Shape/size controlling syntheses, properties and applications of two-dimensional noble metal nanocrystals
Baozhen An, Mingjie Li, Jialin Wang, Chaoxu Li
Shape/size controlling syntheses, properties and applications of two-dimensional noble metal nanocrystals
Two dimensional (2D) nanocrystals of noble metals (e.g., Au, Ag, Pt) often have unique structural and environmental properties which make them useful for applications in electronics, optics, sensors and biomedicines. In recent years, there has been a focus on discovering the fundamental mechanisms which govern the synthesis of the diverse geometries of these 2D metal nanocrystals (e.g., shapes, thickness, and lateral sizes). This has resulted in being able to better control the properties of these 2D structures for specific applications. In this review, a brief historical survey of the intrinsic anisotropic properties and quantum size effects of 2D noble metal nanocrystals is given and then a summary of synthetic approaches to control their shapes and sizes is presented. The unique properties and fascinating applications of these nanocrystals are also discussed.
two-dimension / noble metal / nanocrystal / surface plasmon / controllable synthesis
[1] |
Holleman A F, Wiberg E. Lehrbuch der anorganischen Chemie. Journal of the American Chemical Society, 1985, 101: 118–118
|
[2] |
Stahl D A, Landen K. Abbreviations dictionary. CRC Press, 2001, 1167–1167
|
[3] |
Nobel metal. https://en.wikipedia.org/wiki/Noble_metal. 2016
|
[4] |
Alivisatos A P. Semiconductor clusters, nanocrystals, and quantum dots. Science, 1996, 271(5251): 933–937
CrossRef
Google scholar
|
[5] |
Maheshwari V, Kane J, Saraf R F. Self-assembly of a micrometers-long one-dimensional network of cemented Au nanoparticles. Advanced Materials, 2008, 20(2): 284–287
CrossRef
Google scholar
|
[6] |
Markovich G, Collier C P, Henrichs S E, Remacle F, Levine R D, Heath J R. Architectonic quantum dot solids. Accounts of Chemical Research, 1999, 32(5): 415–423
CrossRef
Google scholar
|
[7] |
Hu H, Zhou J, Kong Q, Li C. Two-dimensional Au nanocrystals: Shape/size controlling synthesis, morphologies, and applications. Particle & Particle Systems Characterization, 2015, 32: 769–808
|
[8] |
Valden M, Lai X, Goodman D W. Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science, 1998, 281(5383): 1647–1650
CrossRef
Google scholar
|
[9] |
Campbell C T, Parker S C, Starr D E. The effect of size-dependent nanoparticle energetics on catalyst sintering. Science, 2002, 298(5594): 811–814
CrossRef
Google scholar
|
[10] |
Haruta M. Catalysis of gold nanoparticles deposited on metal oxides. CATTech, 2002, 6(3): 102–115
CrossRef
Google scholar
|
[11] |
Kreibig U, Vollmer M. Optical properties of metal clusters. Berlin: Springer, 1995, 13–20
|
[12] |
Mulvaney P. Surface plasmon spectroscopy of nanosized metal particles. Langmuir, 1996, 12(3): 788–800
CrossRef
Google scholar
|
[13] |
Faraday M. The Bakerian lecture: Experimental relations of gold (and other metals) to light. Philosophical Transactions of the Royal Society of London, 1857, 147(0): 145–181
CrossRef
Google scholar
|
[14] |
Zeng Z, Tan C, Huang X, Bao S, Zhang H. Growth of noble metal nanoparticles on single-layer TiS2 and TaS2 nanosheets for hydrogen evolution reaction. Energy & Environmental Science, 2014, 7(2): 797–803
CrossRef
Google scholar
|
[15] |
Huang X, Zeng Z, Bao S, Wang M, Qi X, Fan Z, Zhang H. Solution-phase epitaxial growth of noble metal nanostructures on dispersible single-layer molybdenum disulfide nanosheets. Nature Communications, 2013, 4: 1444
CrossRef
Google scholar
|
[16] |
Huang X, Zhou X, Wu S, Wei Y, Qi X, Zhang J, Boey F, Zhang H. Reduced graphene oxide-templated photochemical synthesis and in situ assembly of au nanodots to orderly patterned Au nanodot chains. Small, 2010, 6(4): 513–516
CrossRef
Google scholar
|
[17] |
Fan Z, Zhang H. Crystal phase-controlled synthesis, properties and applications of noble metal nanomaterials. Chemical Society Reviews, 2016, 45(1): 63–82
CrossRef
Google scholar
|
[18] |
Fan Z, Luo Z, Huang X, Li B, Chen Y, Wang J, Hu Y, Zhang H. Synthesis of 4H/fcc noble multimetallic nanoribbons for electrocatalytic hydrogen evolution reaction. Journal of the American Chemical Society, 2016, 138(4): 1414–1419
CrossRef
Google scholar
|
[19] |
Fan Z, Zhang X, Yang J, Wu X J, Liu Z, Huang W, Zhang H. Synthesis of 4H/fcc-Au@ metal sulfide core-shell nanoribbons. Journal of the American Chemical Society, 2015, 137(34): 10910–10913
CrossRef
Google scholar
|
[20] |
Zhou X, Huang X, Qi X, Wu S, Xue C, Boey F Y, Yan Q, Chen P, Zhang H. In situ synthesis of metal nanoparticles on single-layer graphene oxide and reduced graphene oxide surfaces. Journal of Physical Chemistry C, 2009, 113(25): 10842–10846
CrossRef
Google scholar
|
[21] |
Fan Z, Bosman M, Huang X, Huang D, Yu Y, Ong K P, Akimov Y A, Wu L, Li B, Wu J, Huang Y, Liu Q, Eng Png C, Lip Gan C, Yang P, Zhang H. Stabilization of 4H hexagonal phase in gold nanoribbons. Nature Communications, 2015, 6: 7684
