REVIEW ARTICLE

Shape/size controlling syntheses, properties and applications of two-dimensional noble metal nanocrystals

  • Baozhen An 1,2 ,
  • Mingjie Li 2 ,
  • Jialin Wang , 1 ,
  • Chaoxu Li , 2
Expand
  • 1. Bioengineering Department, College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
  • 2. CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China

Received date: 25 Feb 2016

Accepted date: 08 Apr 2016

Published date: 23 Aug 2016

Copyright

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Two dimensional (2D) nanocrystals of noble metals (e.g., Au, Ag, Pt) often have unique structural and environmental properties which make them useful for applications in electronics, optics, sensors and biomedicines. In recent years, there has been a focus on discovering the fundamental mechanisms which govern the synthesis of the diverse geometries of these 2D metal nanocrystals (e.g., shapes, thickness, and lateral sizes). This has resulted in being able to better control the properties of these 2D structures for specific applications. In this review, a brief historical survey of the intrinsic anisotropic properties and quantum size effects of 2D noble metal nanocrystals is given and then a summary of synthetic approaches to control their shapes and sizes is presented. The unique properties and fascinating applications of these nanocrystals are also discussed.

Cite this article

Baozhen An , Mingjie Li , Jialin Wang , Chaoxu Li . Shape/size controlling syntheses, properties and applications of two-dimensional noble metal nanocrystals[J]. Frontiers of Chemical Science and Engineering, 2016 , 10(3) : 360 -382 . DOI: 10.1007/s11705-016-1576-0

Acknowledgements

National Key Technology R&D Program of the Ministry of Science and Technology (No. 2015BAD14B06), National Natural Science Foundation of China (Grant No. 21474125), Shandong Collaborative Innovation Center for Marine Biomass Fiber Materials and Textiles and Chinese “1000 Youth Talent Program” are kindly acknowledged for financial support.
1
Holleman A F, Wiberg E. Lehrbuch der anorganischen Chemie. Journal of the American Chemical Society, 1985, 101: 118–118

2
Stahl D A, Landen K. Abbreviations dictionary. CRC Press, 2001, 1167–1167

3
Nobel metal. https://en.wikipedia.org/wiki/Noble_metal. 2016

4
Alivisatos A P. Semiconductor clusters, nanocrystals, and quantum dots. Science, 1996, 271(5251): 933–937

DOI

5
Maheshwari V, Kane J, Saraf R F. Self-assembly of a micrometers-long one-dimensional network of cemented Au nanoparticles. Advanced Materials, 2008, 20(2): 284–287

DOI

6
Markovich G, Collier C P, Henrichs S E, Remacle F, Levine R D, Heath J R. Architectonic quantum dot solids. Accounts of Chemical Research, 1999, 32(5): 415–423

DOI

7
Hu H, Zhou J, Kong Q, Li C. Two-dimensional Au nanocrystals: Shape/size controlling synthesis, morphologies, and applications. Particle & Particle Systems Characterization, 2015, 32: 769–808

8
Valden M, Lai X, Goodman D W. Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science, 1998, 281(5383): 1647–1650

DOI

9
Campbell C T, Parker S C, Starr D E. The effect of size-dependent nanoparticle energetics on catalyst sintering. Science, 2002, 298(5594): 811–814

DOI

10
Haruta M. Catalysis of gold nanoparticles deposited on metal oxides. CATTech, 2002, 6(3): 102–115

DOI

11
Kreibig U, Vollmer M. Optical properties of metal clusters. Berlin: Springer, 1995, 13–20

12
Mulvaney P. Surface plasmon spectroscopy of nanosized metal particles. Langmuir, 1996, 12(3): 788–800

DOI

13
Faraday M. The Bakerian lecture: Experimental relations of gold (and other metals) to light. Philosophical Transactions of the Royal Society of London, 1857, 147(0): 145–181

DOI

14
Zeng Z, Tan C, Huang X, Bao S, Zhang H. Growth of noble metal nanoparticles on single-layer TiS2 and TaS2 nanosheets for hydrogen evolution reaction. Energy & Environmental Science, 2014, 7(2): 797–803

DOI

15
Huang X, Zeng Z, Bao S, Wang M, Qi X, Fan Z, Zhang H. Solution-phase epitaxial growth of noble metal nanostructures on dispersible single-layer molybdenum disulfide nanosheets. Nature Communications, 2013, 4: 1444

DOI

16
Huang X, Zhou X, Wu S, Wei Y, Qi X, Zhang J, Boey F, Zhang H. Reduced graphene oxide-templated photochemical synthesis and in situ assembly of au nanodots to orderly patterned Au nanodot chains. Small, 2010, 6(4): 513–516

DOI

17
Fan Z, Zhang H. Crystal phase-controlled synthesis, properties and applications of noble metal nanomaterials. Chemical Society Reviews, 2016, 45(1): 63–82

DOI

18
Fan Z, Luo Z, Huang X, Li B, Chen Y, Wang J, Hu Y, Zhang H. Synthesis of 4H/fcc noble multimetallic nanoribbons for electrocatalytic hydrogen evolution reaction. Journal of the American Chemical Society, 2016, 138(4): 1414–1419

DOI

19
Fan Z, Zhang X, Yang J, Wu X J, Liu Z, Huang W, Zhang H. Synthesis of 4H/fcc-Au@ metal sulfide core-shell nanoribbons. Journal of the American Chemical Society, 2015, 137(34): 10910–10913

DOI

20
Zhou X, Huang X, Qi X, Wu S, Xue C, Boey F Y, Yan Q, Chen P, Zhang H. In situ synthesis of metal nanoparticles on single-layer graphene oxide and reduced graphene oxide surfaces. Journal of Physical Chemistry C, 2009, 113(25): 10842–10846

DOI

21
Fan Z, Bosman M, Huang X, Huang D, Yu Y, Ong K P, Akimov Y A, Wu L, Li B, Wu J, Huang Y, Liu Q, Eng Png C, Lip Gan C, Yang P, Zhang H. Stabilization of 4H hexagonal phase in gold nanoribbons. Nature Communications, 2015, 6: 7684

DOI

22
Tian N, Zhou Z Y, Sun S G, Ding Y, Wang Z L. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science, 2007, 316(5825): 732–735

DOI

23
Rodríguez-Fernández J, Pérez-Juste J, García de Abajo F J, Liz-Marzán L M. Seeded growth of submicron Au colloids with quadrupole plasmon resonance modes. Langmuir, 2006, 22(16): 7007–7010

DOI

24
Agarwal M, Mehta H, Candler R N, Chandorkar S A, Kim B, Hopcroft M A, Melamud R, Bahl G, Yama G, Kenny T W, Murmann B. Scaling of amplitude-frequency-dependence nonlinearities in electrostatically transduced microresonators. Journal of Applied Physics, 2007, 102(7): 074903

DOI

25
Sánchez-Iglesias A, Pastoriza-Santos I, Pérez-Juste J, Rodríguez-González B, García de Abajo F J, Liz-Marzán L M. Synthesis and optical properties of gold nanodecahedra with size control. Advanced Materials, 2006, 18(19): 2529–2534

DOI

26
Kim F, Connor S, Song H, Kuykendall T, Yang P D. Platonic gold nanocrystals. Angewandte Chemie International Edition, 2004, 43(28): 3673–3677

DOI

27
Li C, Shuford K L, Park Q H, Cai W, Li Y, Lee E J, Cho S O. High-yield synthesis of single-crystalline gold nano-octahedra. Angewandte Chemie International Edition, 2007, 46(18): 3264–3268

DOI

28
Ma Y, Kuang Q, Jiang Z, Xie Z, Huang R, Zheng L. Synthesis of trisoctahedral gold nanocrystals with exposed high-index facets by a facile chemical method. Angewandte Chemie International Edition, 2008, 47(46): 8901–8904

