Shape/size controlling syntheses, properties and applications of two-dimensional noble metal nanocrystals

Baozhen An, Mingjie Li, Jialin Wang, Chaoxu Li

PDF(1023 KB)
PDF(1023 KB)
Front. Chem. Sci. Eng. ›› 2016, Vol. 10 ›› Issue (3) : 360-382. DOI: 10.1007/s11705-016-1576-0
REVIEW ARTICLE

Shape/size controlling syntheses, properties and applications of two-dimensional noble metal nanocrystals

Author information +
History +

Abstract

Two dimensional (2D) nanocrystals of noble metals (e.g., Au, Ag, Pt) often have unique structural and environmental properties which make them useful for applications in electronics, optics, sensors and biomedicines. In recent years, there has been a focus on discovering the fundamental mechanisms which govern the synthesis of the diverse geometries of these 2D metal nanocrystals (e.g., shapes, thickness, and lateral sizes). This has resulted in being able to better control the properties of these 2D structures for specific applications. In this review, a brief historical survey of the intrinsic anisotropic properties and quantum size effects of 2D noble metal nanocrystals is given and then a summary of synthetic approaches to control their shapes and sizes is presented. The unique properties and fascinating applications of these nanocrystals are also discussed.

Graphical abstract

Keywords

two-dimension / noble metal / nanocrystal / surface plasmon / controllable synthesis

Cite this article

Download citation ▾
Baozhen An, Mingjie Li, Jialin Wang, Chaoxu Li. Shape/size controlling syntheses, properties and applications of two-dimensional noble metal nanocrystals. Front. Chem. Sci. Eng., 2016, 10(3): 360‒382 https://doi.org/10.1007/s11705-016-1576-0