CrossRef
Google scholar
|
[22] |
Tian N, Zhou Z Y, Sun S G, Ding Y, Wang Z L. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science, 2007, 316(5825): 732–735
CrossRef
Google scholar
|
[23] |
Rodríguez-Fernández J, Pérez-Juste J, García de Abajo F J, Liz-Marzán L M. Seeded growth of submicron Au colloids with quadrupole plasmon resonance modes. Langmuir, 2006, 22(16): 7007–7010
CrossRef
Google scholar
|
[24] |
Agarwal M, Mehta H, Candler R N, Chandorkar S A, Kim B, Hopcroft M A, Melamud R, Bahl G, Yama G, Kenny T W, Murmann B. Scaling of amplitude-frequency-dependence nonlinearities in electrostatically transduced microresonators. Journal of Applied Physics, 2007, 102(7): 074903
CrossRef
Google scholar
|
[25] |
Sánchez-Iglesias A, Pastoriza-Santos I, Pérez-Juste J, Rodríguez-González B, García de Abajo F J, Liz-Marzán L M. Synthesis and optical properties of gold nanodecahedra with size control. Advanced Materials, 2006, 18(19): 2529–2534
CrossRef
Google scholar
|
[26] |
Kim F, Connor S, Song H, Kuykendall T, Yang P D. Platonic gold nanocrystals. Angewandte Chemie International Edition, 2004, 43(28): 3673–3677
CrossRef
Google scholar
|
[27] |
Li C, Shuford K L, Park Q H, Cai W, Li Y, Lee E J, Cho S O. High-yield synthesis of single-crystalline gold nano-octahedra. Angewandte Chemie International Edition, 2007, 46(18): 3264–3268
CrossRef
Google scholar
|
[28] |
Ma Y, Kuang Q, Jiang Z, Xie Z, Huang R, Zheng L. Synthesis of trisoctahedral gold nanocrystals with exposed high-index facets by a facile chemical method. Angewandte Chemie International Edition, 2008, 47(46): 8901–8904
CrossRef
Google scholar
|
[29] |
Caswell K K, Bender C M, Murphy C J. Seedless, surfactantless wet chemical synthesis of silver nanowires. Nano Letters, 2003, 3(5): 667–669
CrossRef
Google scholar
|
[30] |
Nikoobakht B, El-Sayed M A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chemistry of Materials, 2003, 15(10): 1957–1962
CrossRef
Google scholar
|
[31] |
Liu M Z, Guyot-Sionnest P. Mechanism of silver(I)-assisted growth of gold nanorods and bipyramids. Journal of Physical Chemistry B, 2005, 109(47): 22192–22200
CrossRef
Google scholar
|
[32] |
Huang X, Li S, Wu S, Huang Y, Boey F, Gan C L, Zhang H. Graphene oxide-templated synthesis of ultrathin or tadpole-shaped Au nanowires with alternating hcp and fcc domains. Advanced Materials, 2012, 24(7): 979–983
CrossRef
Google scholar
|
[33] |
Jin R C, Cao Y W, Mirkin C A, Kelly K L, Schatz G C, Zheng J G. Photoinduced conversion of silver nanospheres to nanoprisms. Science, 2001, 294(5548): 1901–1903
CrossRef
Google scholar
|
[34] |
Millstone J E, Park S, Shuford K L, Qin L D, Schatz G C, Mirkin C A. Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprisms. Journal of the American Chemical Society, 2005, 127(15): 5312–5313
CrossRef
Google scholar
|
[35] |
Shankar S S, Rai A, Ankamwar B, Singh A, Ahmad A, Sastry M. Biological synthesis of triangular gold nanoprisms. Nature Materials, 2004, 3(7): 482–488
CrossRef
Google scholar
|
[36] |
Aherne D, Ledwith D M, Gara M, Kelly J M. Optical properties and growth aspects of silver nanoprisms produced by a highly reproducible and rapid synthesis at room temperature. Advanced Functional Materials, 2008, 18(14): 2005–2016
CrossRef
Google scholar
|
[37] |
Wu X, Redmond P L, Liu H, Chen Y, Steigerwald M, Brus L. Photovoltage mechanism for room light conversion of citrate stabilized silver nanocrystal seeds to large nanoprisms. Journal of the American Chemical Society, 2008, 130(29): 9500–9506
CrossRef
Google scholar
|
[38] |
Huang X, Li H, Li S, Wu S, Boey F, Ma J, Zhang H. Synthesis of gold square-like plates from ultrathin gold square sheets: The evolution of structure phase and shape. Angewandte Chemie International Edition, 2011, 50(51): 12245–12248
CrossRef
Google scholar
|
[39] |
Wiley B J, Xiong Y J, Li Z Y, Yin Y D, Xia Y N. Right bipyramids of silver: A new shape derived from single twinned seeds. Nano Letters, 2006, 6(4): 765–768
CrossRef
Google scholar
|
[40] |
Xiong Y, Cai H, Yin Y, Xia Y. Synthesis and characterization of fivefold twinned nanorods and right bipyramids of palladium. Chemical Physics Letters, 2007, 440(4-6): 273–278
CrossRef
Google scholar
|
[41] |
Skrabalak S E, Au L, Li X, Xia Y. Facile synthesis of Ag nanocubes and Au nanocages. Nature Protocols, 2007, 2(9): 2182–2190
CrossRef
Google scholar
|
[42] |
Banerjee I A, Yu L T, Matsui H. Location-specific biological functionalization on nanotubes: Attachment of proteins at the ends of nanotubes using Au nanocrystal masks. Nano Letters, 2003, 3(3): 283–287
CrossRef
Google scholar
|
[43] |
Schwartzberg A M, Olson T Y, Talley C E, Zhang J Z. Gold nanotubes synthesized via magnetic alignment of cobalt nanoparticles as templates. Journal of Physical Chemistry C, 2007, 111(44): 16080–16082
CrossRef
Google scholar
|
[44] |
Fan Z, Huang X, Tan C, Zhang H. Thin metal nanostructures: Synthesis, properties and applications. Chemical Science (Cambridge), 2015, 6(1): 95–111