DOI

29
Caswell K K, Bender C M, Murphy C J. Seedless, surfactantless wet chemical synthesis of silver nanowires. Nano Letters, 2003, 3(5): 667–669

DOI

30
Nikoobakht B, El-Sayed M A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chemistry of Materials, 2003, 15(10): 1957–1962

DOI

31
Liu M Z, Guyot-Sionnest P. Mechanism of silver(I)-assisted growth of gold nanorods and bipyramids. Journal of Physical Chemistry B, 2005, 109(47): 22192–22200

DOI

32
Huang X, Li S, Wu S, Huang Y, Boey F, Gan C L, Zhang H. Graphene oxide-templated synthesis of ultrathin or tadpole-shaped Au nanowires with alternating hcp and fcc domains. Advanced Materials, 2012, 24(7): 979–983

DOI

33
Jin R C, Cao Y W, Mirkin C A, Kelly K L, Schatz G C, Zheng J G. Photoinduced conversion of silver nanospheres to nanoprisms. Science, 2001, 294(5548): 1901–1903

DOI

34
Millstone J E, Park S, Shuford K L, Qin L D, Schatz G C, Mirkin C A. Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprisms. Journal of the American Chemical Society, 2005, 127(15): 5312–5313

DOI

35
Shankar S S, Rai A, Ankamwar B, Singh A, Ahmad A, Sastry M. Biological synthesis of triangular gold nanoprisms. Nature Materials, 2004, 3(7): 482–488

DOI

36
Aherne D, Ledwith D M, Gara M, Kelly J M. Optical properties and growth aspects of silver nanoprisms produced by a highly reproducible and rapid synthesis at room temperature. Advanced Functional Materials, 2008, 18(14): 2005–2016

DOI

37
Wu X, Redmond P L, Liu H, Chen Y, Steigerwald M, Brus L. Photovoltage mechanism for room light conversion of citrate stabilized silver nanocrystal seeds to large nanoprisms. Journal of the American Chemical Society, 2008, 130(29): 9500–9506

DOI

38
Huang X, Li H, Li S, Wu S, Boey F, Ma J, Zhang H. Synthesis of gold square-like plates from ultrathin gold square sheets: The evolution of structure phase and shape. Angewandte Chemie International Edition, 2011, 50(51): 12245–12248

DOI

39
Wiley B J, Xiong Y J, Li Z Y, Yin Y D, Xia Y N. Right bipyramids of silver: A new shape derived from single twinned seeds. Nano Letters, 2006, 6(4): 765–768

DOI

40
Xiong Y, Cai H, Yin Y, Xia Y. Synthesis and characterization of fivefold twinned nanorods and right bipyramids of palladium. Chemical Physics Letters, 2007, 440(4-6): 273–278

DOI

41
Skrabalak S E, Au L, Li X, Xia Y. Facile synthesis of Ag nanocubes and Au nanocages. Nature Protocols, 2007, 2(9): 2182–2190

DOI

42
Banerjee I A, Yu L T, Matsui H. Location-specific biological functionalization on nanotubes: Attachment of proteins at the ends of nanotubes using Au nanocrystal masks. Nano Letters, 2003, 3(3): 283–287

DOI

43
Schwartzberg A M, Olson T Y, Talley C E, Zhang J Z. Gold nanotubes synthesized via magnetic alignment of cobalt nanoparticles as templates. Journal of Physical Chemistry C, 2007, 111(44): 16080–16082

DOI

44
Fan Z, Huang X, Tan C, Zhang H. Thin metal nanostructures: Synthesis, properties and applications. Chemical Science (Cambridge), 2015, 6(1): 95–111

DOI

45
Fan Z, Huang X, Han Y, Bosman M, Wang Q, Zhu Y, Liu Q, Li B, Zeng Z, Wu J, Shi W, Li S, Gan C L, Zhang H. Surface modification-induced phase transformation of hexagonal close-packed gold square sheets. Nature Communications, 2015, 6: 6571

DOI

46
Fan Z, Zhu Y, Huang X, Han Y, Wang Q, Liu Q, Huang Y, Gan C L, Zhang H. Synthesis of ultrathin face-centered-cubic Au@Pt and Au@Pd core-shell nanoplates from hexagonal-close-packed Au square sheets. Angewandte Chemie International Edition, 2015, 54(19): 5672–5676

DOI

47
Millstone J E, Hurst S J, Metraux G S, Cutler J I, Mirkin C A. Colloidal gold and silver triangular nanoprisms. Small, 2009, 5(6): 646–664

DOI

48
Hong X, Tan C, Chen J, Xu Z, Zhang H. Synthesis, properties and applications of one- and two-dimensional gold nanostructures. Nano Research, 2015, 8(1): 40–55

DOI

49
Lee C, Josephs E A, Shao J, Ye T. Nanoscale chemical patterns on gold microplates. Journal of Physical Chemistry C, 2012, 116(33): 17625–17632

DOI

50
Dahanayaka D H, Wang J X, Hossain S, Bumm L A. Optically transparent Au{111} substrates: Flat gold nanoparticle platforms for high-resolution scanning tunneling microscopy. Journal of the American Chemical Society, 2006, 128(18): 6052–6053

DOI

51
Deckert-Gaudig T, Deckert V. Ultraflat transparent gold nanoplates-ideal substrates for tip-enhanced raman scattering experiments. Small, 2009, 5(4): 432–436

DOI

52
Li Q, Liu F, Lu C, Lin J M. Aminothiols sensing based on fluorosurfactant-mediated triangular gold nanoparticle-catalyzed luminol chemiluminescence. Journal of Physical Chemistry C, 2011, 115(22): 10964–10970

DOI

53
Chen Y, Schuhmann W, Hassel A W. Electrocatalysis on gold nanostructures: Is the {110} facet more active than the {111} facet? Electrochemistry Communications, 2009, 11(10): 2036–2039

DOI

54
Li C C, Cai W P, Cao B Q, Sun F Q, Li Y, Kan C X, Zhang L D. Mass synthesis of large, single-crystal Au nanosheets based on a polyol process. Advanced Functional Materials, 2006, 16(1): 83–90

DOI

55
Simpson C R, Kohl M, Essenpreis M, Cope M. Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique. Physics in Medicine and Biology, 1998, 43(9): 2465–2478

DOI

56
Li N, Zhao P, Astruc D. Anisotropic gold nanoparticles: Synthesis, properties, applications, and toxicity. Angewandte Chemie International Edition, 2014, 53(7): 1756–1789

DOI

57
Hirsch L R, Stafford R J, Bankson J A, Sershen S R, Rivera B, Price R E, Hazle J D, Halas N J, West J L. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(23): 13549–13554

DOI

58
Xie J, Lee J Y, Wang D I C. Synthesis of single-crystalline gold nanoplates in aqueous solutions through biomineralization by serum albumin protein. Journal of Physical Chemistry C, 2007, 111(28): 10226–10232

DOI

59
Xiong Y, Siekkinen A R, Wang J, Yin Y, Kim M J, Xia Y. Synthesis of silver nanoplates at high yields by slowing down the polyol reduction of silver nitrate with polyacrylamide. Journal of Materials Chemistry, 2007, 17(25): 2600–2602

DOI

60
Turkevich J, Stevenson P C, Hillier J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discussions of the Faraday Society, 1951, 11: 55–75

DOI

61
Murphy C J, Gole A M, Hunyadi S E, Orendorff C J. One-dimensional colloidal gold and silver nanostructures. Inorganic Chemistry, 2006, 45(19): 7544–7554

DOI

62
Burda C, Chen X B, Narayanan R, El-Sayed M A. Chemistry and properties of nanocrystals of different shapes. Chemical Reviews, 2005, 105(4): 1025–1102