References

[1]
Holleman A F, Wiberg E. Lehrbuch der anorganischen Chemie. Journal of the American Chemical Society, 1985, 101: 118–118
[2]
Stahl D A, Landen K. Abbreviations dictionary. CRC Press, 2001, 1167–1167
[3]
Nobel metal. https://en.wikipedia.org/wiki/Noble_metal. 2016
[4]
Alivisatos A P. Semiconductor clusters, nanocrystals, and quantum dots. Science, 1996, 271(5251): 933–937
CrossRef Google scholar
[5]
Maheshwari V, Kane J, Saraf R F. Self-assembly of a micrometers-long one-dimensional network of cemented Au nanoparticles. Advanced Materials, 2008, 20(2): 284–287
CrossRef Google scholar
[6]
Markovich G, Collier C P, Henrichs S E, Remacle F, Levine R D, Heath J R. Architectonic quantum dot solids. Accounts of Chemical Research, 1999, 32(5): 415–423
CrossRef Google scholar
[7]
Hu H, Zhou J, Kong Q, Li C. Two-dimensional Au nanocrystals: Shape/size controlling synthesis, morphologies, and applications. Particle & Particle Systems Characterization, 2015, 32: 769–808
[8]
Valden M, Lai X, Goodman D W. Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science, 1998, 281(5383): 1647–1650
CrossRef Google scholar
[9]
Campbell C T, Parker S C, Starr D E. The effect of size-dependent nanoparticle energetics on catalyst sintering. Science, 2002, 298(5594): 811–814
CrossRef Google scholar
[10]
Haruta M. Catalysis of gold nanoparticles deposited on metal oxides. CATTech, 2002, 6(3): 102–115
CrossRef Google scholar
[11]
Kreibig U, Vollmer M. Optical properties of metal clusters. Berlin: Springer, 1995, 13–20
[12]
Mulvaney P. Surface plasmon spectroscopy of nanosized metal particles. Langmuir, 1996, 12(3): 788–800
CrossRef Google scholar
[13]
Faraday M. The Bakerian lecture: Experimental relations of gold (and other metals) to light. Philosophical Transactions of the Royal Society of London, 1857, 147(0): 145–181
CrossRef Google scholar
[14]
Zeng Z, Tan C, Huang X, Bao S, Zhang H. Growth of noble metal nanoparticles on single-layer TiS2 and TaS2 nanosheets for hydrogen evolution reaction. Energy & Environmental Science, 2014, 7(2): 797–803
CrossRef Google scholar
[15]
Huang X, Zeng Z, Bao S, Wang M, Qi X, Fan Z, Zhang H. Solution-phase epitaxial growth of noble metal nanostructures on dispersible single-layer molybdenum disulfide nanosheets. Nature Communications, 2013, 4: 1444
CrossRef Google scholar
[16]
Huang X, Zhou X, Wu S, Wei Y, Qi X, Zhang J, Boey F, Zhang H. Reduced graphene oxide-templated photochemical synthesis and in situ assembly of au nanodots to orderly patterned Au nanodot chains. Small, 2010, 6(4): 513–516
CrossRef Google scholar
[17]
Fan Z, Zhang H. Crystal phase-controlled synthesis, properties and applications of noble metal nanomaterials. Chemical Society Reviews, 2016, 45(1): 63–82
CrossRef Google scholar
[18]
Fan Z, Luo Z, Huang X, Li B, Chen Y, Wang J, Hu Y, Zhang H. Synthesis of 4H/fcc noble multimetallic nanoribbons for electrocatalytic hydrogen evolution reaction. Journal of the American Chemical Society, 2016, 138(4): 1414–1419
CrossRef Google scholar
[19]
Fan Z, Zhang X, Yang J, Wu X J, Liu Z, Huang W, Zhang H. Synthesis of 4H/fcc-Au@ metal sulfide core-shell nanoribbons. Journal of the American Chemical Society, 2015, 137(34): 10910–10913
CrossRef Google scholar
[20]
Zhou X, Huang X, Qi X, Wu S, Xue C, Boey F Y, Yan Q, Chen P, Zhang H. In situ synthesis of metal nanoparticles on single-layer graphene oxide and reduced graphene oxide surfaces. Journal of Physical Chemistry C, 2009, 113(25): 10842–10846
CrossRef Google scholar
[21]
Fan Z, Bosman M, Huang X, Huang D, Yu Y, Ong K P, Akimov Y A, Wu L, Li B, Wu J, Huang Y, Liu Q, Eng Png C, Lip Gan C, Yang P, Zhang H. Stabilization of 4H hexagonal phase in gold nanoribbons. Nature Communications, 2015, 6: 7684
CrossRef Google scholar
[22]
Tian N, Zhou Z Y, Sun S G, Ding Y, Wang Z L. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science, 2007, 316(5825): 732–735
CrossRef Google scholar
[23]
Rodríguez-Fernández J, Pérez-Juste J, García de Abajo F J, Liz-Marzán L M. Seeded growth of submicron Au colloids with quadrupole plasmon resonance modes. Langmuir, 2006, 22(16): 7007–7010
CrossRef Google scholar
[24]
Agarwal M, Mehta H, Candler R N, Chandorkar S A, Kim B, Hopcroft M A, Melamud R, Bahl G, Yama G, Kenny T W, Murmann B. Scaling of amplitude-frequency-dependence nonlinearities in electrostatically transduced microresonators. Journal of Applied Physics, 2007, 102(7): 074903
CrossRef Google scholar
[25]
Sánchez-Iglesias A, Pastoriza-Santos I, Pérez-Juste J, Rodríguez-González B, García de Abajo F J, Liz-Marzán L M. Synthesis and optical properties of gold nanodecahedra with size control. Advanced Materials, 2006, 18(19): 2529–2534
CrossRef Google scholar
[26]
Kim F, Connor S, Song H, Kuykendall T, Yang P D. Platonic gold nanocrystals. Angewandte Chemie International Edition, 2004, 43(28): 3673–3677
CrossRef Google scholar
[27]
Li C, Shuford K L, Park Q H, Cai W, Li Y, Lee E J, Cho S O. High-yield synthesis of single-crystalline gold nano-octahedra. Angewandte Chemie International Edition, 2007, 46(18): 3264–3268
CrossRef Google scholar
[28]
Ma Y, Kuang Q, Jiang Z, Xie Z, Huang R, Zheng L. Synthesis of trisoctahedral gold nanocrystals with exposed high-index facets by a facile chemical method. Angewandte Chemie International Edition, 2008, 47(46): 8901–8904
CrossRef Google scholar
[29]
Caswell K K, Bender C M, Murphy C J. Seedless, surfactantless wet chemical synthesis of silver nanowires. Nano Letters, 2003, 3(5): 667–669
CrossRef Google scholar
[30]
Nikoobakht B, El-Sayed M A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chemistry of Materials, 2003, 15(10): 1957–1962
CrossRef Google scholar
[31]
Liu M Z, Guyot-Sionnest P. Mechanism of silver(I)-assisted growth of gold nanorods and bipyramids. Journal of Physical Chemistry B, 2005, 109(47): 22192–22200
CrossRef Google scholar
[32]
Huang X, Li S, Wu S, Huang Y, Boey F, Gan C L, Zhang H. Graphene oxide-templated synthesis of ultrathin or tadpole-shaped Au nanowires with alternating hcp and fcc domains. Advanced Materials, 2012, 24(7): 979–983
CrossRef Google scholar
[33]
Jin R C, Cao Y W, Mirkin C A, Kelly K L, Schatz G C, Zheng J G. Photoinduced conversion of silver nanospheres to nanoprisms. Science, 2001, 294(5548): 1901–1903
CrossRef Google scholar
[34]
Millstone J E, Park S, Shuford K L, Qin L D, Schatz G C, Mirkin C A. Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprisms. Journal of the American Chemical Society, 2005, 127(15): 5312–5313
CrossRef Google scholar
[35]
Shankar S S, Rai A, Ankamwar B, Singh A, Ahmad A, Sastry M. Biological synthesis of triangular gold nanoprisms. Nature Materials, 2004, 3(7): 482–488
CrossRef Google scholar
[36]
Aherne D, Ledwith D M, Gara M, Kelly J M. Optical properties and growth aspects of silver nanoprisms produced by a highly reproducible and rapid synthesis at room temperature. Advanced Functional Materials, 2008, 18(14): 2005–2016
CrossRef Google scholar
[37]
Wu X, Redmond P L, Liu H, Chen Y, Steigerwald M, Brus L. Photovoltage mechanism for room light conversion of citrate stabilized silver nanocrystal seeds to large nanoprisms. Journal of the American Chemical Society, 2008, 130(29): 9500–9506
CrossRef Google scholar
[38]
Huang X, Li H, Li S, Wu S, Boey F, Ma J, Zhang H. Synthesis of gold square-like plates from ultrathin gold square sheets: The evolution of structure phase and shape. Angewandte Chemie International Edition, 2011, 50(51): 12245–12248
CrossRef Google scholar
[39]
Wiley B J, Xiong Y J, Li Z Y, Yin Y D, Xia Y N. Right bipyramids of silver: A new shape derived from single twinned seeds. Nano Letters, 2006, 6(4): 765–768
CrossRef Google scholar
[40]
Xiong Y, Cai H, Yin Y, Xia Y. Synthesis and characterization of fivefold twinned nanorods and right bipyramids of palladium. Chemical Physics Letters, 2007, 440(4-6): 273–278
CrossRef Google scholar
[41]
Skrabalak S E, Au L, Li X, Xia Y. Facile synthesis of Ag nanocubes and Au nanocages. Nature Protocols, 2007, 2(9): 2182–2190
CrossRef Google scholar