CrossRef
Google scholar
|
[45] |
Fan Z, Huang X, Han Y, Bosman M, Wang Q, Zhu Y, Liu Q, Li B, Zeng Z, Wu J, Shi W, Li S, Gan C L, Zhang H. Surface modification-induced phase transformation of hexagonal close-packed gold square sheets. Nature Communications, 2015, 6: 6571
CrossRef
Google scholar
|
[46] |
Fan Z, Zhu Y, Huang X, Han Y, Wang Q, Liu Q, Huang Y, Gan C L, Zhang H. Synthesis of ultrathin face-centered-cubic Au@Pt and Au@Pd core-shell nanoplates from hexagonal-close-packed Au square sheets. Angewandte Chemie International Edition, 2015, 54(19): 5672–5676
CrossRef
Google scholar
|
[47] |
Millstone J E, Hurst S J, Metraux G S, Cutler J I, Mirkin C A. Colloidal gold and silver triangular nanoprisms. Small, 2009, 5(6): 646–664
CrossRef
Google scholar
|
[48] |
Hong X, Tan C, Chen J, Xu Z, Zhang H. Synthesis, properties and applications of one- and two-dimensional gold nanostructures. Nano Research, 2015, 8(1): 40–55
CrossRef
Google scholar
|
[49] |
Lee C, Josephs E A, Shao J, Ye T. Nanoscale chemical patterns on gold microplates. Journal of Physical Chemistry C, 2012, 116(33): 17625–17632
CrossRef
Google scholar
|
[50] |
Dahanayaka D H, Wang J X, Hossain S, Bumm L A. Optically transparent Au{111} substrates: Flat gold nanoparticle platforms for high-resolution scanning tunneling microscopy. Journal of the American Chemical Society, 2006, 128(18): 6052–6053
CrossRef
Google scholar
|
[51] |
Deckert-Gaudig T, Deckert V. Ultraflat transparent gold nanoplates-ideal substrates for tip-enhanced raman scattering experiments. Small, 2009, 5(4): 432–436
CrossRef
Google scholar
|
[52] |
Li Q, Liu F, Lu C, Lin J M. Aminothiols sensing based on fluorosurfactant-mediated triangular gold nanoparticle-catalyzed luminol chemiluminescence. Journal of Physical Chemistry C, 2011, 115(22): 10964–10970
CrossRef
Google scholar
|
[53] |
Chen Y, Schuhmann W, Hassel A W. Electrocatalysis on gold nanostructures: Is the {110} facet more active than the {111} facet? Electrochemistry Communications, 2009, 11(10): 2036–2039
CrossRef
Google scholar
|
[54] |
Li C C, Cai W P, Cao B Q, Sun F Q, Li Y, Kan C X, Zhang L D. Mass synthesis of large, single-crystal Au nanosheets based on a polyol process. Advanced Functional Materials, 2006, 16(1): 83–90
CrossRef
Google scholar
|
[55] |
Simpson C R, Kohl M, Essenpreis M, Cope M. Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique. Physics in Medicine and Biology, 1998, 43(9): 2465–2478
CrossRef
Google scholar
|
[56] |
Li N, Zhao P, Astruc D. Anisotropic gold nanoparticles: Synthesis, properties, applications, and toxicity. Angewandte Chemie International Edition, 2014, 53(7): 1756–1789
CrossRef
Google scholar
|
[57] |
Hirsch L R, Stafford R J, Bankson J A, Sershen S R, Rivera B, Price R E, Hazle J D, Halas N J, West J L. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(23): 13549–13554
CrossRef
Google scholar
|
[58] |
Xie J, Lee J Y, Wang D I C. Synthesis of single-crystalline gold nanoplates in aqueous solutions through biomineralization by serum albumin protein. Journal of Physical Chemistry C, 2007, 111(28): 10226–10232
CrossRef
Google scholar
|
[59] |
Xiong Y, Siekkinen A R, Wang J, Yin Y, Kim M J, Xia Y. Synthesis of silver nanoplates at high yields by slowing down the polyol reduction of silver nitrate with polyacrylamide. Journal of Materials Chemistry, 2007, 17(25): 2600–2602
CrossRef
Google scholar
|
[60] |
Turkevich J, Stevenson P C, Hillier J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discussions of the Faraday Society, 1951, 11: 55–75
CrossRef
Google scholar
|
[61] |
Murphy C J, Gole A M, Hunyadi S E, Orendorff C J. One-dimensional colloidal gold and silver nanostructures. Inorganic Chemistry, 2006, 45(19): 7544–7554
CrossRef
Google scholar
|
[62] |
Burda C, Chen X B, Narayanan R, El-Sayed M A. Chemistry and properties of nanocrystals of different shapes. Chemical Reviews, 2005, 105(4): 1025–1102
CrossRef
Google scholar
|
[63] |
Lofton C, Sigmund W. Mechanisms controlling crystal habits of gold and silver colloids. Advanced Functional Materials, 2005, 15(7): 1197–1208
CrossRef
Google scholar
|
[64] |
Xia Y, Xiong Y, Lim B, Skrabalak S E. Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angewandte Chemie International Edition, 2009, 48(1): 60–103
CrossRef
Google scholar
|
[65] |
Rycenga M, Cobley C M, Zeng J, Li W, Moran C H, Zhang Q, Qin D, Xia Y. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chemical Reviews, 2011, 111(6): 3669–3712
CrossRef
Google scholar
|
[66] |
Lee H, Jeong K Y, Kang T, Seo M K, Kim B. A twin-free single-crystal Ag nanoplate plasmonic platform: hybridization of the optical nano-antenna and surface plasmon active surface. Nanoscale, 2014, 6(1): 514–520
CrossRef
Google scholar
|
[67] |
Ye J, Chen C, Van Roy W, Van Dorpe P, Maes G, Borghs G. The fabrication and optical property of silver nanoplates with different thicknesses. Nanotechnology, 2008, 19(32): 325702
CrossRef
Google scholar
|