DOI

63
Lofton C, Sigmund W. Mechanisms controlling crystal habits of gold and silver colloids. Advanced Functional Materials, 2005, 15(7): 1197–1208

DOI

64
Xia Y, Xiong Y, Lim B, Skrabalak S E. Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angewandte Chemie International Edition, 2009, 48(1): 60–103

DOI

65
Rycenga M, Cobley C M, Zeng J, Li W, Moran C H, Zhang Q, Qin D, Xia Y. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chemical Reviews, 2011, 111(6): 3669–3712

DOI

66
Lee H, Jeong K Y, Kang T, Seo M K, Kim B. A twin-free single-crystal Ag nanoplate plasmonic platform: hybridization of the optical nano-antenna and surface plasmon active surface. Nanoscale, 2014, 6(1): 514–520

DOI

67
Ye J, Chen C, Van Roy W, Van Dorpe P, Maes G, Borghs G. The fabrication and optical property of silver nanoplates with different thicknesses. Nanotechnology, 2008, 19(32): 325702

DOI

68
Xiong Y, Xia Y. Shape-controlled synthesis of metal nanostructures: The case of palladium. Advanced Materials, 2007, 19(20): 3385–3391

DOI

69
Wiley B, Sun Y G, Mayers B, Xia Y N. Shape-controlled synthesis of metal nanostructures: The case of silver. Chemistry (Weinheim an der Bergstrasse, Germany), 2005, 11(2): 454–463

DOI

70
Xie S, Liu X Y, Xia Y. Shape-controlled syntheses of rhodium nanocrystals for the enhancement of their catalytic properties. Nano Research, 2015, 8(1): 82–96

DOI

71
Germain V, Li J, Ingert D, Wang Z L, Pileni M P. Stacking faults in formation of silver nanodisks. Journal of Physical Chemistry B, 2003, 107(34): 8717–8720

DOI

72
Sun Y G, Mayers B, Xia Y N. Transformation of silver nanospheres into nanobelts and triangular nanoplates through a thermal process. Nano Letters, 2003, 3(5): 675–679

DOI

73
Washio I, Xiong Y, Yin Y, Xia Y. Reduction by the end groups of poly(vinyl pyrrolidone): A new and versatile route to the kinetically controlled synthesis of Ag triangular nanoplates. Advanced Materials, 2006, 18(13): 1745–1749

DOI

74
Bai X, Zheng L, Li N, Dong B, Liu H. Synthesis and characterization of microscale gold nanoplates using Langmuir monolayers of long-chain ionic liquid. Crystal Growth & Design, 2008, 8(10): 3840–3846

DOI

75
Ah C S, Yun Y J, Park H J, Kim W J, Ha D H, Yun W S. Size-controlled synthesis of machinable single crystalline gold nanoplates. Chemistry of Materials, 2005, 17(22): 5558–5561

DOI

76
Pelaz B, Grazu V, Ibarra A, Magen C, del Pino P, de la Fuente J M. Tailoring the synthesis and heating ability of gold nanoprisms for bioapplications. Langmuir, 2012, 28(24): 8965–8970

DOI

77
Norman T J, Grant C D, Magana D, Zhang J Z, Liu J, Cao D L, Bridges F, Van Buuren A. Near infrared optical absorption of gold nanoparticle aggregates. Journal of Physical Chemistry B, 2002, 106(28): 7005–7012

DOI

78
Lee J H, Kamada K, Enomoto N, Hojo J. Polyhedral gold nanoplate: High fraction synthesis of two-dimensional nanoparticles through rapid heating process. Crystal Growth & Design, 2008, 8(8): 2638–2645

DOI

79
Kan C X, Wang G H, Zhu X G, Li C C, Cao B Q. Structure and thermal stability of gold nanoplates. Applied Physics Letters, 2006, 88(7): 071904

DOI

80
Skrabalak S E, Wiley B J, Kim M, Formo E V, Xia Y. On the polyol synthesis of silver nanostructures: Glycolaldehyde as a reducing agent. Nano Letters, 2008, 8(7): 2077–2081

DOI

81
Xiong Y, Washio I, Chen J, Cai H, Li Z Y, Xia Y. Poly(vinyl pyrrolidone): A dual functional reductant and stabilizer for the facile synthesis of noble metal nanoplates in aqueous solutions. Langmuir, 2006, 22(20): 8563–8570

DOI

82
Qin H L, Wang D, Huang Z L, Wu D M, Zeng Z C, Ren B, Xu K, Jin J. Thickness-controlled synthesis of ultrathin Au sheets and surface plasmonic property. Journal of the American Chemical Society, 2013, 135(34): 12544–12547

DOI

83
Vigderman L, Zubarev E R. High-yield synthesis of gold nanorods with longitudinal SPR peak greater than 1200 nm using hydroquinone as a reducing agent. Chemistry of Materials, 2013, 25(8): 1450–1457

DOI

84
Huang W L, Chen C H, Huang M H. Investigation of the growth process of gold nanoplates formed by thermal aqueous solution approach and the synthesis of ultra-small gold nanoplates. Journal of Physical Chemistry C, 2007, 111(6): 2533–2538

DOI

85
Yamamoto M, Kashiwagi Y, Sakata T, Mori H, Nakamoto M. Synthesis and morphology of star-shaped gold nanoplates protected by poly (N-vinyl-2-pyrrolidone). Chemistry of Materials, 2005, 17(22): 5391–5393

DOI

86
Luo Y. Large-scale preparation of single-crystalline gold nanoplates. Materials Letters, 2007, 61(6): 1346–1349

DOI

87
Yi Z, Li X, Xu X, Luo B, Luo J, Wu W, Yi Y, Tang Y. Green, effective chemical route for the synthesis of silver nanoplates in tannic acid aqueous solution. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2011, 392(1): 131–136

DOI

88
Wang J, Wang Z. Rapid synthesis of hexagon-shaped gold nanoplates by microwave assistant method. Materials Letters, 2007, 61(19-20): 4149–4151

DOI

89
Guo Z, Zhang Y, Xu A, Wang M, Huang L, Xu K, Gu N. Layered assemblies of single crystal gold nanoplates: Direct room temperature synthesis and mechanistic study. Journal of Physical Chemistry C, 2008, 112(33): 12638–12645

DOI

90
Sun X P, Dong S J, Wang E. Large-scale synthesis of micrometer-scale single-crystalline Au plates of nanometer thickness by a wet-chemical route. Angewandte Chemie International Edition, 2004, 43(46): 6360–6363

DOI

91
Roy A K, Park S Y, In I. Mussel-inspired synthesis of boron nitride nanosheet-supported gold nanoparticles and their application for catalytic reduction of 4-nitrophenol. Nanotechnology, 2015, 26(10): 105601

DOI

92
Lin G, Lu W, Cui W, Jiang L. A simple synthesis method for gold nano-and microplate fabrication using a tree-type multiple-amine head surfactant. Crystal Growth & Design, 2010, 10(3): 1118–1123

DOI

93
Chen C C, Hsu C H, Kuo P L. Effects of alkylated polyethylenimines on the formation of gold nanoplates. Langmuir, 2007, 23(12): 6801–6806

DOI

94
Bakshi M S, Sachar S, Kaur G, Bhandari P, Kaur G, Biesinger M C, Possmayer F, Petersen N O. Dependence of crystal growth of gold nanoparticles on the capping behavior of surfactant at ambient conditions. Crystal Growth & Design, 2008, 8(5): 1713–1719

DOI

95
Shao Y, Jin Y D, Dong S J. Synthesis of gold nanoplates by aspartate reduction of gold chloride. Chemical Communications, 2004, 10(9): 1104–1105

DOI

96
Moon G D, Lim G H, Song J H, Shin M, Yu T, Lim B, Jeong U. Highly stretchable patterned gold electrodes made of Au nanosheets. Advanced Materials, 2013, 25(19): 2707–2712