[42]
Banerjee I A, Yu L T, Matsui H. Location-specific biological functionalization on nanotubes: Attachment of proteins at the ends of nanotubes using Au nanocrystal masks. Nano Letters, 2003, 3(3): 283–287
CrossRef Google scholar
[43]
Schwartzberg A M, Olson T Y, Talley C E, Zhang J Z. Gold nanotubes synthesized via magnetic alignment of cobalt nanoparticles as templates. Journal of Physical Chemistry C, 2007, 111(44): 16080–16082
CrossRef Google scholar
[44]
Fan Z, Huang X, Tan C, Zhang H. Thin metal nanostructures: Synthesis, properties and applications. Chemical Science (Cambridge), 2015, 6(1): 95–111
CrossRef Google scholar
[45]
Fan Z, Huang X, Han Y, Bosman M, Wang Q, Zhu Y, Liu Q, Li B, Zeng Z, Wu J, Shi W, Li S, Gan C L, Zhang H. Surface modification-induced phase transformation of hexagonal close-packed gold square sheets. Nature Communications, 2015, 6: 6571
CrossRef Google scholar
[46]
Fan Z, Zhu Y, Huang X, Han Y, Wang Q, Liu Q, Huang Y, Gan C L, Zhang H. Synthesis of ultrathin face-centered-cubic Au@Pt and Au@Pd core-shell nanoplates from hexagonal-close-packed Au square sheets. Angewandte Chemie International Edition, 2015, 54(19): 5672–5676
CrossRef Google scholar
[47]
Millstone J E, Hurst S J, Metraux G S, Cutler J I, Mirkin C A. Colloidal gold and silver triangular nanoprisms. Small, 2009, 5(6): 646–664
CrossRef Google scholar
[48]
Hong X, Tan C, Chen J, Xu Z, Zhang H. Synthesis, properties and applications of one- and two-dimensional gold nanostructures. Nano Research, 2015, 8(1): 40–55
CrossRef Google scholar
[49]
Lee C, Josephs E A, Shao J, Ye T. Nanoscale chemical patterns on gold microplates. Journal of Physical Chemistry C, 2012, 116(33): 17625–17632
CrossRef Google scholar
[50]
Dahanayaka D H, Wang J X, Hossain S, Bumm L A. Optically transparent Au{111} substrates: Flat gold nanoparticle platforms for high-resolution scanning tunneling microscopy. Journal of the American Chemical Society, 2006, 128(18): 6052–6053
CrossRef Google scholar
[51]
Deckert-Gaudig T, Deckert V. Ultraflat transparent gold nanoplates-ideal substrates for tip-enhanced raman scattering experiments. Small, 2009, 5(4): 432–436
CrossRef Google scholar
[52]
Li Q, Liu F, Lu C, Lin J M. Aminothiols sensing based on fluorosurfactant-mediated triangular gold nanoparticle-catalyzed luminol chemiluminescence. Journal of Physical Chemistry C, 2011, 115(22): 10964–10970
CrossRef Google scholar
[53]
Chen Y, Schuhmann W, Hassel A W. Electrocatalysis on gold nanostructures: Is the {110} facet more active than the {111} facet? Electrochemistry Communications, 2009, 11(10): 2036–2039
CrossRef Google scholar
[54]
Li C C, Cai W P, Cao B Q, Sun F Q, Li Y, Kan C X, Zhang L D. Mass synthesis of large, single-crystal Au nanosheets based on a polyol process. Advanced Functional Materials, 2006, 16(1): 83–90
CrossRef Google scholar
[55]
Simpson C R, Kohl M, Essenpreis M, Cope M. Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique. Physics in Medicine and Biology, 1998, 43(9): 2465–2478
CrossRef Google scholar
[56]
Li N, Zhao P, Astruc D. Anisotropic gold nanoparticles: Synthesis, properties, applications, and toxicity. Angewandte Chemie International Edition, 2014, 53(7): 1756–1789
CrossRef Google scholar
[57]
Hirsch L R, Stafford R J, Bankson J A, Sershen S R, Rivera B, Price R E, Hazle J D, Halas N J, West J L. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(23): 13549–13554
CrossRef Google scholar
[58]
Xie J, Lee J Y, Wang D I C. Synthesis of single-crystalline gold nanoplates in aqueous solutions through biomineralization by serum albumin protein. Journal of Physical Chemistry C, 2007, 111(28): 10226–10232
CrossRef Google scholar
[59]
Xiong Y, Siekkinen A R, Wang J, Yin Y, Kim M J, Xia Y. Synthesis of silver nanoplates at high yields by slowing down the polyol reduction of silver nitrate with polyacrylamide. Journal of Materials Chemistry, 2007, 17(25): 2600–2602
CrossRef Google scholar
[60]
Turkevich J, Stevenson P C, Hillier J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discussions of the Faraday Society, 1951, 11: 55–75
CrossRef Google scholar
[61]
Murphy C J, Gole A M, Hunyadi S E, Orendorff C J. One-dimensional colloidal gold and silver nanostructures. Inorganic Chemistry, 2006, 45(19): 7544–7554
CrossRef Google scholar
[62]
Burda C, Chen X B, Narayanan R, El-Sayed M A. Chemistry and properties of nanocrystals of different shapes. Chemical Reviews, 2005, 105(4): 1025–1102
CrossRef Google scholar
[63]
Lofton C, Sigmund W. Mechanisms controlling crystal habits of gold and silver colloids. Advanced Functional Materials, 2005, 15(7): 1197–1208
CrossRef Google scholar
[64]
Xia Y, Xiong Y, Lim B, Skrabalak S E. Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angewandte Chemie International Edition, 2009, 48(1): 60–103
CrossRef Google scholar
[65]
Rycenga M, Cobley C M, Zeng J, Li W, Moran C H, Zhang Q, Qin D, Xia Y. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chemical Reviews, 2011, 111(6): 3669–3712
CrossRef Google scholar
[66]
Lee H, Jeong K Y, Kang T, Seo M K, Kim B. A twin-free single-crystal Ag nanoplate plasmonic platform: hybridization of the optical nano-antenna and surface plasmon active surface. Nanoscale, 2014, 6(1): 514–520
CrossRef Google scholar
[67]
Ye J, Chen C, Van Roy W, Van Dorpe P, Maes G, Borghs G. The fabrication and optical property of silver nanoplates with different thicknesses. Nanotechnology, 2008, 19(32): 325702
CrossRef Google scholar
[68]
Xiong Y, Xia Y. Shape-controlled synthesis of metal nanostructures: The case of palladium. Advanced Materials, 2007, 19(20): 3385–3391
CrossRef Google scholar
[69]
Wiley B, Sun Y G, Mayers B, Xia Y N. Shape-controlled synthesis of metal nanostructures: The case of silver. Chemistry (Weinheim an der Bergstrasse, Germany), 2005, 11(2): 454–463
CrossRef Google scholar
[70]
Xie S, Liu X Y, Xia Y. Shape-controlled syntheses of rhodium nanocrystals for the enhancement of their catalytic properties. Nano Research, 2015, 8(1): 82–96
CrossRef Google scholar
[71]
Germain V, Li J, Ingert D, Wang Z L, Pileni M P. Stacking faults in formation of silver nanodisks. Journal of Physical Chemistry B, 2003, 107(34): 8717–8720
CrossRef Google scholar
[72]
Sun Y G, Mayers B, Xia Y N. Transformation of silver nanospheres into nanobelts and triangular nanoplates through a thermal process. Nano Letters, 2003, 3(5): 675–679
CrossRef Google scholar
[73]
Washio I, Xiong Y, Yin Y, Xia Y. Reduction by the end groups of poly(vinyl pyrrolidone): A new and versatile route to the kinetically controlled synthesis of Ag triangular nanoplates. Advanced Materials, 2006, 18(13): 1745–1749
CrossRef Google scholar
[74]
Bai X, Zheng L, Li N, Dong B, Liu H. Synthesis and characterization of microscale gold nanoplates using Langmuir monolayers of long-chain ionic liquid. Crystal Growth & Design, 2008, 8(10): 3840–3846
CrossRef Google scholar
[75]
Ah C S, Yun Y J, Park H J, Kim W J, Ha D H, Yun W S. Size-controlled synthesis of machinable single crystalline gold nanoplates. Chemistry of Materials, 2005, 17(22): 5558–5561
CrossRef Google scholar
[76]
Pelaz B, Grazu V, Ibarra A, Magen C, del Pino P, de la Fuente J M. Tailoring the synthesis and heating ability of gold nanoprisms for bioapplications. Langmuir, 2012, 28(24): 8965–8970
CrossRef Google scholar
[77]
Norman T J, Grant C D, Magana D, Zhang J Z, Liu J, Cao D L, Bridges F, Van Buuren A. Near infrared optical absorption of gold nanoparticle aggregates. Journal of Physical Chemistry B, 2002, 106(28): 7005–7012
CrossRef Google scholar
[78]
Lee J H, Kamada K, Enomoto N, Hojo J. Polyhedral gold nanoplate: High fraction synthesis of two-dimensional nanoparticles through rapid heating process. Crystal Growth & Design, 2008, 8(8): 2638–2645
CrossRef Google scholar
[79]
Kan C X, Wang G H, Zhu X G, Li C C, Cao B Q. Structure and thermal stability of gold nanoplates. Applied Physics Letters, 2006, 88(7): 071904
CrossRef Google scholar
[80]