[68] |
Xiong Y, Xia Y. Shape-controlled synthesis of metal nanostructures: The case of palladium. Advanced Materials, 2007, 19(20): 3385–3391
CrossRef
Google scholar
|
[69] |
Wiley B, Sun Y G, Mayers B, Xia Y N. Shape-controlled synthesis of metal nanostructures: The case of silver. Chemistry (Weinheim an der Bergstrasse, Germany), 2005, 11(2): 454–463
CrossRef
Google scholar
|
[70] |
Xie S, Liu X Y, Xia Y. Shape-controlled syntheses of rhodium nanocrystals for the enhancement of their catalytic properties. Nano Research, 2015, 8(1): 82–96
CrossRef
Google scholar
|
[71] |
Germain V, Li J, Ingert D, Wang Z L, Pileni M P. Stacking faults in formation of silver nanodisks. Journal of Physical Chemistry B, 2003, 107(34): 8717–8720
CrossRef
Google scholar
|
[72] |
Sun Y G, Mayers B, Xia Y N. Transformation of silver nanospheres into nanobelts and triangular nanoplates through a thermal process. Nano Letters, 2003, 3(5): 675–679
CrossRef
Google scholar
|
[73] |
Washio I, Xiong Y, Yin Y, Xia Y. Reduction by the end groups of poly(vinyl pyrrolidone): A new and versatile route to the kinetically controlled synthesis of Ag triangular nanoplates. Advanced Materials, 2006, 18(13): 1745–1749
CrossRef
Google scholar
|
[74] |
Bai X, Zheng L, Li N, Dong B, Liu H. Synthesis and characterization of microscale gold nanoplates using Langmuir monolayers of long-chain ionic liquid. Crystal Growth & Design, 2008, 8(10): 3840–3846
CrossRef
Google scholar
|
[75] |
Ah C S, Yun Y J, Park H J, Kim W J, Ha D H, Yun W S. Size-controlled synthesis of machinable single crystalline gold nanoplates. Chemistry of Materials, 2005, 17(22): 5558–5561
CrossRef
Google scholar
|
[76] |
Pelaz B, Grazu V, Ibarra A, Magen C, del Pino P, de la Fuente J M. Tailoring the synthesis and heating ability of gold nanoprisms for bioapplications. Langmuir, 2012, 28(24): 8965–8970
CrossRef
Google scholar
|
[77] |
Norman T J, Grant C D, Magana D, Zhang J Z, Liu J, Cao D L, Bridges F, Van Buuren A. Near infrared optical absorption of gold nanoparticle aggregates. Journal of Physical Chemistry B, 2002, 106(28): 7005–7012
CrossRef
Google scholar
|
[78] |
Lee J H, Kamada K, Enomoto N, Hojo J. Polyhedral gold nanoplate: High fraction synthesis of two-dimensional nanoparticles through rapid heating process. Crystal Growth & Design, 2008, 8(8): 2638–2645
CrossRef
Google scholar
|
[79] |
Kan C X, Wang G H, Zhu X G, Li C C, Cao B Q. Structure and thermal stability of gold nanoplates. Applied Physics Letters, 2006, 88(7): 071904
CrossRef
Google scholar
|
[80] |
Skrabalak S E, Wiley B J, Kim M, Formo E V, Xia Y. On the polyol synthesis of silver nanostructures: Glycolaldehyde as a reducing agent. Nano Letters, 2008, 8(7): 2077–2081
CrossRef
Google scholar
|
[81] |
Xiong Y, Washio I, Chen J, Cai H, Li Z Y, Xia Y. Poly(vinyl pyrrolidone): A dual functional reductant and stabilizer for the facile synthesis of noble metal nanoplates in aqueous solutions. Langmuir, 2006, 22(20): 8563–8570
CrossRef
Google scholar
|
[82] |
Qin H L, Wang D, Huang Z L, Wu D M, Zeng Z C, Ren B, Xu K, Jin J. Thickness-controlled synthesis of ultrathin Au sheets and surface plasmonic property. Journal of the American Chemical Society, 2013, 135(34): 12544–12547
CrossRef
Google scholar
|
[83] |
Vigderman L, Zubarev E R. High-yield synthesis of gold nanorods with longitudinal SPR peak greater than 1200 nm using hydroquinone as a reducing agent. Chemistry of Materials, 2013, 25(8): 1450–1457
CrossRef
Google scholar
|
[84] |
Huang W L, Chen C H, Huang M H. Investigation of the growth process of gold nanoplates formed by thermal aqueous solution approach and the synthesis of ultra-small gold nanoplates. Journal of Physical Chemistry C, 2007, 111(6): 2533–2538
CrossRef
Google scholar
|
[85] |
Yamamoto M, Kashiwagi Y, Sakata T, Mori H, Nakamoto M. Synthesis and morphology of star-shaped gold nanoplates protected by poly (N-vinyl-2-pyrrolidone). Chemistry of Materials, 2005, 17(22): 5391–5393
CrossRef
Google scholar
|
[86] |
Luo Y. Large-scale preparation of single-crystalline gold nanoplates. Materials Letters, 2007, 61(6): 1346–1349
CrossRef
Google scholar
|
[87] |
Yi Z, Li X, Xu X, Luo B, Luo J, Wu W, Yi Y, Tang Y. Green, effective chemical route for the synthesis of silver nanoplates in tannic acid aqueous solution. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2011, 392(1): 131–136
CrossRef
Google scholar
|
[88] |
Wang J, Wang Z. Rapid synthesis of hexagon-shaped gold nanoplates by microwave assistant method. Materials Letters, 2007, 61(19-20): 4149–4151
CrossRef
Google scholar
|
[89] |
Guo Z, Zhang Y, Xu A, Wang M, Huang L, Xu K, Gu N. Layered assemblies of single crystal gold nanoplates: Direct room temperature synthesis and mechanistic study. Journal of Physical Chemistry C, 2008, 112(33): 12638–12645
CrossRef
Google scholar
|
[90] |
Sun X P, Dong S J, Wang E. Large-scale synthesis of micrometer-scale single-crystalline Au plates of nanometer thickness by a wet-chemical route. Angewandte Chemie International Edition, 2004, 43(46): 6360–6363