DOI

97
Liu Y, Guo R. Synthesis of protein-gold nanoparticle hybrid and gold nanoplates in protein aggregates. Materials Chemistry and Physics, 2011, 126(3): 619–627

DOI

98
Bolisetty S, Vallooran J J, Adamcik J, Handschin S, Gramm F, Mezzenga R. Amyloid-mediated synthesis of giant, fluorescent, gold single crystals and their hybrid sandwiched composites driven by liquid crystalline interactions. Journal of Colloid and Interface Science, 2011, 361(1): 90–96

DOI

99
Li C, Bolisetty S, Mezzenga R. Hybrid nanocomposites of gold single-crystal platelets and amyloid fibrils with tunable fluorescence, conductivity, and sensing properties. Advanced Materials, 2013, 25(27): 3694–3700

DOI

100
Zhou J, Saha A, Adamcik J, Hu H, Kong Q, Li C, Mezzenga R. Macroscopic single-crystal gold microflakes and their devices. Advanced Materials, 2015, 27(11): 1945–1950

DOI

101
Brown S, Sarikaya M, Johnson E. A genetic analysis of crystal growth. Journal of Molecular Biology, 2000, 299(3): 725–735

DOI

102
Chandran S P, Chaudhary M, Pasricha R, Ahmad A, Sastry M. Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnology Progress, 2006, 22(2): 577–583

DOI

103
Ghodake G S, Deshpande N G, Lee Y P, Jin E S. Pear fruit extract-assisted room-temperature biosynthesis of gold nanoplates. Colloids and Surfaces. B, Biointerfaces, 2010, 75(2): 584–589

DOI

104
Wei D, Qian W, Shi Y, Ding S, Xia Y. Mass synthesis of single-crystal gold nanosheets based on chitosan. Carbohydrate Research, 2007, 342(16): 2494–2499

DOI

105
Liu B, Xie J, Lee J Y, Ting Y P, Chen J P. Optimization of high-yield biological synthesis of single-crystalline gold nanoplates. Journal of Physical Chemistry B, 2005, 109(32): 15256–15263

DOI

106
Baigorri R, Garcia-Mina J M, Aroca R F, Alvarez-Puebla R A. Optical enhancing properties of anisotropic gold nanoplates prepared with different fractions of a natural humic substance. Chemistry of Materials, 2008, 20(4): 1516–1521

DOI

107
Klaus T, Joerger R, Olsson E, Granqvist C G. Silver-based crystalline nanoparticles, microbially fabricated. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(24): 13611–13614

DOI

108
Kim J U, Cha S H, Shin K, Jho J Y, Lee J C. Preparation of gold nanowires and nanosheets in bulk block copolymer phases under mild conditions. Advanced Materials, 2004, 16(5): 459–464

DOI

109
Cha S H, Kim J U, Kim K H, Lee J C. Preparation of gold nanosheets using poly(ethylene oxide)-poly (propylene oxide)-poly (ethylene oxide) block copolymers via photoreduction. Materials Science and Engineering B-Solid State Materials for Advanced Technology, 2007, 140(3): 182–186

DOI

110
Miranda A, Malheiro E, Skiba E, Quaresma P, Carvalho P A, Eaton P, de Castro B, Shelnutt J A, Pereira E. One-pot synthesis of triangular gold nanoplates allowing broad and fine tuning of edge length. Nanoscale, 2010, 2(10): 2209–2216

DOI

111
Huang X, Qi X, Huang Y, Li S, Xue C, Gan C L, Boey F, Zhang H. Photochemically controlled synthesis of anisotropic Au nanostructures: Platelet-like Au nanorods and six-star Au nanoparticles. ACS Nano, 2010, 4(10): 6196–6202

DOI

112
Pienpinijtham P, Han X X, Suzuki T, Thammacharoen C, Ekgasit S, Ozaki Y. Micrometer-sized gold nanoplates: Starch-mediated photochemical reduction synthesis and possibility of application to tip-enhanced Raman scattering (TERS). Physical Chemistry Chemical Physics, 2012, 14(27): 9636–9641

DOI

113
Zhang J, Li S, Wu J, Schatz G C, Mirkin C A. Plasmon-mediated synthesis of silver triangular bipyramids. Angewandte Chemie International Edition, 2009, 48(42): 7787–7791

DOI

114
Zheng X, Xu W, Corredor C, Xu S, An J, Zhao B, Lombardi J R. Laser-induced growth of monodisperse silver nanoparticles with tunable surface plasmon resonance properties and a wavelength self-limiting effect. Journal of Physical Chemistry C, 2007, 111(41): 14962–14967

DOI

115
Xue C, Metraux G S, Millstone J E, Mirkin C A. Mechanistic study of photomediated triangular silver nanoprism growth. Journal of the American Chemical Society, 2008, 130(26): 8337–8344

DOI

116
Jin R C, Cao Y C, Hao E C, Metraux G S, Schatz G C, Mirkin C A. Controlling anisotropic nanoparticle growth through plasmon excitation. Nature, 2003, 425(6957): 487–490

DOI

117
Belloni J. Photography: Enhancing sensitivity by silver-halide crystal doping. Radiation Physics and Chemistry, 2003, 67(3-4): 291–296

DOI

118
Tsuji T, Higuchi T, Tsuji M. Laser-induced structural conversions of silver nanoparticles in pure water-influence of laser intensity. Chemistry Letters, 2005, 34(4): 476–477

DOI

119
Belloni J, Mostafavi M, Remita H, Marignier J L, Delcourt M O. Radiation-induced synthesis of mono- and multi-metallic clusters and nanocolloids. New Journal of Chemistry, 1998, 22(11): 1239–1255

DOI

120
Remita S, Mostafavi M, Delcourt M O. Stabilization, growth and reactivity of silver aggregates produced by radiolysis in the presence of edta. New Journal of Chemistry, 1994, 18: 581–588

121
Wang Z, Yuan J, Zhou M, Niu L, Ivaska A. Synthesis, characterization and mechanism of cetyltrimethylammonium bromide bilayer-encapsulated gold nanosheets and nanocrystals. Applied Surface Science, 2008, 254(20): 6289–6293

DOI

122
Jang K, Kim H J, Son S U. Low-temperature synthesis of ultrathin rhodium nanoplates via molecular orbital symmetry interaction between rhodium precursors. Chemistry of Materials, 2010, 22(4): 1273–1275

DOI

123
Sun X P, Dong S J, Wang E K. High-yield synthesis of large single-crystalline gold nanoplates through a polyamine process. Langmuir, 2005, 21(10): 4710–4712

DOI

124
Zeng J, Tao J, Li W, Grant J, Wang P, Zhu Y, Xia Y. A mechanistic study on the formation of silver nanoplates in the presence of silver seeds and citric acid or citrate ions. Chemistry, an Asian Journal, 2011, 6(2): 376–379

DOI

125
Kilin D S, Prezhdo O V, Xia Y. Shape-controlled synthesis of silver nanoparticles: Ab initio study of preferential surface coordination with citric acid. Chemical Physics Letters, 2008, 458(1-3): 113–116

DOI

126
Zhang Q, Li N, Goebl J, Lu Z, Yin Y. A systematic study of the synthesis of silver nanoplates: Is citrate a “magic” reagent? Journal of the American Chemical Society, 2011, 133(46): 18931–18939

DOI

127
Zhang J L, Du J M, Han B X, Liu Z M, Jiang T, Zhang Z F. Sonochemical formation of single-crystalline gold nanobelts. Angewandte Chemie International Edition, 2006, 45(7): 1116–1119

DOI

128
Huang X, Tang S, Mu X, Dai Y, Chen G, Zhou Z, Ruan F, Yang Z, Zheng N. Freestanding palladium nanosheets with plasmonic and catalytic properties. Nature Nanotechnology, 2011, 6(1): 28–32