Skrabalak S E, Wiley B J, Kim M, Formo E V, Xia Y. On the polyol synthesis of silver nanostructures: Glycolaldehyde as a reducing agent. Nano Letters, 2008, 8(7): 2077–2081
CrossRef Google scholar
[81]
Xiong Y, Washio I, Chen J, Cai H, Li Z Y, Xia Y. Poly(vinyl pyrrolidone): A dual functional reductant and stabilizer for the facile synthesis of noble metal nanoplates in aqueous solutions. Langmuir, 2006, 22(20): 8563–8570
CrossRef Google scholar
[82]
Qin H L, Wang D, Huang Z L, Wu D M, Zeng Z C, Ren B, Xu K, Jin J. Thickness-controlled synthesis of ultrathin Au sheets and surface plasmonic property. Journal of the American Chemical Society, 2013, 135(34): 12544–12547
CrossRef Google scholar
[83]
Vigderman L, Zubarev E R. High-yield synthesis of gold nanorods with longitudinal SPR peak greater than 1200 nm using hydroquinone as a reducing agent. Chemistry of Materials, 2013, 25(8): 1450–1457
CrossRef Google scholar
[84]
Huang W L, Chen C H, Huang M H. Investigation of the growth process of gold nanoplates formed by thermal aqueous solution approach and the synthesis of ultra-small gold nanoplates. Journal of Physical Chemistry C, 2007, 111(6): 2533–2538
CrossRef Google scholar
[85]
Yamamoto M, Kashiwagi Y, Sakata T, Mori H, Nakamoto M. Synthesis and morphology of star-shaped gold nanoplates protected by poly (N-vinyl-2-pyrrolidone). Chemistry of Materials, 2005, 17(22): 5391–5393
CrossRef Google scholar
[86]
Luo Y. Large-scale preparation of single-crystalline gold nanoplates. Materials Letters, 2007, 61(6): 1346–1349
CrossRef Google scholar
[87]
Yi Z, Li X, Xu X, Luo B, Luo J, Wu W, Yi Y, Tang Y. Green, effective chemical route for the synthesis of silver nanoplates in tannic acid aqueous solution. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2011, 392(1): 131–136
CrossRef Google scholar
[88]
Wang J, Wang Z. Rapid synthesis of hexagon-shaped gold nanoplates by microwave assistant method. Materials Letters, 2007, 61(19-20): 4149–4151
CrossRef Google scholar
[89]
Guo Z, Zhang Y, Xu A, Wang M, Huang L, Xu K, Gu N. Layered assemblies of single crystal gold nanoplates: Direct room temperature synthesis and mechanistic study. Journal of Physical Chemistry C, 2008, 112(33): 12638–12645
CrossRef Google scholar
[90]
Sun X P, Dong S J, Wang E. Large-scale synthesis of micrometer-scale single-crystalline Au plates of nanometer thickness by a wet-chemical route. Angewandte Chemie International Edition, 2004, 43(46): 6360–6363
CrossRef Google scholar
[91]
Roy A K, Park S Y, In I. Mussel-inspired synthesis of boron nitride nanosheet-supported gold nanoparticles and their application for catalytic reduction of 4-nitrophenol. Nanotechnology, 2015, 26(10): 105601
CrossRef Google scholar
[92]
Lin G, Lu W, Cui W, Jiang L. A simple synthesis method for gold nano-and microplate fabrication using a tree-type multiple-amine head surfactant. Crystal Growth & Design, 2010, 10(3): 1118–1123
CrossRef Google scholar
[93]
Chen C C, Hsu C H, Kuo P L. Effects of alkylated polyethylenimines on the formation of gold nanoplates. Langmuir, 2007, 23(12): 6801–6806
CrossRef Google scholar
[94]
Bakshi M S, Sachar S, Kaur G, Bhandari P, Kaur G, Biesinger M C, Possmayer F, Petersen N O. Dependence of crystal growth of gold nanoparticles on the capping behavior of surfactant at ambient conditions. Crystal Growth & Design, 2008, 8(5): 1713–1719
CrossRef Google scholar
[95]
Shao Y, Jin Y D, Dong S J. Synthesis of gold nanoplates by aspartate reduction of gold chloride. Chemical Communications, 2004, 10(9): 1104–1105
CrossRef Google scholar
[96]
Moon G D, Lim G H, Song J H, Shin M, Yu T, Lim B, Jeong U. Highly stretchable patterned gold electrodes made of Au nanosheets. Advanced Materials, 2013, 25(19): 2707–2712
CrossRef Google scholar
[97]
Liu Y, Guo R. Synthesis of protein-gold nanoparticle hybrid and gold nanoplates in protein aggregates. Materials Chemistry and Physics, 2011, 126(3): 619–627
CrossRef Google scholar
[98]
Bolisetty S, Vallooran J J, Adamcik J, Handschin S, Gramm F, Mezzenga R. Amyloid-mediated synthesis of giant, fluorescent, gold single crystals and their hybrid sandwiched composites driven by liquid crystalline interactions. Journal of Colloid and Interface Science, 2011, 361(1): 90–96
CrossRef Google scholar
[99]
Li C, Bolisetty S, Mezzenga R. Hybrid nanocomposites of gold single-crystal platelets and amyloid fibrils with tunable fluorescence, conductivity, and sensing properties. Advanced Materials, 2013, 25(27): 3694–3700
CrossRef Google scholar
[100]
Zhou J, Saha A, Adamcik J, Hu H, Kong Q, Li C, Mezzenga R. Macroscopic single-crystal gold microflakes and their devices. Advanced Materials, 2015, 27(11): 1945–1950
CrossRef Google scholar
[101]
Brown S, Sarikaya M, Johnson E. A genetic analysis of crystal growth. Journal of Molecular Biology, 2000, 299(3): 725–735
CrossRef Google scholar
[102]
Chandran S P, Chaudhary M, Pasricha R, Ahmad A, Sastry M. Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnology Progress, 2006, 22(2): 577–583
CrossRef Google scholar
[103]
Ghodake G S, Deshpande N G, Lee Y P, Jin E S. Pear fruit extract-assisted room-temperature biosynthesis of gold nanoplates. Colloids and Surfaces. B, Biointerfaces, 2010, 75(2): 584–589
CrossRef Google scholar
[104]
Wei D, Qian W, Shi Y, Ding S, Xia Y. Mass synthesis of single-crystal gold nanosheets based on chitosan. Carbohydrate Research, 2007, 342(16): 2494–2499
CrossRef Google scholar
[105]
Liu B, Xie J, Lee J Y, Ting Y P, Chen J P. Optimization of high-yield biological synthesis of single-crystalline gold nanoplates. Journal of Physical Chemistry B, 2005, 109(32): 15256–15263
CrossRef Google scholar
[106]
Baigorri R, Garcia-Mina J M, Aroca R F, Alvarez-Puebla R A. Optical enhancing properties of anisotropic gold nanoplates prepared with different fractions of a natural humic substance. Chemistry of Materials, 2008, 20(4): 1516–1521
CrossRef Google scholar
[107]
Klaus T, Joerger R, Olsson E, Granqvist C G. Silver-based crystalline nanoparticles, microbially fabricated. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(24): 13611–13614
CrossRef Google scholar
[108]
Kim J U, Cha S H, Shin K, Jho J Y, Lee J C. Preparation of gold nanowires and nanosheets in bulk block copolymer phases under mild conditions. Advanced Materials, 2004, 16(5): 459–464
CrossRef Google scholar
[109]
Cha S H, Kim J U, Kim K H, Lee J C. Preparation of gold nanosheets using poly(ethylene oxide)-poly (propylene oxide)-poly (ethylene oxide) block copolymers via photoreduction. Materials Science and Engineering B-Solid State Materials for Advanced Technology, 2007, 140(3): 182–186
CrossRef Google scholar
[110]
Miranda A, Malheiro E, Skiba E, Quaresma P, Carvalho P A, Eaton P, de Castro B, Shelnutt J A, Pereira E. One-pot synthesis of triangular gold nanoplates allowing broad and fine tuning of edge length. Nanoscale, 2010, 2(10): 2209–2216
CrossRef Google scholar
[111]
Huang X, Qi X, Huang Y, Li S, Xue C, Gan C L, Boey F, Zhang H. Photochemically controlled synthesis of anisotropic Au nanostructures: Platelet-like Au nanorods and six-star Au nanoparticles. ACS Nano, 2010, 4(10): 6196–6202
CrossRef Google scholar
[112]
Pienpinijtham P, Han X X, Suzuki T, Thammacharoen C, Ekgasit S, Ozaki Y. Micrometer-sized gold nanoplates: Starch-mediated photochemical reduction synthesis and possibility of application to tip-enhanced Raman scattering (TERS). Physical Chemistry Chemical Physics, 2012, 14(27): 9636–9641
CrossRef Google scholar
[113]
Zhang J, Li S, Wu J, Schatz G C, Mirkin C A. Plasmon-mediated synthesis of silver triangular bipyramids. Angewandte Chemie International Edition, 2009, 48(42): 7787–7791
CrossRef Google scholar
[114]
Zheng X, Xu W, Corredor C, Xu S, An J, Zhao B, Lombardi J R. Laser-induced growth of monodisperse silver nanoparticles with tunable surface plasmon resonance properties and a wavelength self-limiting effect. Journal of Physical Chemistry C, 2007, 111(41): 14962–14967
CrossRef Google scholar
[115]
