vallet-Regí M. Revisiting bioceramics: Bone regenerative and local drug delivery systems. Progress in Solid State Chemistry, 2012, 40(3): 17–30
CrossRef
Google scholar
|
[334] |
Saiz E, Zimmermann E A, Lee J S, Wegst U G, Tomsia A P. Perspectives on the role of nanotechnology in bone tissue engineering. Dental Materials, 2013, 29(1): 103–115
CrossRef
Google scholar
|
[335] |
Porter J R, Ruckh T T, Popat K C. Bone tissue engineering: A review in bone biomimetics and drug delivery strategies. Biotechnology Progress, 2009, 25(6): 1539–1560
|
[336] |
Hollister S J. Porous scaffold design for tissue engineering. Nature Materials, 2005, 4(7): 518–524
CrossRef
Google scholar
|
[337] |
Chen Q Z, Thompson I D, Boccaccini A R. 45S5 Bioglass®-derived glass-ceramic scaffolds for bone tissue engineering. Biomaterials, 2006, 27(11): 2414–2425
CrossRef
Google scholar
|
[338] |
Baino F, Vitale-Brovarone C. Three-dimensional glass-derived scaffolds for bone tissue engineering: Current trends and forecasts for the future. Journal of Biomedical Materials Research. Part A, 2011, 97(4): 514–535
CrossRef
Google scholar
|
[339] |
Anselme K. Osteoblast adhesion on biomaterials. Biomaterials, 2000, 21(7): 667–681
CrossRef
Google scholar
|
[340] |
Jones J R, Lee P D, Hench L L. Hierarchical porous materials for tissue engineering. Philosophical Transactions of the Royal Society of London A: Mathematical. Physical and Engineering Sciences, 1838, 2006(364): 263–281
|
[341] |
Hench L L. Bioceramics: From concept to clinic. Journal of the American Ceramic Society, 1991, 74(7): 1487–1510
CrossRef
Google scholar
|
[342] |
Brinker C J, Scherer G W. Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing. United States: Academic press, 2013, 130–178
|
[343] |
Sepulveda P, Jones J R, Hench L L. In vitro dissolution of melt-derived 45S5 and sol-gel derived 58S bioactive glasses. Journal of Biomedical Materials Research, 2002, 61(2): 301–311
CrossRef
Google scholar
|
[344] |
Yuan H, de Bruijn J D, Zhang X, Blitterswijk C A, de Groot K. Bone induction by porous glass ceramic made from Bioglassw (45S5). Journal of Biomedical Materials Research, 2001, 58(3): 270–276
CrossRef
Google scholar
|
[345] |
Sepulveda P, Jones J R, Hench L L. Bioactive sol-gel foams for tissue repair. Journal of Biomedical Materials Research, 2002, 59(2): 340–348
CrossRef
Google scholar
|
[346] |
Tian G, Gu Z, Liu X, Zhou L, Yin W, Yan L, Jin S, Ren W, Xing G, Li S, ZhaoY. Facile fabrication of rare-earth-doped Gd2O3 hollow spheres with upconversion luminescence, magnetic resonance, and drug delivery properties. Journal of Physical Chemistry C, 2011, 115(48): 23790–23796
CrossRef
Google scholar
|
[347] |
Xu Z H, Ma P A, Li C X, Hou Z Y, Zhai X F, Huang S S, Lin J. Monodisperse core-shell structured up-conversion Yb (OH) CO3@ YbPO4: Er3+ hollow spheres as drug carriers. Biomaterials, 2011, 32(17): 4161–4173
CrossRef
Google scholar
|
[348] |
Allen T M, Cullis P R. Drug delivery systems: Entering the mainstream. Science, 2004, 303(5665): 1818–1822
CrossRef
Google scholar
|
[349] |
Ye F, Guo H, Zhang H, He X. Polymeric micelle-templated synthesis of hydroxyapatite hollow nanoparticles for a drug delivery system. Acta Biomaterialia, 2010, 6(6): 2212–2218
CrossRef
Google scholar
|
[350] |
Zhang H, Sun J, Ma D, Bao X, Klein-Hoffmann A, Weinberg G, Su D, Schlögl R. Unusual mesoporous SBA-15 with parallel channels running along the short axis. Journal of the American Chemical Society, 2004, 126(24): 7440–7441
CrossRef
Google scholar
|
[351] |
Liu J, Hartono S B, Jin Y G, Li Z, Lu G Q M, Qiao S Z. A facile vesicle template route to multi-shelled mesoporous silica hollow nanospheres. Journal of Materials Chemistry, 2010, 20(22): 4595–4601
CrossRef
Google scholar
|
[352] |
Piao Y, Kim J, Na H B, Kim D, Baek J S, Ko M K, Lee J H, Shokouhimehr M, Hyeon T. Wrap-bake-peel process for nanostructural transformation from β-FeOOH nanorods to biocompatible iron oxide nanocapsules. Nature Materials, 2008, 7(3): 242–247
CrossRef
Google scholar
|
[353] |