CrossRef
Google scholar
|
[91] |
Roy A K, Park S Y, In I. Mussel-inspired synthesis of boron nitride nanosheet-supported gold nanoparticles and their application for catalytic reduction of 4-nitrophenol. Nanotechnology, 2015, 26(10): 105601
CrossRef
Google scholar
|
[92] |
Lin G, Lu W, Cui W, Jiang L. A simple synthesis method for gold nano-and microplate fabrication using a tree-type multiple-amine head surfactant. Crystal Growth & Design, 2010, 10(3): 1118–1123
CrossRef
Google scholar
|
[93] |
Chen C C, Hsu C H, Kuo P L. Effects of alkylated polyethylenimines on the formation of gold nanoplates. Langmuir, 2007, 23(12): 6801–6806
CrossRef
Google scholar
|
[94] |
Bakshi M S, Sachar S, Kaur G, Bhandari P, Kaur G, Biesinger M C, Possmayer F, Petersen N O. Dependence of crystal growth of gold nanoparticles on the capping behavior of surfactant at ambient conditions. Crystal Growth & Design, 2008, 8(5): 1713–1719
CrossRef
Google scholar
|
[95] |
Shao Y, Jin Y D, Dong S J. Synthesis of gold nanoplates by aspartate reduction of gold chloride. Chemical Communications, 2004, 10(9): 1104–1105
CrossRef
Google scholar
|
[96] |
Moon G D, Lim G H, Song J H, Shin M, Yu T, Lim B, Jeong U. Highly stretchable patterned gold electrodes made of Au nanosheets. Advanced Materials, 2013, 25(19): 2707–2712
CrossRef
Google scholar
|
[97] |
Liu Y, Guo R. Synthesis of protein-gold nanoparticle hybrid and gold nanoplates in protein aggregates. Materials Chemistry and Physics, 2011, 126(3): 619–627
CrossRef
Google scholar
|
[98] |
Bolisetty S, Vallooran J J, Adamcik J, Handschin S, Gramm F, Mezzenga R. Amyloid-mediated synthesis of giant, fluorescent, gold single crystals and their hybrid sandwiched composites driven by liquid crystalline interactions. Journal of Colloid and Interface Science, 2011, 361(1): 90–96
CrossRef
Google scholar
|
[99] |
Li C, Bolisetty S, Mezzenga R. Hybrid nanocomposites of gold single-crystal platelets and amyloid fibrils with tunable fluorescence, conductivity, and sensing properties. Advanced Materials, 2013, 25(27): 3694–3700
CrossRef
Google scholar
|
[100] |
Zhou J, Saha A, Adamcik J, Hu H, Kong Q, Li C, Mezzenga R. Macroscopic single-crystal gold microflakes and their devices. Advanced Materials, 2015, 27(11): 1945–1950
CrossRef
Google scholar
|
[101] |
Brown S, Sarikaya M, Johnson E. A genetic analysis of crystal growth. Journal of Molecular Biology, 2000, 299(3): 725–735
CrossRef
Google scholar
|
[102] |
Chandran S P, Chaudhary M, Pasricha R, Ahmad A, Sastry M. Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnology Progress, 2006, 22(2): 577–583
CrossRef
Google scholar
|
[103] |
Ghodake G S, Deshpande N G, Lee Y P, Jin E S. Pear fruit extract-assisted room-temperature biosynthesis of gold nanoplates. Colloids and Surfaces. B, Biointerfaces, 2010, 75(2): 584–589
CrossRef
Google scholar
|
[104] |
Wei D, Qian W, Shi Y, Ding S, Xia Y. Mass synthesis of single-crystal gold nanosheets based on chitosan. Carbohydrate Research, 2007, 342(16): 2494–2499
CrossRef
Google scholar
|
[105] |
Liu B, Xie J, Lee J Y, Ting Y P, Chen J P. Optimization of high-yield biological synthesis of single-crystalline gold nanoplates. Journal of Physical Chemistry B, 2005, 109(32): 15256–15263
CrossRef
Google scholar
|
[106] |
Baigorri R, Garcia-Mina J M, Aroca R F, Alvarez-Puebla R A. Optical enhancing properties of anisotropic gold nanoplates prepared with different fractions of a natural humic substance. Chemistry of Materials, 2008, 20(4): 1516–1521
CrossRef
Google scholar
|
[107] |
Klaus T, Joerger R, Olsson E, Granqvist C G. Silver-based crystalline nanoparticles, microbially fabricated. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(24): 13611–13614
CrossRef
Google scholar
|
[108] |
Kim J U, Cha S H, Shin K, Jho J Y, Lee J C. Preparation of gold nanowires and nanosheets in bulk block copolymer phases under mild conditions. Advanced Materials, 2004, 16(5): 459–464
CrossRef
Google scholar
|
[109] |
Cha S H, Kim J U, Kim K H, Lee J C. Preparation of gold nanosheets using poly(ethylene oxide)-poly (propylene oxide)-poly (ethylene oxide) block copolymers via photoreduction. Materials Science and Engineering B-Solid State Materials for Advanced Technology, 2007, 140(3): 182–186
CrossRef
Google scholar
|
[110] |
Miranda A, Malheiro E, Skiba E, Quaresma P, Carvalho P A, Eaton P, de Castro B, Shelnutt J A, Pereira E. One-pot synthesis of triangular gold nanoplates allowing broad and fine tuning of edge length. Nanoscale, 2010, 2(10): 2209–2216
CrossRef
Google scholar
|
[111] |
Huang X, Qi X, Huang Y, Li S, Xue C, Gan C L, Boey F, Zhang H. Photochemically controlled synthesis of anisotropic Au nanostructures: Platelet-like Au nanorods and six-star Au nanoparticles. ACS Nano, 2010, 4(10): 6196–6202
CrossRef
Google scholar
|
[112] |