Xue C, Metraux G S, Millstone J E, Mirkin C A. Mechanistic study of photomediated triangular silver nanoprism growth. Journal of the American Chemical Society, 2008, 130(26): 8337–8344
CrossRef Google scholar
[116]
Jin R C, Cao Y C, Hao E C, Metraux G S, Schatz G C, Mirkin C A. Controlling anisotropic nanoparticle growth through plasmon excitation. Nature, 2003, 425(6957): 487–490
CrossRef Google scholar
[117]
Belloni J. Photography: Enhancing sensitivity by silver-halide crystal doping. Radiation Physics and Chemistry, 2003, 67(3-4): 291–296
CrossRef Google scholar
[118]
Tsuji T, Higuchi T, Tsuji M. Laser-induced structural conversions of silver nanoparticles in pure water-influence of laser intensity. Chemistry Letters, 2005, 34(4): 476–477
CrossRef Google scholar
[119]
Belloni J, Mostafavi M, Remita H, Marignier J L, Delcourt M O. Radiation-induced synthesis of mono- and multi-metallic clusters and nanocolloids. New Journal of Chemistry, 1998, 22(11): 1239–1255
CrossRef Google scholar
[120]
Remita S, Mostafavi M, Delcourt M O. Stabilization, growth and reactivity of silver aggregates produced by radiolysis in the presence of edta. New Journal of Chemistry, 1994, 18: 581–588
[121]
Wang Z, Yuan J, Zhou M, Niu L, Ivaska A. Synthesis, characterization and mechanism of cetyltrimethylammonium bromide bilayer-encapsulated gold nanosheets and nanocrystals. Applied Surface Science, 2008, 254(20): 6289–6293
CrossRef Google scholar
[122]
Jang K, Kim H J, Son S U. Low-temperature synthesis of ultrathin rhodium nanoplates via molecular orbital symmetry interaction between rhodium precursors. Chemistry of Materials, 2010, 22(4): 1273–1275
CrossRef Google scholar
[123]
Sun X P, Dong S J, Wang E K. High-yield synthesis of large single-crystalline gold nanoplates through a polyamine process. Langmuir, 2005, 21(10): 4710–4712
CrossRef Google scholar
[124]
Zeng J, Tao J, Li W, Grant J, Wang P, Zhu Y, Xia Y. A mechanistic study on the formation of silver nanoplates in the presence of silver seeds and citric acid or citrate ions. Chemistry, an Asian Journal, 2011, 6(2): 376–379
CrossRef Google scholar
[125]
Kilin D S, Prezhdo O V, Xia Y. Shape-controlled synthesis of silver nanoparticles: Ab initio study of preferential surface coordination with citric acid. Chemical Physics Letters, 2008, 458(1-3): 113–116
CrossRef Google scholar
[126]
Zhang Q, Li N, Goebl J, Lu Z, Yin Y. A systematic study of the synthesis of silver nanoplates: Is citrate a “magic” reagent? Journal of the American Chemical Society, 2011, 133(46): 18931–18939
CrossRef Google scholar
[127]
Zhang J L, Du J M, Han B X, Liu Z M, Jiang T, Zhang Z F. Sonochemical formation of single-crystalline gold nanobelts. Angewandte Chemie International Edition, 2006, 45(7): 1116–1119
CrossRef Google scholar
[128]
Huang X, Tang S, Mu X, Dai Y, Chen G, Zhou Z, Ruan F, Yang Z, Zheng N. Freestanding palladium nanosheets with plasmonic and catalytic properties. Nature Nanotechnology, 2011, 6(1): 28–32
CrossRef Google scholar
[129]
Hou C, Zhu J, Liu C, Wang X, Kuang Q, Zheng L. Formaldehyde-assisted synthesis of ultrathin Rh nanosheets for applications in CO oxidation. CrystEngComm, 2013, 15(31): 6127–6130
CrossRef Google scholar
[130]
Umar A A, Oyama M, Salleh M M, Majlis B Y. Formation of highly thin, electron-transparent gold nanoplates from nanoseeds in ternary mixtures of cetyltrimethylammonium bromide, poly(vinyl pyrrolidone), and poly(ethylene glycol). Crystal Growth & Design, 2010, 10(8): 3694–3698
CrossRef Google scholar
[131]
Zhao N, Wei Y, Sun N, Chen Q, Bai J, Zhou L, Qin Y, Li M, Qi L. Controlled synthesis of gold nanobelts and nanocombs in aqueous mixed surfactant solutions. Langmuir, 2008, 24(3): 991–998
CrossRef Google scholar
[132]
Xiao J, Qi L. Surfactant-assisted, shape-controlled synthesis of gold nanocrystals. Nanoscale, 2011, 3(4): 1383–1396
CrossRef Google scholar
[133]
Rai A, Singh A, Ahmad A, Sastry M. Role of halide ions and temperature on the morphology of biologically synthesized gold nanotriangles. Langmuir, 2006, 22(2): 736–741
CrossRef Google scholar
[134]
Ha T H, Koo H J, Chung B H. Shape-controlled syntheses of gold nanoprisms and nanorods influenced by specific adsorption of halide ions. Journal of Physical Chemistry C, 2007, 111(3): 1123–1130
CrossRef Google scholar
[135]
Millstone J E, Wei W, Jones M R, Yoo H, Mirkin C A. Iodide ions control seed-mediated growth of anisotropic gold nanoparticles. Nano Letters, 2008, 8(8): 2526–2529
CrossRef Google scholar
[136]
Sun Y G, Mayers B, Herricks T, Xia Y N. Polyol synthesis of uniform silver nanowires: A plausible growth mechanism and the supporting evidence. Nano Letters, 2003, 3(7): 955–960
CrossRef Google scholar
[137]
Kim M H, Kwak S K, Im S H, Lee J B, Choi K Y, Byun D J. Maneuvering the growth of silver nanoplates: Use of halide ions to promote vertical growth. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2014, 2(30): 6165–6170
CrossRef Google scholar
[138]
Long R, Zhou S, Wiley B J, Xiong Y. Oxidative etching for controlled synthesis of metal nanocrystals: Atomic addition and subtraction. Chemical Society Reviews, 2014, 43(17): 6288–6310
CrossRef Google scholar
[139]
Parnklang T, Lamlua B, Gatemala H, Thammacharoen C, Kuimalee S, Lohwongwatana B, Ekgasit S. Shape transformation of silver nanospheres to silver nanoplates induced by redox reaction of hydrogen peroxide. Materials Chemistry and Physics, 2015, 153: 127–134
CrossRef Google scholar
[140]
Xiong Y J, McLellan J M, Chen J Y, Yin Y D, Li Z Y, Xia Y N. Kinetically controlled synthesis of triangular and hexagonal nanoplates of palladium and their SPR/SERS properties. Journal of the American Chemical Society, 2005, 127(48): 17118–17127
CrossRef Google scholar
[141]
Millstone J E, Metraux G S, Mirkin C A. Controlling the edge length of gold nanoprisms via a seed-mediated approach. Advanced Functional Materials, 2006, 16(9): 1209–1214
CrossRef Google scholar
[142]
Hong S, Acapulco J A I Jr, Jang H J, Kulkarni A S, Park S. Kinetically controlled growth of gold nanoplates and nanorods via a one-step seed-mediated method. Bulletin of the Korean Chemical Society, 2014, 35(6): 1737–1742
CrossRef Google scholar
[143]
Zou X, Ying E, Chen H, Dong S. An approach for synthesizing nanometer- to micrometer-sized silver nanoplates. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2007, 303(3): 226–234
CrossRef Google scholar
[144]
Guo Z, Fan X, Liu L, Bian Z, Gu C, Zhang Y, Gu N, Yang D, Zhang J. Achieving high-purity colloidal gold nanoprisms and their application as biosensing platforms. Journal of Colloid and Interface Science, 2010, 348(1): 29–36
CrossRef Google scholar
[145]
Li Z, Yu Y, Chen Z, Liu T, Zhou Z K, Han J B, Li J, Jin C, Wang X. Ultrafast third-order optical non linearity in Au triangular nanoprism with strong dipole and quadrupole plasmon resonance. Journal of Physical Chemistry C, 2013, 117(39): 20127–20132
CrossRef Google scholar
[146]
Huang Y, Ferhan A R, Gao Y, Dandapat A, Kim D H. High-yield synthesis of triangular gold nanoplates with improved shape uniformity, tunable edge length and thickness. Nanoscale, 2014, 6(12): 6496–6500
CrossRef Google scholar
[147]
Chambers S A. Epitaxial film crystallography by high-energy auger and X-ray photoelectron diffraction. Advances in Physics, 1991, 40(4): 357–415
CrossRef Google scholar
[148]
Ledentsov N N, Ustinov V M, Shchukin V A, Kopev P S, Alferov Z I, Bimberg D. Quantum dot heterostructures: Fabrication, properties, lasers. Semiconductors, 1998, 32(4): 343–365
CrossRef Google scholar
[149]
Habas S E, Lee H, Radmilovic V, Somorjai G A, Yang P. Shaping binary metal nanocrystals through epitaxial seeded growth. Nature Materials, 2007, 6(9): 692–697
CrossRef Google scholar
[150]
Fan F R, Liu D Y, Wu Y F, Duan S, Xie Z X, Jiang Z Y, Tian Z Q. Epitaxial growth of heterogeneous metal nanocrystals: From gold nano-octahedra to palladium and silver nanocubes. Journal of the American Chemical Society, 2008, 130(22): 6949–6951
CrossRef Google scholar
[151]