Son J S, Appleford M, Ong J L, Wenke J C, Kim J M, Choi S H, Oh D S. Porous hydroxyapatite scaffold with three-dimensional localized drug delivery system using biodegradable microspheres. Journal of Controlled Release, 2011, 153(2): 133–140
CrossRef
Google scholar
|
[354] |
Giger E V, Puigmarti L J, Schlatter R, Castagner B, Dittrich P S, Leroux J C. Gene delivery with bisphosphonate-stabilized calcium phosphate nanoparticles. Journal of Controlled Release, 2011, 150(1): 87–93
CrossRef
Google scholar
|
[355] |
Yang H, Hao L, Zhao N, Du C, Wang Y. Hierarchical porous hydroxyapatite microsphere as drug delivery carrier. CrystEngComm, 2013, 15(29): 5760–5763
CrossRef
Google scholar
|
[356] |
Zhao W, Chen H, Li Y, Li L, Lang M, Shi J. Uniform rattle-type hollow magnetic mesoporous apheres as drug delivery carriers and their sustained-release property. Advanced Functional Materials, 2008, 18(18): 2780–2788
CrossRef
Google scholar
|
[357] |
Wang T, Chai F, Fu Q, Zhang L, Liu H, Li L, Liao Y, Su Z, Wang C, Duan B, Ren D. Uniform hollow mesoporous silica nanocages for drug delivery in vitro and in vivo for liver cancer therapy. Journal of Materials Chemistry, 2011, 21(14): 5299–5306
CrossRef
Google scholar
|
[358] |
Gai S L, Yang P, Li P, Wang C X, Dai W X, Niu Y L, Lin N. Synthesis of magnetic, up-conversion luminescent, and mesoporous core-shell-structured nanocomposites as drug carriers. Advanced Functional Materials, 2010, 20(7): 1166–1172
CrossRef
Google scholar
|
[359] |
Liu J, Qiao S Z, Chen J S, Lou X W, Xing X, Lu G Q. Yolk/shell nanoparticles: New platforms for nanoreactors, drug delivery and lithium-ion batteries. Chemical Communications, 2011, 47(47): 12578–12591
CrossRef
Google scholar
|
[360] |
Chen D, Li L, Tang F, Qi S. Facile and scalable synthesis of tailored silica ‘nanorattle’ structures. Advanced Materials, 2009, 21(37): 3804–3807
CrossRef
Google scholar
|
[361] |
Hu S H, Chen Y Y, Liu T C, Tung T H, Liu M D, Chen S Y. Remotely nano-rupturable yolk/shell capsules for magnetically-triggered drug release. Chemical Communications, 2011, 47(6): 1776–1778
CrossRef
Google scholar
|
[362] |
Chen Y, Chen H R, Zhang S J, Chen F, Zhang L X, Zhang J M, Zhu M, Wu H X, Guo L M, Feng J W, Shi J L. Multifunctional mesoporous nanoellipsoids for biological bimodal imaging and magnetically targeted delivery of anticancer drugs. Advanced Functional Materials, 2011, 21(2): 270–278
CrossRef
Google scholar
|
[363] |
Wu H X, Zhang S J, Zhang J M, Liu G, Shi J L, Zhang L X, Cui X Z, Ruan M L, He Q J, Bu W B A. Hollow-core, magnetic, and mesoporous double-shell nanostructure: In situ decomposition/reduction synthesis, bioimaging, and drug-delivery properties. Advanced Functional Materials, 2011, 21(10): 1850–1862
CrossRef
Google scholar
|
[364] |
Zhang X F, Clime L, Roberge H, Normandin F, Yahia L H, Sacher E, Veres T. pH-triggered doxorubicin delivery based on hollow nanoporous silica nanoparticles with free-standing superparamagnetic Fe3O4 cores. Journal of Physical Chemistry C, 2011, 115(5): 1436–1443
CrossRef
Google scholar
|
[365] |
Lu Y, Zhao Y, Yu L, Dong L, Shi C, Hu M J, Xu Y J, Wen L P, Yu S H. Hydrophilic Co@ Au yolk/shell nanospheres: Synthesis, assembly, and application to gene delivery. Advanced Materials, 2010, 22(12): 1407–1411
CrossRef
Google scholar
|
[366] |
Suh W H, Jang A R, Suh Y H, Suslick K S. Porous hollow, ball-in-ball metal oxide microspheres: Preparation, endocytosis, and cytotoxicity. Advanced Materials, 2006, 18(14): 1832–1837
CrossRef
Google scholar
|
[367] |
Li L L, Tang F Q, Li Y H, Liu T L, Hao N J, Chen D, Teng X, He J Q. In vivo delivery of silica nanorattle encapsulated docetaxel for liver cancer therapy with low toxicity and high efficacy. ACS Nano, 2010, 4(11): 6874–6882
CrossRef
Google scholar
|
[368] |
Chen Y, Chen H R, Guo L M, He Q J, Chen F, Zhou J, Feng J W, Shi J L. Hollow/rattle-type mesoporous nanostructures by a structural difference-based selective etching strategy. ACS Nano, 2010, 4(1): 529–539
CrossRef
Google scholar
|
/
〈 | 〉 |