Pienpinijtham P, Han X X, Suzuki T, Thammacharoen C, Ekgasit S, Ozaki Y. Micrometer-sized gold nanoplates: Starch-mediated photochemical reduction synthesis and possibility of application to tip-enhanced Raman scattering (TERS). Physical Chemistry Chemical Physics, 2012, 14(27): 9636–9641
CrossRef
Google scholar
|
[113] |
Zhang J, Li S, Wu J, Schatz G C, Mirkin C A. Plasmon-mediated synthesis of silver triangular bipyramids. Angewandte Chemie International Edition, 2009, 48(42): 7787–7791
CrossRef
Google scholar
|
[114] |
Zheng X, Xu W, Corredor C, Xu S, An J, Zhao B, Lombardi J R. Laser-induced growth of monodisperse silver nanoparticles with tunable surface plasmon resonance properties and a wavelength self-limiting effect. Journal of Physical Chemistry C, 2007, 111(41): 14962–14967
CrossRef
Google scholar
|
[115] |
Xue C, Metraux G S, Millstone J E, Mirkin C A. Mechanistic study of photomediated triangular silver nanoprism growth. Journal of the American Chemical Society, 2008, 130(26): 8337–8344
CrossRef
Google scholar
|
[116] |
Jin R C, Cao Y C, Hao E C, Metraux G S, Schatz G C, Mirkin C A. Controlling anisotropic nanoparticle growth through plasmon excitation. Nature, 2003, 425(6957): 487–490
CrossRef
Google scholar
|
[117] |
Belloni J. Photography: Enhancing sensitivity by silver-halide crystal doping. Radiation Physics and Chemistry, 2003, 67(3-4): 291–296
CrossRef
Google scholar
|
[118] |
Tsuji T, Higuchi T, Tsuji M. Laser-induced structural conversions of silver nanoparticles in pure water-influence of laser intensity. Chemistry Letters, 2005, 34(4): 476–477
CrossRef
Google scholar
|
[119] |
Belloni J, Mostafavi M, Remita H, Marignier J L, Delcourt M O. Radiation-induced synthesis of mono- and multi-metallic clusters and nanocolloids. New Journal of Chemistry, 1998, 22(11): 1239–1255
CrossRef
Google scholar
|
[120] |
Remita S, Mostafavi M, Delcourt M O. Stabilization, growth and reactivity of silver aggregates produced by radiolysis in the presence of edta. New Journal of Chemistry, 1994, 18: 581–588
|
[121] |
Wang Z, Yuan J, Zhou M, Niu L, Ivaska A. Synthesis, characterization and mechanism of cetyltrimethylammonium bromide bilayer-encapsulated gold nanosheets and nanocrystals. Applied Surface Science, 2008, 254(20): 6289–6293
CrossRef
Google scholar
|
[122] |
Jang K, Kim H J, Son S U. Low-temperature synthesis of ultrathin rhodium nanoplates via molecular orbital symmetry interaction between rhodium precursors. Chemistry of Materials, 2010, 22(4): 1273–1275
CrossRef
Google scholar
|
[123] |
Sun X P, Dong S J, Wang E K. High-yield synthesis of large single-crystalline gold nanoplates through a polyamine process. Langmuir, 2005, 21(10): 4710–4712
CrossRef
Google scholar
|
[124] |
Zeng J, Tao J, Li W, Grant J, Wang P, Zhu Y, Xia Y. A mechanistic study on the formation of silver nanoplates in the presence of silver seeds and citric acid or citrate ions. Chemistry, an Asian Journal, 2011, 6(2): 376–379
CrossRef
Google scholar
|
[125] |
Kilin D S, Prezhdo O V, Xia Y. Shape-controlled synthesis of silver nanoparticles: Ab initio study of preferential surface coordination with citric acid. Chemical Physics Letters, 2008, 458(1-3): 113–116
CrossRef
Google scholar
|
[126] |
Zhang Q, Li N, Goebl J, Lu Z, Yin Y. A systematic study of the synthesis of silver nanoplates: Is citrate a “magic” reagent? Journal of the American Chemical Society, 2011, 133(46): 18931–18939
CrossRef
Google scholar
|
[127] |
Zhang J L, Du J M, Han B X, Liu Z M, Jiang T, Zhang Z F. Sonochemical formation of single-crystalline gold nanobelts. Angewandte Chemie International Edition, 2006, 45(7): 1116–1119
CrossRef
Google scholar
|
[128] |
Huang X, Tang S, Mu X, Dai Y, Chen G, Zhou Z, Ruan F, Yang Z, Zheng N. Freestanding palladium nanosheets with plasmonic and catalytic properties. Nature Nanotechnology, 2011, 6(1): 28–32
CrossRef
Google scholar
|
[129] |
Hou C, Zhu J, Liu C, Wang X, Kuang Q, Zheng L. Formaldehyde-assisted synthesis of ultrathin Rh nanosheets for applications in CO oxidation. CrystEngComm, 2013, 15(31): 6127–6130
CrossRef
Google scholar
|
[130] |
Umar A A, Oyama M, Salleh M M, Majlis B Y. Formation of highly thin, electron-transparent gold nanoplates from nanoseeds in ternary mixtures of cetyltrimethylammonium bromide, poly(vinyl pyrrolidone), and poly(ethylene glycol). Crystal Growth & Design, 2010, 10(8): 3694–3698
CrossRef
Google scholar
|
[131] |
Zhao N, Wei Y, Sun N, Chen Q, Bai J, Zhou L, Qin Y, Li M, Qi L. Controlled synthesis of gold nanobelts and nanocombs in aqueous mixed surfactant solutions. Langmuir, 2008, 24(3): 991–998
CrossRef
Google scholar
|
[132] |
Xiao J, Qi L. Surfactant-assisted, shape-controlled synthesis of gold nanocrystals. Nanoscale, 2011, 3(4): 1383–1396
CrossRef
Google scholar
|
[133] |
Rai A, Singh A, Ahmad A, Sastry M. Role of halide ions and temperature on the morphology of biologically synthesized gold nanotriangles. Langmuir, 2006, 22(2): 736–741
CrossRef
Google scholar
|
[134] |
Ha T H, Koo H J, Chung B H. Shape-controlled syntheses of gold nanoprisms and nanorods influenced by specific adsorption of halide ions. Journal of Physical Chemistry C, 2007, 111(3): 1123–1130