DOI

129
Hou C, Zhu J, Liu C, Wang X, Kuang Q, Zheng L. Formaldehyde-assisted synthesis of ultrathin Rh nanosheets for applications in CO oxidation. CrystEngComm, 2013, 15(31): 6127–6130

DOI

130
Umar A A, Oyama M, Salleh M M, Majlis B Y. Formation of highly thin, electron-transparent gold nanoplates from nanoseeds in ternary mixtures of cetyltrimethylammonium bromide, poly(vinyl pyrrolidone), and poly(ethylene glycol). Crystal Growth & Design, 2010, 10(8): 3694–3698

DOI

131
Zhao N, Wei Y, Sun N, Chen Q, Bai J, Zhou L, Qin Y, Li M, Qi L. Controlled synthesis of gold nanobelts and nanocombs in aqueous mixed surfactant solutions. Langmuir, 2008, 24(3): 991–998

DOI

132
Xiao J, Qi L. Surfactant-assisted, shape-controlled synthesis of gold nanocrystals. Nanoscale, 2011, 3(4): 1383–1396

DOI

133
Rai A, Singh A, Ahmad A, Sastry M. Role of halide ions and temperature on the morphology of biologically synthesized gold nanotriangles. Langmuir, 2006, 22(2): 736–741

DOI

134
Ha T H, Koo H J, Chung B H. Shape-controlled syntheses of gold nanoprisms and nanorods influenced by specific adsorption of halide ions. Journal of Physical Chemistry C, 2007, 111(3): 1123–1130

DOI

135
Millstone J E, Wei W, Jones M R, Yoo H, Mirkin C A. Iodide ions control seed-mediated growth of anisotropic gold nanoparticles. Nano Letters, 2008, 8(8): 2526–2529

DOI

136
Sun Y G, Mayers B, Herricks T, Xia Y N. Polyol synthesis of uniform silver nanowires: A plausible growth mechanism and the supporting evidence. Nano Letters, 2003, 3(7): 955–960

DOI

137
Kim M H, Kwak S K, Im S H, Lee J B, Choi K Y, Byun D J. Maneuvering the growth of silver nanoplates: Use of halide ions to promote vertical growth. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2014, 2(30): 6165–6170

DOI

138
Long R, Zhou S, Wiley B J, Xiong Y. Oxidative etching for controlled synthesis of metal nanocrystals: Atomic addition and subtraction. Chemical Society Reviews, 2014, 43(17): 6288–6310

DOI

139
Parnklang T, Lamlua B, Gatemala H, Thammacharoen C, Kuimalee S, Lohwongwatana B, Ekgasit S. Shape transformation of silver nanospheres to silver nanoplates induced by redox reaction of hydrogen peroxide. Materials Chemistry and Physics, 2015, 153: 127–134

DOI

140
Xiong Y J, McLellan J M, Chen J Y, Yin Y D, Li Z Y, Xia Y N. Kinetically controlled synthesis of triangular and hexagonal nanoplates of palladium and their SPR/SERS properties. Journal of the American Chemical Society, 2005, 127(48): 17118–17127

DOI

141
Millstone J E, Metraux G S, Mirkin C A. Controlling the edge length of gold nanoprisms via a seed-mediated approach. Advanced Functional Materials, 2006, 16(9): 1209–1214

DOI

142
Hong S, Acapulco J A I Jr, Jang H J, Kulkarni A S, Park S. Kinetically controlled growth of gold nanoplates and nanorods via a one-step seed-mediated method. Bulletin of the Korean Chemical Society, 2014, 35(6): 1737–1742

DOI

143
Zou X, Ying E, Chen H, Dong S. An approach for synthesizing nanometer- to micrometer-sized silver nanoplates. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2007, 303(3): 226–234

DOI

144
Guo Z, Fan X, Liu L, Bian Z, Gu C, Zhang Y, Gu N, Yang D, Zhang J. Achieving high-purity colloidal gold nanoprisms and their application as biosensing platforms. Journal of Colloid and Interface Science, 2010, 348(1): 29–36

DOI

145
Li Z, Yu Y, Chen Z, Liu T, Zhou Z K, Han J B, Li J, Jin C, Wang X. Ultrafast third-order optical non linearity in Au triangular nanoprism with strong dipole and quadrupole plasmon resonance. Journal of Physical Chemistry C, 2013, 117(39): 20127–20132

DOI

146
Huang Y, Ferhan A R, Gao Y, Dandapat A, Kim D H. High-yield synthesis of triangular gold nanoplates with improved shape uniformity, tunable edge length and thickness. Nanoscale, 2014, 6(12): 6496–6500

DOI

147
Chambers S A. Epitaxial film crystallography by high-energy auger and X-ray photoelectron diffraction. Advances in Physics, 1991, 40(4): 357–415

DOI

148
Ledentsov N N, Ustinov V M, Shchukin V A, Kopev P S, Alferov Z I, Bimberg D. Quantum dot heterostructures: Fabrication, properties, lasers. Semiconductors, 1998, 32(4): 343–365

DOI

149
Habas S E, Lee H, Radmilovic V, Somorjai G A, Yang P. Shaping binary metal nanocrystals through epitaxial seeded growth. Nature Materials, 2007, 6(9): 692–697

DOI

150
Fan F R, Liu D Y, Wu Y F, Duan S, Xie Z X, Jiang Z Y, Tian Z Q. Epitaxial growth of heterogeneous metal nanocrystals: From gold nano-octahedra to palladium and silver nanocubes. Journal of the American Chemical Society, 2008, 130(22): 6949–6951

DOI

151
Lim B, Wang J, Camargo P H C, Jiang M, Kim M J, Xia Y. Facile synthesis of bimetallic nanoplates consisting of Pd cores and Pt shells through seeded epitaxial growth. Nano Letters, 2008, 8(8): 2535–2540

DOI

152
Bi L, Dong J, Xie W, Lu W, Tong W, Tao L, Qian W. Bimetallic gold-silver nanoplate array as a highly active SERS substrate for detection of streptavidin/biotin assemblies. Analytica Chimica Acta, 2013, 805: 95–100

DOI

153
Yoo H, Millstone J E, Li S, Jang J W, Wei W, Wu J, Schatz G C, Mirkin C A. Core-shell triangular bifrustums. Nano Letters, 2009, 9(8): 3038–3041

DOI

154
Ghosh T, Satpati B. Direct experimental evidence of nucleation and kinetics driven two-dimensional growth of core-shell structures. Journal of Physical Chemistry C, 2013, 117(20): 10825–10833

DOI

155
Lee C L, Tseng C M, Wu R B, Wu C C, Syu C M. Porous Ag-Pd triangle nanoplates with tunable alloy ratio for catalyzing electroless copper deposition. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2009, 352(1-3): 84–87

DOI

156
Lee C L, Chiou H P, Syu C M, Liu C R, Yang C C, Syu C C. Displacement triangular Ag/Pd nanoplate as methanol-tolerant electrocatalyst in oxygen reduction reaction. International Journal of Hydrogen Energy, 2011, 36(20): 12706–12714

DOI

157
Chen S H, Fan Z Y, Carroll D L. Silver nanodisks: Synthesis, characterization, and self-assembly. Journal of Physical Chemistry B, 2002, 106(42): 10777–10781

DOI

158
Chen S H, Carroll D L. Synthesis and characterization of truncated triangular silver nanoplates. Nano Letters, 2002, 2(9): 1003–1007

DOI

159
Maillard M, Giorgio S, Pileni M P. Silver nanodisks. Advanced Materials, 2002, 14(15): 1084–1086

DOI

160
Gao X, Lu F, Dong B, Zhou T, Tian W, Zheng L. Zwitterionic vesicles with AuCl4-counterions as soft templates for the synthesis of gold nanoplates and nanospheres. Chemical Communications, 2014, 50(63): 8783–8786