Lim B, Wang J, Camargo P H C, Jiang M, Kim M J, Xia Y. Facile synthesis of bimetallic nanoplates consisting of Pd cores and Pt shells through seeded epitaxial growth. Nano Letters, 2008, 8(8): 2535–2540
CrossRef Google scholar
[152]
Bi L, Dong J, Xie W, Lu W, Tong W, Tao L, Qian W. Bimetallic gold-silver nanoplate array as a highly active SERS substrate for detection of streptavidin/biotin assemblies. Analytica Chimica Acta, 2013, 805: 95–100
CrossRef Google scholar
[153]
Yoo H, Millstone J E, Li S, Jang J W, Wei W, Wu J, Schatz G C, Mirkin C A. Core-shell triangular bifrustums. Nano Letters, 2009, 9(8): 3038–3041
CrossRef Google scholar
[154]
Ghosh T, Satpati B. Direct experimental evidence of nucleation and kinetics driven two-dimensional growth of core-shell structures. Journal of Physical Chemistry C, 2013, 117(20): 10825–10833
CrossRef Google scholar
[155]
Lee C L, Tseng C M, Wu R B, Wu C C, Syu C M. Porous Ag-Pd triangle nanoplates with tunable alloy ratio for catalyzing electroless copper deposition. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2009, 352(1-3): 84–87
CrossRef Google scholar
[156]
Lee C L, Chiou H P, Syu C M, Liu C R, Yang C C, Syu C C. Displacement triangular Ag/Pd nanoplate as methanol-tolerant electrocatalyst in oxygen reduction reaction. International Journal of Hydrogen Energy, 2011, 36(20): 12706–12714
CrossRef Google scholar
[157]
Chen S H, Fan Z Y, Carroll D L. Silver nanodisks: Synthesis, characterization, and self-assembly. Journal of Physical Chemistry B, 2002, 106(42): 10777–10781
CrossRef Google scholar
[158]
Chen S H, Carroll D L. Synthesis and characterization of truncated triangular silver nanoplates. Nano Letters, 2002, 2(9): 1003–1007
CrossRef Google scholar
[159]
Maillard M, Giorgio S, Pileni M P. Silver nanodisks. Advanced Materials, 2002, 14(15): 1084–1086
CrossRef Google scholar
[160]
Gao X, Lu F, Dong B, Zhou T, Tian W, Zheng L. Zwitterionic vesicles with AuCl4-counterions as soft templates for the synthesis of gold nanoplates and nanospheres. Chemical Communications, 2014, 50(63): 8783–8786
CrossRef Google scholar
[161]
Li Z H, Liu Z M, Zhang J L, Han B X, Du J M, Gao Y N, Jiang T. Synthesis of single-crystal gold nanosheets of large size in ionic liquids. Journal of Physical Chemistry B, 2005, 109(30): 14445–14448
CrossRef Google scholar
[162]
Sun Z, Chen X, Wang L, Zhang G, Jing B. Synthesis of gold nanoplates in lamellar liquid crystal. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2008, 326(1-2): 23–28
CrossRef Google scholar
[163]
Banu K, Shimura T. Synthesis of large-scale transparent gold nanosheets sandwiched between stabilizers at a solid-liquid interface. New Journal of Chemistry, 2012, 36(10): 2112–2120
CrossRef Google scholar
[164]
Sanyal A, Sastry M. Gold nanosheets via reduction of aqueous chloroaurate ions by anthracene anions bound to a liquid-liquid interface. Chemical Communications, 2003, 9(11): 1236–1237
CrossRef Google scholar
[165]
Kajimoto S, Shirasawa D, Horimoto N N, Fukumura H. Additive-free size-controlled synthesis of gold square nanoplates using photochemical reaction in dynamic phase-separating media. Langmuir, 2013, 29(19): 5889–5895
CrossRef Google scholar
[166]
Lou X, Pan H, Zhu S, Zhu C, Liao Y, Li Y, Zhang D, Chen Z. Synthesis of silver nanoprisms on reduced graphene oxide for high-performance catalyst. Catalysis Communications, 2015, 69: 43–47
CrossRef Google scholar
[167]
Wang W, Gu J, Hua W, Jia X, Xi K. A novel high efficiency composite catalyst: Single crystal triangular Au nanoplates supported by functional reduced graphene oxide. Chemical Communications, 2014, 50(64): 8889–8891
CrossRef Google scholar
[168]
Huang X, Li S, Huang Y, Wu S, Zhou X, Li S, Gan C L, Boey F, Mirkin C A, Zhang H. Synthesis of hexagonal close-packed gold nanostructures. Nature Communications, 2011, 2: 292
CrossRef Google scholar
[169]
Wang C W, Ding H P, Xin G Q, Chen X, Lee Y I, Hao J, Liu H G. Silver nanoplates formed at the air/water and solid/water interfaces. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2009, 340(1-3): 93–98
CrossRef Google scholar
[170]
Wang L, Zhu Y, Wang J Q, Liu F, Huang J, Meng X, Basset J M, Han Y, Xiao F S. Two-dimensional gold nanostructures with high activity for selective oxidation of carbon-hydrogen bonds. Nature Communications, 2015, 6: 6957
CrossRef Google scholar
[171]
Ru E C L, Etchegoin P G. Principles of surface-enhanced raman spectroscopy. Amsterdam: Elsevier, 2009: 655–663
[172]
Xia Y N, Halas N J. Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures. MRS Bulletin, 2005, 30(05): 338–348
CrossRef Google scholar
[173]
Xu J Y, Wang J, Kong L T, Zheng G C, Guo Z, Liu J H. SERS detection of explosive agent by macrocyclic compound functionalized triangular gold nanoprisms. Journal of Raman Spectroscopy : JRS, 2011, 42(9): 1728–1735
CrossRef Google scholar
[174]
Hong S, Shuford K L, Park S. Shape transformation of gold nanoplates and their surface plasmon characterization: Triangular to hexagonal nanoplates. Chemistry of Materials, 2011, 23(8): 2011–2013
CrossRef Google scholar
[175]
Xue C, Mirkin C A. pH-switchable silver nanoprism growth pathways. Angewandte Chemie International Edition, 2007, 46(12): 2036–2038
CrossRef Google scholar
[176]
Shuford K L, Ratner M A, Schatz G C. Multipolar excitation in triangular nanoprisms. Journal of Chemical Physics, 2005, 123(11): 114713
CrossRef Google scholar
[177]
Wiley B J, Im S H, Li Z Y, McLellan J, Siekkinen A, Xia Y. Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis. Journal of Physical Chemistry B, 2006, 110(32): 15666–15675
CrossRef Google scholar
[178]
Métraux G S, Mirkin C A. Rapid thermal synthesis of silver nanoprisms with chemically tailorable thickness. Advanced Materials, 2005, 17(4): 412–415
CrossRef Google scholar
[179]
Kelly K L, Coronado E, Zhao L L, Schatz G C. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. Journal of Physical Chemistry B, 2003, 107(3): 668–677
CrossRef Google scholar
[180]
Yoon I, Kang T, Choi W, Kim J, Yoo Y, Joo S W, Park Q H, Ihee H, Kim B. Single nanowire on a film as an efficient SERS-active platform. Journal of the American Chemical Society, 2009, 131(2): 758–762
CrossRef Google scholar
[181]
Hong X, Wang D, Li Y. Kinked gold nanowires and their SPR/SERS properties. Chemical Communications, 2011, 47(35): 9909–9911
CrossRef Google scholar
[182]
Jena B K, Raj C R. Shape-controlled synthesis of gold nanoprism and nanoperiwinkles with pronounced electrocatalytic activity. Journal of Physical Chemistry C, 2007, 111(42): 15146–15153
CrossRef Google scholar
[183]
Corma A, Concepción P, Boronat M, Sabater M J, Navas J, Yacaman M J, Larios E, Posadas A, Arturo López-Quintela M, Buceta D, Mendoza E, Guilera G, Mayoral A. Exceptional oxidation activity with size-controlled supported gold clusters of low atomicity. Nature Chemistry, 2013, 5(9): 775–781
CrossRef Google scholar
[184]
Chen M, Goodman D W. Catalytically active gold: From nanoparticles to ultrathin films. Accounts of Chemical Research, 2006, 39(10): 739–746
CrossRef Google scholar
[185]
Zhang H, Jin M, Xiong Y, Lim B, Xia Y. Shape-controlled synthesis of Pd nanocrystals and their catalytic applications. Accounts of Chemical Research, 2013, 46(8): 1783–1794
CrossRef Google scholar
[186]
Andoy N M, Zhou X, Choudhary E, Shen H, Liu G, Chen P. Single-molecule catalysis mapping quantifies site-specific activity and uncovers radial activity gradient on single 2D nanocrystals. Journal of the American Chemical Society, 2013, 135(5): 1845–1852
CrossRef Google scholar
[187]
Tian N, Zhou Z Y, Sun S G. Platinum metal catalysts of high-index surfaces: From single-crystal planes to electrochemically shape-controlled nanoparticles. Journal of Physical Chemistry C, 2008, 112(50): 19801–19817
CrossRef Google scholar
[188]
Sun S G, Chen A C, Huang T S, Li J B, Tian Z W. Electrocatalytic properties of Pt(111), Pt(332), Pt(331) and Pt(110) single-crystal electrodes towards ethylene-glycol oxidation in sulfuric-acid-solutions. Journal of Electroanalytical Chemistry, 1992, 340(1-2): 213–226
CrossRef Google scholar
[189]