CrossRef
Google scholar
|
[135] |
Millstone J E, Wei W, Jones M R, Yoo H, Mirkin C A. Iodide ions control seed-mediated growth of anisotropic gold nanoparticles. Nano Letters, 2008, 8(8): 2526–2529
CrossRef
Google scholar
|
[136] |
Sun Y G, Mayers B, Herricks T, Xia Y N. Polyol synthesis of uniform silver nanowires: A plausible growth mechanism and the supporting evidence. Nano Letters, 2003, 3(7): 955–960
CrossRef
Google scholar
|
[137] |
Kim M H, Kwak S K, Im S H, Lee J B, Choi K Y, Byun D J. Maneuvering the growth of silver nanoplates: Use of halide ions to promote vertical growth. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2014, 2(30): 6165–6170
CrossRef
Google scholar
|
[138] |
Long R, Zhou S, Wiley B J, Xiong Y. Oxidative etching for controlled synthesis of metal nanocrystals: Atomic addition and subtraction. Chemical Society Reviews, 2014, 43(17): 6288–6310
CrossRef
Google scholar
|
[139] |
Parnklang T, Lamlua B, Gatemala H, Thammacharoen C, Kuimalee S, Lohwongwatana B, Ekgasit S. Shape transformation of silver nanospheres to silver nanoplates induced by redox reaction of hydrogen peroxide. Materials Chemistry and Physics, 2015, 153: 127–134
CrossRef
Google scholar
|
[140] |
Xiong Y J, McLellan J M, Chen J Y, Yin Y D, Li Z Y, Xia Y N. Kinetically controlled synthesis of triangular and hexagonal nanoplates of palladium and their SPR/SERS properties. Journal of the American Chemical Society, 2005, 127(48): 17118–17127
CrossRef
Google scholar
|
[141] |
Millstone J E, Metraux G S, Mirkin C A. Controlling the edge length of gold nanoprisms via a seed-mediated approach. Advanced Functional Materials, 2006, 16(9): 1209–1214
CrossRef
Google scholar
|
[142] |
Hong S, Acapulco J A I Jr, Jang H J, Kulkarni A S, Park S. Kinetically controlled growth of gold nanoplates and nanorods via a one-step seed-mediated method. Bulletin of the Korean Chemical Society, 2014, 35(6): 1737–1742
CrossRef
Google scholar
|
[143] |
Zou X, Ying E, Chen H, Dong S. An approach for synthesizing nanometer- to micrometer-sized silver nanoplates. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2007, 303(3): 226–234
CrossRef
Google scholar
|
[144] |
Guo Z, Fan X, Liu L, Bian Z, Gu C, Zhang Y, Gu N, Yang D, Zhang J. Achieving high-purity colloidal gold nanoprisms and their application as biosensing platforms. Journal of Colloid and Interface Science, 2010, 348(1): 29–36
CrossRef
Google scholar
|
[145] |
Li Z, Yu Y, Chen Z, Liu T, Zhou Z K, Han J B, Li J, Jin C, Wang X. Ultrafast third-order optical non linearity in Au triangular nanoprism with strong dipole and quadrupole plasmon resonance. Journal of Physical Chemistry C, 2013, 117(39): 20127–20132
CrossRef
Google scholar
|
[146] |
Huang Y, Ferhan A R, Gao Y, Dandapat A, Kim D H. High-yield synthesis of triangular gold nanoplates with improved shape uniformity, tunable edge length and thickness. Nanoscale, 2014, 6(12): 6496–6500
CrossRef
Google scholar
|
[147] |
Chambers S A. Epitaxial film crystallography by high-energy auger and X-ray photoelectron diffraction. Advances in Physics, 1991, 40(4): 357–415
CrossRef
Google scholar
|
[148] |
Ledentsov N N, Ustinov V M, Shchukin V A, Kopev P S, Alferov Z I, Bimberg D. Quantum dot heterostructures: Fabrication, properties, lasers. Semiconductors, 1998, 32(4): 343–365
CrossRef
Google scholar
|
[149] |
Habas S E, Lee H, Radmilovic V, Somorjai G A, Yang P. Shaping binary metal nanocrystals through epitaxial seeded growth. Nature Materials, 2007, 6(9): 692–697
CrossRef
Google scholar
|
[150] |
Fan F R, Liu D Y, Wu Y F, Duan S, Xie Z X, Jiang Z Y, Tian Z Q. Epitaxial growth of heterogeneous metal nanocrystals: From gold nano-octahedra to palladium and silver nanocubes. Journal of the American Chemical Society, 2008, 130(22): 6949–6951
CrossRef
Google scholar
|
[151] |
Lim B, Wang J, Camargo P H C, Jiang M, Kim M J, Xia Y. Facile synthesis of bimetallic nanoplates consisting of Pd cores and Pt shells through seeded epitaxial growth. Nano Letters, 2008, 8(8): 2535–2540
CrossRef
Google scholar
|
[152] |
Bi L, Dong J, Xie W, Lu W, Tong W, Tao L, Qian W. Bimetallic gold-silver nanoplate array as a highly active SERS substrate for detection of streptavidin/biotin assemblies. Analytica Chimica Acta, 2013, 805: 95–100
CrossRef
Google scholar
|
[153] |
Yoo H, Millstone J E, Li S, Jang J W, Wei W, Wu J, Schatz G C, Mirkin C A. Core-shell triangular bifrustums. Nano Letters, 2009, 9(8): 3038–3041
CrossRef
Google scholar
|
[154] |
Ghosh T, Satpati B. Direct experimental evidence of nucleation and kinetics driven two-dimensional growth of core-shell structures. Journal of Physical Chemistry C, 2013, 117(20): 10825–10833
CrossRef
Google scholar
|
[155] |
Lee C L, Tseng C M, Wu R B, Wu C C, Syu C M. Porous Ag-Pd triangle nanoplates with tunable alloy ratio for catalyzing electroless copper deposition. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2009, 352(1-3): 84–87
CrossRef
Google scholar