DOI

161
Li Z H, Liu Z M, Zhang J L, Han B X, Du J M, Gao Y N, Jiang T. Synthesis of single-crystal gold nanosheets of large size in ionic liquids. Journal of Physical Chemistry B, 2005, 109(30): 14445–14448

DOI

162
Sun Z, Chen X, Wang L, Zhang G, Jing B. Synthesis of gold nanoplates in lamellar liquid crystal. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2008, 326(1-2): 23–28

DOI

163
Banu K, Shimura T. Synthesis of large-scale transparent gold nanosheets sandwiched between stabilizers at a solid-liquid interface. New Journal of Chemistry, 2012, 36(10): 2112–2120

DOI

164
Sanyal A, Sastry M. Gold nanosheets via reduction of aqueous chloroaurate ions by anthracene anions bound to a liquid-liquid interface. Chemical Communications, 2003, 9(11): 1236–1237

DOI

165
Kajimoto S, Shirasawa D, Horimoto N N, Fukumura H. Additive-free size-controlled synthesis of gold square nanoplates using photochemical reaction in dynamic phase-separating media. Langmuir, 2013, 29(19): 5889–5895

DOI

166
Lou X, Pan H, Zhu S, Zhu C, Liao Y, Li Y, Zhang D, Chen Z. Synthesis of silver nanoprisms on reduced graphene oxide for high-performance catalyst. Catalysis Communications, 2015, 69: 43–47

DOI

167
Wang W, Gu J, Hua W, Jia X, Xi K. A novel high efficiency composite catalyst: Single crystal triangular Au nanoplates supported by functional reduced graphene oxide. Chemical Communications, 2014, 50(64): 8889–8891

DOI

168
Huang X, Li S, Huang Y, Wu S, Zhou X, Li S, Gan C L, Boey F, Mirkin C A, Zhang H. Synthesis of hexagonal close-packed gold nanostructures. Nature Communications, 2011, 2: 292

DOI

169
Wang C W, Ding H P, Xin G Q, Chen X, Lee Y I, Hao J, Liu H G. Silver nanoplates formed at the air/water and solid/water interfaces. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2009, 340(1-3): 93–98

DOI

170
Wang L, Zhu Y, Wang J Q, Liu F, Huang J, Meng X, Basset J M, Han Y, Xiao F S. Two-dimensional gold nanostructures with high activity for selective oxidation of carbon-hydrogen bonds. Nature Communications, 2015, 6: 6957

DOI

171
Ru E C L, Etchegoin P G. Principles of surface-enhanced raman spectroscopy. Amsterdam: Elsevier, 2009: 655–663

172
Xia Y N, Halas N J. Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures. MRS Bulletin, 2005, 30(05): 338–348

DOI

173
Xu J Y, Wang J, Kong L T, Zheng G C, Guo Z, Liu J H. SERS detection of explosive agent by macrocyclic compound functionalized triangular gold nanoprisms. Journal of Raman Spectroscopy : JRS, 2011, 42(9): 1728–1735

DOI

174
Hong S, Shuford K L, Park S. Shape transformation of gold nanoplates and their surface plasmon characterization: Triangular to hexagonal nanoplates. Chemistry of Materials, 2011, 23(8): 2011–2013

DOI

175
Xue C, Mirkin C A. pH-switchable silver nanoprism growth pathways. Angewandte Chemie International Edition, 2007, 46(12): 2036–2038

DOI

176
Shuford K L, Ratner M A, Schatz G C. Multipolar excitation in triangular nanoprisms. Journal of Chemical Physics, 2005, 123(11): 114713

DOI

177
Wiley B J, Im S H, Li Z Y, McLellan J, Siekkinen A, Xia Y. Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis. Journal of Physical Chemistry B, 2006, 110(32): 15666–15675

DOI

178
Métraux G S, Mirkin C A. Rapid thermal synthesis of silver nanoprisms with chemically tailorable thickness. Advanced Materials, 2005, 17(4): 412–415

DOI

179
Kelly K L, Coronado E, Zhao L L, Schatz G C. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. Journal of Physical Chemistry B, 2003, 107(3): 668–677

DOI

180
Yoon I, Kang T, Choi W, Kim J, Yoo Y, Joo S W, Park Q H, Ihee H, Kim B. Single nanowire on a film as an efficient SERS-active platform. Journal of the American Chemical Society, 2009, 131(2): 758–762

DOI

181
Hong X, Wang D, Li Y. Kinked gold nanowires and their SPR/SERS properties. Chemical Communications, 2011, 47(35): 9909–9911

DOI

182
Jena B K, Raj C R. Shape-controlled synthesis of gold nanoprism and nanoperiwinkles with pronounced electrocatalytic activity. Journal of Physical Chemistry C, 2007, 111(42): 15146–15153

DOI

183
Corma A, Concepción P, Boronat M, Sabater M J, Navas J, Yacaman M J, Larios E, Posadas A, Arturo López-Quintela M, Buceta D, Mendoza E, Guilera G, Mayoral A. Exceptional oxidation activity with size-controlled supported gold clusters of low atomicity. Nature Chemistry, 2013, 5(9): 775–781

DOI

184
Chen M, Goodman D W. Catalytically active gold: From nanoparticles to ultrathin films. Accounts of Chemical Research, 2006, 39(10): 739–746

DOI

185
Zhang H, Jin M, Xiong Y, Lim B, Xia Y. Shape-controlled synthesis of Pd nanocrystals and their catalytic applications. Accounts of Chemical Research, 2013, 46(8): 1783–1794

DOI

186
Andoy N M, Zhou X, Choudhary E, Shen H, Liu G, Chen P. Single-molecule catalysis mapping quantifies site-specific activity and uncovers radial activity gradient on single 2D nanocrystals. Journal of the American Chemical Society, 2013, 135(5): 1845–1852

DOI

187
Tian N, Zhou Z Y, Sun S G. Platinum metal catalysts of high-index surfaces: From single-crystal planes to electrochemically shape-controlled nanoparticles. Journal of Physical Chemistry C, 2008, 112(50): 19801–19817

DOI

188
Sun S G, Chen A C, Huang T S, Li J B, Tian Z W. Electrocatalytic properties of Pt(111), Pt(332), Pt(331) and Pt(110) single-crystal electrodes towards ethylene-glycol oxidation in sulfuric-acid-solutions. Journal of Electroanalytical Chemistry, 1992, 340(1-2): 213–226

DOI

189
Liao H G, Jiang Y X, Zhou Z Y, Chen S P, Sun S G. Shape-controlled synthesis of gold nanoparticles in deep eutectic solvents for studies of structure-functionality relationships in electrocatalysis. Angewandte Chemie International Edition, 2008, 47(47): 9100–9103

DOI

190
Li L, Wang Z, Huang T, Xie J, Qi L. Porous gold nanobelts templated by metal-surfactant complex nanobelts. Langmuir, 2010, 26(14): 12330–12335

DOI

191
Wang Z L. Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. Journal of Physical Chemistry B, 2000, 104(6): 1153–1175

DOI

192
Somorjai G A, Blakely D W. Mechanism of catalysis of hydrocarbon reactions by platinum surfaces. Nature, 1975, 258(5536): 580–583

DOI

193
Lee C L, Tseng C M, Wu C C, Chou T C, Syu C M. High activity of hexagonal Ag/Pt nanoshell catalyst for oxygen electroreduction. Nanoscale Research Letters, 2009, 4(3): 193–196

DOI

194
Jang H J, Hong S, Park S. Shape-controlled synthesis of Pt nanoframes. Journal of Materials Chemistry, 2012, 22(37): 19792–19797

DOI

195
Lee C L, Tseng C M, Wu R B, Yang K L. Hollow Ag/Pd triangular nanoplate: A novel activator for electroless nickel deposition. Nanotechnology, 2008, 19(21): 215709