Liao H G, Jiang Y X, Zhou Z Y, Chen S P, Sun S G. Shape-controlled synthesis of gold nanoparticles in deep eutectic solvents for studies of structure-functionality relationships in electrocatalysis. Angewandte Chemie International Edition, 2008, 47(47): 9100–9103
CrossRef Google scholar
[190]
Li L, Wang Z, Huang T, Xie J, Qi L. Porous gold nanobelts templated by metal-surfactant complex nanobelts. Langmuir, 2010, 26(14): 12330–12335
CrossRef Google scholar
[191]
Wang Z L. Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. Journal of Physical Chemistry B, 2000, 104(6): 1153–1175
CrossRef Google scholar
[192]
Somorjai G A, Blakely D W. Mechanism of catalysis of hydrocarbon reactions by platinum surfaces. Nature, 1975, 258(5536): 580–583
CrossRef Google scholar
[193]
Lee C L, Tseng C M, Wu C C, Chou T C, Syu C M. High activity of hexagonal Ag/Pt nanoshell catalyst for oxygen electroreduction. Nanoscale Research Letters, 2009, 4(3): 193–196
CrossRef Google scholar
[194]
Jang H J, Hong S, Park S. Shape-controlled synthesis of Pt nanoframes. Journal of Materials Chemistry, 2012, 22(37): 19792–19797
CrossRef Google scholar
[195]
Lee C L, Tseng C M, Wu R B, Yang K L. Hollow Ag/Pd triangular nanoplate: A novel activator for electroless nickel deposition. Nanotechnology, 2008, 19(21): 215709
CrossRef Google scholar
[196]
Xiong Y, McLellan J M, Yin Y, Xia Y. Synthesis of palladium icosahedra with twinned structure by blocking oxidative etching with citric acid or citrate ions. Angewandte Chemie International Edition, 2007, 46(5): 790–794
CrossRef Google scholar
[197]
Smith P A, Nordquist C D, Jackson T N, Mayer T S, Martin B R, Mbindyo J, Mallouk T E. Electric-field assisted assembly and alignment of metallic nanowires. Applied Physics Letters, 2000, 77(9): 1399–1401
CrossRef Google scholar
[198]
Chen D, Qiao X, Qiu X, Tan F, Chen J, Jiang R. Effect of silver nanostructures on the resistivity of electrically conductive adhesives composed of silver flakes. Journal of Materials Science Materials in Electronics, 2010, 21(5): 486–490
CrossRef Google scholar
[199]
Wu B, Heidelberg A, Boland J J. Mechanical properties of ultrahigh-strength gold nanowires. Nature Materials, 2005, 4(7): 525–529
CrossRef Google scholar
[200]
Lee S, Im J, Yoo Y, Bitzek E, Kiener D, Richter G, Kim B, Oh S H. Reversible cyclic deformation mechanism of gold nanowires by twinning-detwinning transition evidenced from in situ TEM. Nature Communications, 2014, 5: 3033
CrossRef Google scholar
[201]
Wang J, Sansoz F, Huang J, Liu Y, Sun S, Zhang Z, Mao S X. Near-ideal theoretical strength in gold nanowires containing angstrom scale twins. Nature Communications, 2013, 4: 1742
CrossRef Google scholar
[202]
Wilson R. The use of gold nanoparticles in diagnostics and detection. Chemical Society Reviews, 2008, 37(9): 2028–2045
CrossRef Google scholar
[203]
Futamata M, Maruyama Y, Ishikawa M. Local electric field and scattering cross section of Ag nanoparticles under surface plasmon resonance by finite difference time domain method. Journal of Physical Chemistry B, 2003, 107(31): 7607–7617
CrossRef Google scholar
[204]
Hayazawa N, Ishitobi H, Taguchi A, Tarun A, Ikeda K, Kawata S. Focused excitation of surface plasmon polaritons based on gap-mode in tip-enhanced spectroscopy. Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, 2007, 46: 7995–7999
[205]
Zhang Y, Charles D E, Ledwith D M, Aherne D, Cunningham S, Voisin M, Blau W J, Gunko Y K, Kelly J M, Brennan-Fournet M E. Wash-free highly sensitive detection of C-reactive protein using gold derivatised triangular silver nanoplates. RSC Advances, 2014, 4(55): 29022–29031
CrossRef Google scholar
[206]
Xu B B, Wang L, Ma Z C, Zhang R, Chen Q D, Lv C, Han B, Xiao X Z, Zhang X L, Zhang Y L, Ueno K, Misawa H, Sun H B. Surface-plasmon-mediated programmable optical nanofabrication of an oriented silver nanoplate. ACS Nano, 2014, 8(7): 6682–6692
CrossRef Google scholar
[207]
Lin W H, Lu Y H, Hsu Y J. Au nanoplates as robust, recyclable SERS substrates for ultrasensitive chemical sensing. Journal of Colloid and Interface Science, 2014, 418: 87–94
CrossRef Google scholar
[208]
Lai Y, Pan W, Zhang D, Zhan J. Silver nanoplates prepared by modified galvanic displacement for surface-enhanced Raman spectroscopy. Nanoscale, 2011, 3(5): 2134–2137
CrossRef Google scholar
[209]
Gunawidjaja R, Kharlampieva E, Choi I, Tsukruk V V. Bimetallic nanostructures as active Raman markers: Gold-nanoparticle assembly on 1D and 2D silver nanostructure surfaces. Small, 2009, 5(21): 2460–2466
CrossRef Google scholar
[210]
Li Z, Meng G, Liang T, Zhang Z, Zhu X. Facile synthesis of large-scale Ag nanosheet-assembled films with sub-10 nm gaps as highly active and homogeneous SERS substrates. Applied Surface Science, 2013, 264: 383–390
CrossRef Google scholar
[211]
Qian Y, Meng G, Huang Q, Zhu C, Huang Z, Sun K, Chen B. Flexible membranes of Ag-nanosheet grafted polyamide-nanofibers as effective 3D SERS substrates. Nanoscale, 2014, 6(9): 4781–4788
CrossRef Google scholar
[212]
Liu H, Yang Q. A two-step temperature-raising process to gold nanoplates with optical and surface enhanced Raman spectrum properties. CrystEngComm, 2011, 13(7): 2281–2288
CrossRef Google scholar
[213]
Liu H, Yang Q. Feasible synthesis of etched gold nanoplates with catalytic activity and SERS properties. CrystEngComm, 2011, 13(17): 5488–5494
CrossRef Google scholar
[214]
Lu L, Kobayashi A, Tawa K, Ozaki Y. Silver nanoplates with special shapes: Controlled synthesis and their surface plasmon resonance and surface-enhanced Raman scattering properties. Chemistry of Materials, 2006, 18(20): 4894–4901
CrossRef Google scholar
[215]
Hou H, Wang P, Zhang J, Li C, Jin Y. Graphene oxide-supported Ag nanoplates as LSPR tunable and reproducible substrates for SERS applications with optimized sensitivity. ACS Applied Materials & Interfaces, 2015, 7(32): 18038–18045
CrossRef Google scholar
[216]
Liu G, Cai W, Kong L, Duan G, Li Y, Wang J, Zuo G, Cheng Z. Standing Ag nanoplate-built hollow microsphere arrays: Controllable structural parameters and strong SERS performances. Journal of Materials Chemistry, 2012, 22(7): 3177–3184
CrossRef Google scholar
[217]
Kim Y K, Min D H. Surface confined successive growth of silver nanoplates on a solid substrate with tunable surface plasmon resonance. RSC Advances, 2014, 4(14): 6950–6956
CrossRef Google scholar
[218]
Xia Y, Xiao H. Au nanoplate/polypyrrole nanofiber composite film: Preparation, characterization and application as SERS substrate. Journal of Raman Spectroscopy, 2012, 43(4): 469–473
CrossRef Google scholar
[219]
Zhu C, Meng G, Huang Q, Li Z, Huang Z, Wang M, Yuan J. Large-scale well-separated Ag nanosheet-assembled micro-hemispheres modified with HS-beta-CD as effective SERS substrates for trace detection of PCBs. Journal of Materials Chemistry, 2012, 22(5): 2271–2278
CrossRef Google scholar
[220]
Zhu C, Meng G, Huang Q, Huang Z. Vertically aligned Ag nanoplate-assembled film as a sensitive and reproducible SERS substrate for the detection of PCB-77. Journal of Hazardous Materials, 2012, 211-212: 389–395
CrossRef Google scholar
[221]
Xu P, Zhang B, Mack N H, Doorn S K, Han X, Wang H L. Synthesis of homogeneous silver nanosheet assemblies for surface enhanced Raman scattering applications. Journal of Materials Chemistry, 2010, 20(34): 7222–7226
CrossRef Google scholar
[222]
Bi L, Rao Y, Tao Q, Dong J, Su T, Liu F, Qian W. Fabrication of large-scale gold nanoplate films as highly active SERS substrates for label-free DNA detection. Biosensors & Bioelectronics, 2013, 43: 193–199
CrossRef Google scholar
[223]
Cao B, Liu B, Yang J. Facile synthesis of single crystalline gold nanoplates and SERS investigations of 4-aminothiophenol. CrystEngComm, 2013, 15(28): 5735–5738
CrossRef Google scholar
[224]
Sun Y, Lei C, Gosztola D, Haasch R. Formation of oxides and their role in the growth of Ag nanoplates on GaAs substrates. Langmuir, 2008, 24(20): 11928–11934
CrossRef Google scholar
[225]