DOI

196
Xiong Y, McLellan J M, Yin Y, Xia Y. Synthesis of palladium icosahedra with twinned structure by blocking oxidative etching with citric acid or citrate ions. Angewandte Chemie International Edition, 2007, 46(5): 790–794

DOI

197
Smith P A, Nordquist C D, Jackson T N, Mayer T S, Martin B R, Mbindyo J, Mallouk T E. Electric-field assisted assembly and alignment of metallic nanowires. Applied Physics Letters, 2000, 77(9): 1399–1401

DOI

198
Chen D, Qiao X, Qiu X, Tan F, Chen J, Jiang R. Effect of silver nanostructures on the resistivity of electrically conductive adhesives composed of silver flakes. Journal of Materials Science Materials in Electronics, 2010, 21(5): 486–490

DOI

199
Wu B, Heidelberg A, Boland J J. Mechanical properties of ultrahigh-strength gold nanowires. Nature Materials, 2005, 4(7): 525–529

DOI

200
Lee S, Im J, Yoo Y, Bitzek E, Kiener D, Richter G, Kim B, Oh S H. Reversible cyclic deformation mechanism of gold nanowires by twinning-detwinning transition evidenced from in situ TEM. Nature Communications, 2014, 5: 3033

DOI

201
Wang J, Sansoz F, Huang J, Liu Y, Sun S, Zhang Z, Mao S X. Near-ideal theoretical strength in gold nanowires containing angstrom scale twins. Nature Communications, 2013, 4: 1742

DOI

202
Wilson R. The use of gold nanoparticles in diagnostics and detection. Chemical Society Reviews, 2008, 37(9): 2028–2045

DOI

203
Futamata M, Maruyama Y, Ishikawa M. Local electric field and scattering cross section of Ag nanoparticles under surface plasmon resonance by finite difference time domain method. Journal of Physical Chemistry B, 2003, 107(31): 7607–7617

DOI

204
Hayazawa N, Ishitobi H, Taguchi A, Tarun A, Ikeda K, Kawata S. Focused excitation of surface plasmon polaritons based on gap-mode in tip-enhanced spectroscopy. Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, 2007, 46: 7995–7999

205
Zhang Y, Charles D E, Ledwith D M, Aherne D, Cunningham S, Voisin M, Blau W J, Gunko Y K, Kelly J M, Brennan-Fournet M E. Wash-free highly sensitive detection of C-reactive protein using gold derivatised triangular silver nanoplates. RSC Advances, 2014, 4(55): 29022–29031

DOI

206
Xu B B, Wang L, Ma Z C, Zhang R, Chen Q D, Lv C, Han B, Xiao X Z, Zhang X L, Zhang Y L, Ueno K, Misawa H, Sun H B. Surface-plasmon-mediated programmable optical nanofabrication of an oriented silver nanoplate. ACS Nano, 2014, 8(7): 6682–6692

DOI

207
Lin W H, Lu Y H, Hsu Y J. Au nanoplates as robust, recyclable SERS substrates for ultrasensitive chemical sensing. Journal of Colloid and Interface Science, 2014, 418: 87–94

DOI

208
Lai Y, Pan W, Zhang D, Zhan J. Silver nanoplates prepared by modified galvanic displacement for surface-enhanced Raman spectroscopy. Nanoscale, 2011, 3(5): 2134–2137

DOI

209
Gunawidjaja R, Kharlampieva E, Choi I, Tsukruk V V. Bimetallic nanostructures as active Raman markers: Gold-nanoparticle assembly on 1D and 2D silver nanostructure surfaces. Small, 2009, 5(21): 2460–2466

DOI

210
Li Z, Meng G, Liang T, Zhang Z, Zhu X. Facile synthesis of large-scale Ag nanosheet-assembled films with sub-10 nm gaps as highly active and homogeneous SERS substrates. Applied Surface Science, 2013, 264: 383–390

DOI

211
Qian Y, Meng G, Huang Q, Zhu C, Huang Z, Sun K, Chen B. Flexible membranes of Ag-nanosheet grafted polyamide-nanofibers as effective 3D SERS substrates. Nanoscale, 2014, 6(9): 4781–4788

DOI

212
Liu H, Yang Q. A two-step temperature-raising process to gold nanoplates with optical and surface enhanced Raman spectrum properties. CrystEngComm, 2011, 13(7): 2281–2288

DOI

213
Liu H, Yang Q. Feasible synthesis of etched gold nanoplates with catalytic activity and SERS properties. CrystEngComm, 2011, 13(17): 5488–5494

DOI

214
Lu L, Kobayashi A, Tawa K, Ozaki Y. Silver nanoplates with special shapes: Controlled synthesis and their surface plasmon resonance and surface-enhanced Raman scattering properties. Chemistry of Materials, 2006, 18(20): 4894–4901

DOI

215
Hou H, Wang P, Zhang J, Li C, Jin Y. Graphene oxide-supported Ag nanoplates as LSPR tunable and reproducible substrates for SERS applications with optimized sensitivity. ACS Applied Materials & Interfaces, 2015, 7(32): 18038–18045

DOI

216
Liu G, Cai W, Kong L, Duan G, Li Y, Wang J, Zuo G, Cheng Z. Standing Ag nanoplate-built hollow microsphere arrays: Controllable structural parameters and strong SERS performances. Journal of Materials Chemistry, 2012, 22(7): 3177–3184

DOI

217
Kim Y K, Min D H. Surface confined successive growth of silver nanoplates on a solid substrate with tunable surface plasmon resonance. RSC Advances, 2014, 4(14): 6950–6956

DOI

218
Xia Y, Xiao H. Au nanoplate/polypyrrole nanofiber composite film: Preparation, characterization and application as SERS substrate. Journal of Raman Spectroscopy, 2012, 43(4): 469–473

DOI

219
Zhu C, Meng G, Huang Q, Li Z, Huang Z, Wang M, Yuan J. Large-scale well-separated Ag nanosheet-assembled micro-hemispheres modified with HS-beta-CD as effective SERS substrates for trace detection of PCBs. Journal of Materials Chemistry, 2012, 22(5): 2271–2278

DOI

220
Zhu C, Meng G, Huang Q, Huang Z. Vertically aligned Ag nanoplate-assembled film as a sensitive and reproducible SERS substrate for the detection of PCB-77. Journal of Hazardous Materials, 2012, 211-212: 389–395

DOI

221
Xu P, Zhang B, Mack N H, Doorn S K, Han X, Wang H L. Synthesis of homogeneous silver nanosheet assemblies for surface enhanced Raman scattering applications. Journal of Materials Chemistry, 2010, 20(34): 7222–7226

DOI

222
Bi L, Rao Y, Tao Q, Dong J, Su T, Liu F, Qian W. Fabrication of large-scale gold nanoplate films as highly active SERS substrates for label-free DNA detection. Biosensors & Bioelectronics, 2013, 43: 193–199

DOI

223
Cao B, Liu B, Yang J. Facile synthesis of single crystalline gold nanoplates and SERS investigations of 4-aminothiophenol. CrystEngComm, 2013, 15(28): 5735–5738

DOI

224
Sun Y, Lei C, Gosztola D, Haasch R. Formation of oxides and their role in the growth of Ag nanoplates on GaAs substrates. Langmuir, 2008, 24(20): 11928–11934

DOI

225
Beeram S R, Zamborini F P. Purification of gold nanoplates grown directly on surfaces for enhanced localized surface plasmon resonance biosensing. ACS Nano, 2010, 4(7): 3633–3646

DOI

226
Beeram S R, Zamborini F P. Selective attachment of antibodies to the edges of gold nanostructures for enhanced localized surface plasmon resonance biosensing. Journal of the American Chemical Society, 2009, 131(33): 11689–11691

DOI

227
Pettinger B, Ren B, Picardi G, Schuster R, Ertl G. Nanoscale probing of adsorbed species by tip-enhanced Raman spectroscopy. Physical Review Letters, 2004, 92(9): 096101

DOI

228
Pashaee F, Hou R, Gobbo P, Workentin M S, Lagugne-Labarthet F. Tip-enhanced raman spectroscopy of self-assembled thiolated monolayers on flat gold nanoplates using gaussian-transverse and radially polarized excitations. Journal of Physical Chemistry C, 2013, 117(30): 15639–15646

DOI

229
He X, Zhao X. Solvothermal synthesis and formation mechanism of chain-like triangular silver nanoplate assemblies: Application to metal-enhanced fluorescence (MEF). Applied Surface Science, 2009, 255(16): 7361–7368

DOI

230
Tam F, Goodrich G P, Johnson B R, Halas N J. Plasmonic enhancement of molecular fluorescence. Nano Letters, 2007, 7(2): 496–501

DOI

231
Liaw J W, Chen J H, Chen C S, Kuo M K. Purcell effect of nanoshell dimer on single molecule's fluorescence. Optics Express, 2009, 17(16): 13532–13540

DOI

232
Liu N, Tang M L, Hentschel M, Giessen H, Alivisatos A P. Nanoantenna-enhanced gas sensing in a single tailored nanofocus. Nature Materials, 2011, 10(8): 631–636

DOI

233
Song M, Wu B, Chen G, Liu Y, Ci X, Wu E, Zeng H. Photoluminescence plasmonic enhancement of single quantum dots coupled to gold microplates. Journal of Physical Chemistry C, 2014, 118(16): 8514–8520

DOI

234
Singh A, Shukla R, Hassan S, Bhonde R R, Sastry M. Cytotoxicity and cellular internalization studies of biogenic gold nanotriangles in animal cell lines. International Journal of Green Nanotechnology, 2011, 3(4): 251–263

DOI

235
James K T, O'Toole M G, Patel D N, Zhang G, Gobin A M, Keynton R S. A high yield, controllable process for producing tunable near infrared-absorbing gold nanoplates. RSC Advances, 2015, 5(17): 12498–12505

DOI

236
Frederix F, Friedt J M, Choi K H, Laureyn W, Campitelli A, Mondelaers D, Maes G, Borghs G. Biosensing based on light absorption of nanoscaled gold and silver particles. Analytical Chemistry, 2003, 75(24): 6894–6900

DOI

237
Jiang X, Liu R, Tang P, Li W, Zhong H, Zhou Z, Zhou J. Controllably tuning the near-infrared plasmonic modes of gold nanoplates for enhanced optical coherence imaging and photothermal therapy. RSC Advances, 2015, 5(98): 80709–80718

DOI

238
Jiang Y, Horimoto N N, Imura K, Okamoto H, Matsui K, Shigemoto R. Bioimaging with two-photon-induced luminescence from triangular nanoplates and nanoparticle aggregates of gold. Advanced Materials, 2009, 21(22): 2309–2313

DOI

239
Kunzmann A, Andersson B, Thurnherr T, Krug H, Scheynius A, Fadeel B. Toxicology of engineered nanomaterials: Focus on biocompatibility, biodistribution and biodegradation. Biochimica Et Biophysica Acta-General Subjects, 2011, 1810: 361–373

240
Homan K A, Souza M, Truby R, Luke G P, Green C, Vreeland E, Emelianov S. Silver nanoplate contrast agents for in vivo molecular photoacoustic imaging. ACS Nano, 2012, 6(1): 641–650

DOI

241
Xie S, Choi S I, Xia X, Xia Y. Catalysis on faceted noble-metal nanocrystals: Both shape and size matter. Current Opinion in Chemical Engineering, 2013, 2(2): 142–150

DOI

242
Zhou K, Li Y. Catalysis based on nanocrystals with well-defined facets. Angewandte Chemie International Edition, 2012, 51(3): 602–613

DOI

243
Li Y, Wang W, Xia K, Zhang W, Jiang Y, Zeng Y, Zhang H, Jin C, Zhang Z, Yang D. Ultrathin two-dimensional Pd-based nanorings as catalysts for hydrogenation with high activity and stability. Small, 2015, 11(36): 4745–4752

DOI

244
Bi Y, Lu G. Morphological controlled synthesis and catalytic activities of gold nanocrystals. Materials Letters, 2008, 62(17-18): 2696–2699

DOI

245
Duan H, Yan N, Yu R, Chang C R, Zhou G, Hu H S, Rong H, Niu Z, Mao J, Asakura H, Tanaka T, Dyson P J, Li J, Li Y. Ultrathin rhodium nanosheets. Nature Communications, 2014, 5: 3093

DOI

246
Lee C L, Syu C M, Chiou H P, Chen C H, Yang H L. High-yield, size-controlled synthesis of silver nanoplates and their applications as methanol-tolerant electrocatalysts in oxygen reduction reaction. International Journal of Hydrogen Energy, 2011, 36(17): 10502–10512

DOI

247
Wang W, Zhao Y, Ding Y. 2D ultrathin core-shell Pd@Pt-monolayer nanosheets: Defect-mediated thin film growth and enhanced oxygen reduction performance. Nanoscale, 2015, 7(28): 11934–11939

DOI

248
Wang R, Zhang W, He G, Gao P. Controlling fuel crossover and hydration in ultra-thin proton exchange membrane-based fuel cells using Pt-nanosheet catalysts. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(39): 16416–16423

DOI

249
Lee C L, Syu C M, Huang C H, Chiou H P, Chao Y J, Yang C C. Cornered silver and silver-platinum nanodisks: Preparation and promising activity for alkaline oxygen reduction catalysis. Applied Catalysis B: Environmental, 2013, 132-133: 229–236

DOI

250
Li W, Ma H, Zhang J, Liu X, Feng X. Fabrication of gold nanoprism thin films and their applications in designing high activity electrocatalysts. Journal of Physical Chemistry C, 2009, 113(5): 1738–1745

DOI

251
Ghosh S, Teillout A L, Floresyona D, de Oliveira P, Hagege A, Remita H. Conducting polymer-supported palladium nanoplates for applications in direct alcohol oxidation. International Journal of Hydrogen Energy, 2015, 40(14): 4951–4959

DOI

252
Ning R, Lu W, Zhang Y, Qin X, Luo Y, Hu J, Asiri A M, Ai-Youbi A O, Sun X. A novel strategy to synthesize Au nanoplates and their application for enzymeless H2O2 detection. Electrochimica Acta, 2012, 60: 13–16

DOI

253
Zhang Y, Chang G, Liu S, Lu W, Tian J, Sun X. A new preparation of Au nanoplates and their application for glucose sensing. Biosensors & Bioelectronics, 2011, 28(1): 344–348

DOI

254
Wiley B J, Lipomi D J, Bao J, Capasso F, Whitesides G M. Fabrication of surface plasmon resonators by nanoskiving single-crystalline gold microplates. Nano Letters, 2008, 8(9): 3023–3028

DOI

255
Yun Y J, Park G, Ah C S, Park H J, Yun W S, Ha D H. Fabrication of versatile nanocomponents using single-crystalline Au nanoplates. Applied Physics Letters, 2005, 87(23): 233110

DOI

256
Huang J S, Callegari V, Geisler P, Bruening C, Kern J, Prangsma J C, Wu X, Feichtner T, Ziegler J, Weinmann P, Kamp M, Forchel A, Biagioni P, Sennhauser U, Hecht B. Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry. Nature Communications, 2010, 1(9): 150

DOI

257
Li M, Wu X, Zhou J, Kong Q, Li C. Single-crystal Au microflakes modulated by amino acids and their sensing and catalytic properties. Journal of Colloid and Interface Science, 2016, 467: 115–120

DOI

Outlines

/