Beeram S R, Zamborini F P. Purification of gold nanoplates grown directly on surfaces for enhanced localized surface plasmon resonance biosensing. ACS Nano, 2010, 4(7): 3633–3646
CrossRef Google scholar
[226]
Beeram S R, Zamborini F P. Selective attachment of antibodies to the edges of gold nanostructures for enhanced localized surface plasmon resonance biosensing. Journal of the American Chemical Society, 2009, 131(33): 11689–11691
CrossRef Google scholar
[227]
Pettinger B, Ren B, Picardi G, Schuster R, Ertl G. Nanoscale probing of adsorbed species by tip-enhanced Raman spectroscopy. Physical Review Letters, 2004, 92(9): 096101
CrossRef Google scholar
[228]
Pashaee F, Hou R, Gobbo P, Workentin M S, Lagugne-Labarthet F. Tip-enhanced raman spectroscopy of self-assembled thiolated monolayers on flat gold nanoplates using gaussian-transverse and radially polarized excitations. Journal of Physical Chemistry C, 2013, 117(30): 15639–15646
CrossRef Google scholar
[229]
He X, Zhao X. Solvothermal synthesis and formation mechanism of chain-like triangular silver nanoplate assemblies: Application to metal-enhanced fluorescence (MEF). Applied Surface Science, 2009, 255(16): 7361–7368
CrossRef Google scholar
[230]
Tam F, Goodrich G P, Johnson B R, Halas N J. Plasmonic enhancement of molecular fluorescence. Nano Letters, 2007, 7(2): 496–501
CrossRef Google scholar
[231]
Liaw J W, Chen J H, Chen C S, Kuo M K. Purcell effect of nanoshell dimer on single molecule's fluorescence. Optics Express, 2009, 17(16): 13532–13540
CrossRef Google scholar
[232]
Liu N, Tang M L, Hentschel M, Giessen H, Alivisatos A P. Nanoantenna-enhanced gas sensing in a single tailored nanofocus. Nature Materials, 2011, 10(8): 631–636
CrossRef Google scholar
[233]
Song M, Wu B, Chen G, Liu Y, Ci X, Wu E, Zeng H. Photoluminescence plasmonic enhancement of single quantum dots coupled to gold microplates. Journal of Physical Chemistry C, 2014, 118(16): 8514–8520
CrossRef Google scholar
[234]
Singh A, Shukla R, Hassan S, Bhonde R R, Sastry M. Cytotoxicity and cellular internalization studies of biogenic gold nanotriangles in animal cell lines. International Journal of Green Nanotechnology, 2011, 3(4): 251–263
CrossRef Google scholar
[235]
James K T, O'Toole M G, Patel D N, Zhang G, Gobin A M, Keynton R S. A high yield, controllable process for producing tunable near infrared-absorbing gold nanoplates. RSC Advances, 2015, 5(17): 12498–12505
CrossRef Google scholar
[236]
Frederix F, Friedt J M, Choi K H, Laureyn W, Campitelli A, Mondelaers D, Maes G, Borghs G. Biosensing based on light absorption of nanoscaled gold and silver particles. Analytical Chemistry, 2003, 75(24): 6894–6900
CrossRef Google scholar
[237]
Jiang X, Liu R, Tang P, Li W, Zhong H, Zhou Z, Zhou J. Controllably tuning the near-infrared plasmonic modes of gold nanoplates for enhanced optical coherence imaging and photothermal therapy. RSC Advances, 2015, 5(98): 80709–80718
CrossRef Google scholar
[238]
Jiang Y, Horimoto N N, Imura K, Okamoto H, Matsui K, Shigemoto R. Bioimaging with two-photon-induced luminescence from triangular nanoplates and nanoparticle aggregates of gold. Advanced Materials, 2009, 21(22): 2309–2313
CrossRef Google scholar
[239]
Kunzmann A, Andersson B, Thurnherr T, Krug H, Scheynius A, Fadeel B. Toxicology of engineered nanomaterials: Focus on biocompatibility, biodistribution and biodegradation. Biochimica Et Biophysica Acta-General Subjects, 2011, 1810: 361–373
[240]
Homan K A, Souza M, Truby R, Luke G P, Green C, Vreeland E, Emelianov S. Silver nanoplate contrast agents for in vivo molecular photoacoustic imaging. ACS Nano, 2012, 6(1): 641–650
CrossRef Google scholar
[241]
Xie S, Choi S I, Xia X, Xia Y. Catalysis on faceted noble-metal nanocrystals: Both shape and size matter. Current Opinion in Chemical Engineering, 2013, 2(2): 142–150
CrossRef Google scholar
[242]
Zhou K, Li Y. Catalysis based on nanocrystals with well-defined facets. Angewandte Chemie International Edition, 2012, 51(3): 602–613
CrossRef Google scholar
[243]
Li Y, Wang W, Xia K, Zhang W, Jiang Y, Zeng Y, Zhang H, Jin C, Zhang Z, Yang D. Ultrathin two-dimensional Pd-based nanorings as catalysts for hydrogenation with high activity and stability. Small, 2015, 11(36): 4745–4752
CrossRef Google scholar
[244]
Bi Y, Lu G. Morphological controlled synthesis and catalytic activities of gold nanocrystals. Materials Letters, 2008, 62(17-18): 2696–2699
CrossRef Google scholar
[245]
Duan H, Yan N, Yu R, Chang C R, Zhou G, Hu H S, Rong H, Niu Z, Mao J, Asakura H, Tanaka T, Dyson P J, Li J, Li Y. Ultrathin rhodium nanosheets. Nature Communications, 2014, 5: 3093
CrossRef Google scholar
[246]
Lee C L, Syu C M, Chiou H P, Chen C H, Yang H L. High-yield, size-controlled synthesis of silver nanoplates and their applications as methanol-tolerant electrocatalysts in oxygen reduction reaction. International Journal of Hydrogen Energy, 2011, 36(17): 10502–10512
CrossRef Google scholar
[247]
Wang W, Zhao Y, Ding Y. 2D ultrathin core-shell Pd@Pt-monolayer nanosheets: Defect-mediated thin film growth and enhanced oxygen reduction performance. Nanoscale, 2015, 7(28): 11934–11939
CrossRef Google scholar
[248]
Wang R, Zhang W, He G, Gao P. Controlling fuel crossover and hydration in ultra-thin proton exchange membrane-based fuel cells using Pt-nanosheet catalysts. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(39): 16416–16423
CrossRef Google scholar
[249]
Lee C L, Syu C M, Huang C H, Chiou H P, Chao Y J, Yang C C. Cornered silver and silver-platinum nanodisks: Preparation and promising activity for alkaline oxygen reduction catalysis. Applied Catalysis B: Environmental, 2013, 132-133: 229–236
CrossRef Google scholar
[250]
Li W, Ma H, Zhang J, Liu X, Feng X. Fabrication of gold nanoprism thin films and their applications in designing high activity electrocatalysts. Journal of Physical Chemistry C, 2009, 113(5): 1738–1745
CrossRef Google scholar
[251]
Ghosh S, Teillout A L, Floresyona D, de Oliveira P, Hagege A, Remita H. Conducting polymer-supported palladium nanoplates for applications in direct alcohol oxidation. International Journal of Hydrogen Energy, 2015, 40(14): 4951–4959
CrossRef Google scholar
[252]
Ning R, Lu W, Zhang Y, Qin X, Luo Y, Hu J, Asiri A M, Ai-Youbi A O, Sun X. A novel strategy to synthesize Au nanoplates and their application for enzymeless H2O2 detection. Electrochimica Acta, 2012, 60: 13–16
CrossRef Google scholar
[253]
Zhang Y, Chang G, Liu S, Lu W, Tian J, Sun X. A new preparation of Au nanoplates and their application for glucose sensing. Biosensors & Bioelectronics, 2011, 28(1): 344–348
CrossRef Google scholar
[254]
Wiley B J, Lipomi D J, Bao J, Capasso F, Whitesides G M. Fabrication of surface plasmon resonators by nanoskiving single-crystalline gold microplates. Nano Letters, 2008, 8(9): 3023–3028
CrossRef Google scholar
[255]
Yun Y J, Park G, Ah C S, Park H J, Yun W S, Ha D H. Fabrication of versatile nanocomponents using single-crystalline Au nanoplates. Applied Physics Letters, 2005, 87(23): 233110
CrossRef Google scholar
[256]
Huang J S, Callegari V, Geisler P, Bruening C, Kern J, Prangsma J C, Wu X, Feichtner T, Ziegler J, Weinmann P, Kamp M, Forchel A, Biagioni P, Sennhauser U, Hecht B. Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry. Nature Communications, 2010, 1(9): 150
CrossRef Google scholar
[257]
Li M, Wu X, Zhou J, Kong Q, Li C. Single-crystal Au microflakes modulated by amino acids and their sensing and catalytic properties. Journal of Colloid and Interface Science, 2016, 467: 115–120
CrossRef Google scholar

Acknowledgements

National Key Technology R&D Program of the Ministry of Science and Technology (No. 2015BAD14B06), National Natural Science Foundation of China (Grant No. 21474125), Shandong Collaborative Innovation Center for Marine Biomass Fiber Materials and Textiles and Chinese “1000 Youth Talent Program” are kindly acknowledged for financial support.

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1023 KB)

Accesses

Citations

Detail

Sections
Recommended

/