|
[156] |
Lee C L, Chiou H P, Syu C M, Liu C R, Yang C C, Syu C C. Displacement triangular Ag/Pd nanoplate as methanol-tolerant electrocatalyst in oxygen reduction reaction. International Journal of Hydrogen Energy, 2011, 36(20): 12706–12714
CrossRef
Google scholar
|
[157] |
Chen S H, Fan Z Y, Carroll D L. Silver nanodisks: Synthesis, characterization, and self-assembly. Journal of Physical Chemistry B, 2002, 106(42): 10777–10781
CrossRef
Google scholar
|
[158] |
Chen S H, Carroll D L. Synthesis and characterization of truncated triangular silver nanoplates. Nano Letters, 2002, 2(9): 1003–1007
CrossRef
Google scholar
|
[159] |
Maillard M, Giorgio S, Pileni M P. Silver nanodisks. Advanced Materials, 2002, 14(15): 1084–1086
CrossRef
Google scholar
|
[160] |
Gao X, Lu F, Dong B, Zhou T, Tian W, Zheng L. Zwitterionic vesicles with AuCl4-counterions as soft templates for the synthesis of gold nanoplates and nanospheres. Chemical Communications, 2014, 50(63): 8783–8786
CrossRef
Google scholar
|
[161] |
Li Z H, Liu Z M, Zhang J L, Han B X, Du J M, Gao Y N, Jiang T. Synthesis of single-crystal gold nanosheets of large size in ionic liquids. Journal of Physical Chemistry B, 2005, 109(30): 14445–14448
CrossRef
Google scholar
|
[162] |
Sun Z, Chen X, Wang L, Zhang G, Jing B. Synthesis of gold nanoplates in lamellar liquid crystal. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2008, 326(1-2): 23–28
CrossRef
Google scholar
|
[163] |
Banu K, Shimura T. Synthesis of large-scale transparent gold nanosheets sandwiched between stabilizers at a solid-liquid interface. New Journal of Chemistry, 2012, 36(10): 2112–2120
CrossRef
Google scholar
|
[164] |
Sanyal A, Sastry M. Gold nanosheets via reduction of aqueous chloroaurate ions by anthracene anions bound to a liquid-liquid interface. Chemical Communications, 2003, 9(11): 1236–1237
CrossRef
Google scholar
|
[165] |
Kajimoto S, Shirasawa D, Horimoto N N, Fukumura H. Additive-free size-controlled synthesis of gold square nanoplates using photochemical reaction in dynamic phase-separating media. Langmuir, 2013, 29(19): 5889–5895
CrossRef
Google scholar
|
[166] |
Lou X, Pan H, Zhu S, Zhu C, Liao Y, Li Y, Zhang D, Chen Z. Synthesis of silver nanoprisms on reduced graphene oxide for high-performance catalyst. Catalysis Communications, 2015, 69: 43–47
CrossRef
Google scholar
|
[167] |
Wang W, Gu J, Hua W, Jia X, Xi K. A novel high efficiency composite catalyst: Single crystal triangular Au nanoplates supported by functional reduced graphene oxide. Chemical Communications, 2014, 50(64): 8889–8891
CrossRef
Google scholar
|
[168] |
Huang X, Li S, Huang Y, Wu S, Zhou X, Li S, Gan C L, Boey F, Mirkin C A, Zhang H. Synthesis of hexagonal close-packed gold nanostructures. Nature Communications, 2011, 2: 292
CrossRef
Google scholar
|
[169] |
Wang C W, Ding H P, Xin G Q, Chen X, Lee Y I, Hao J, Liu H G. Silver nanoplates formed at the air/water and solid/water interfaces. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2009, 340(1-3): 93–98
CrossRef
Google scholar
|
[170] |
Wang L, Zhu Y, Wang J Q, Liu F, Huang J, Meng X, Basset J M, Han Y, Xiao F S. Two-dimensional gold nanostructures with high activity for selective oxidation of carbon-hydrogen bonds. Nature Communications, 2015, 6: 6957
CrossRef
Google scholar
|
[171] |
Ru E C L, Etchegoin P G. Principles of surface-enhanced raman spectroscopy. Amsterdam: Elsevier, 2009: 655–663
|
[172] |
Xia Y N, Halas N J. Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures. MRS Bulletin, 2005, 30(05): 338–348
CrossRef
Google scholar
|
[173] |
Xu J Y, Wang J, Kong L T, Zheng G C, Guo Z, Liu J H. SERS detection of explosive agent by macrocyclic compound functionalized triangular gold nanoprisms. Journal of Raman Spectroscopy : JRS, 2011, 42(9): 1728–1735
CrossRef
Google scholar
|
[174] |
Hong S, Shuford K L, Park S. Shape transformation of gold nanoplates and their surface plasmon characterization: Triangular to hexagonal nanoplates. Chemistry of Materials, 2011, 23(8): 2011–2013
CrossRef
Google scholar
|
[175] |
Xue C, Mirkin C A. pH-switchable silver nanoprism growth pathways. Angewandte Chemie International Edition, 2007, 46(12): 2036–2038
CrossRef
Google scholar
|
[176] |
Shuford K L, Ratner M A, Schatz G C. Multipolar excitation in triangular nanoprisms. Journal of Chemical Physics, 2005, 123(11): 114713
CrossRef
Google scholar
|
[177] |
Wiley B J, Im S H, Li Z Y, McLellan J, Siekkinen A, Xia Y. Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis. Journal of Physical Chemistry B, 2006, 110(32): 15666–15675
CrossRef
Google scholar
|
[178] |
Métraux G S, Mirkin C A. Rapid thermal synthesis of silver nanoprisms with chemically tailorable thickness. Advanced Materials, 2005, 17(4): 412–415
CrossRef
Google scholar
|
[179] |
Kelly K L, Coronado E, Zhao L L, Schatz G C. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. Journal of Physical Chemistry B, 2003, 107(3): 668–677
CrossRef
Google scholar
|
[180] |
Yoon I, Kang T, Choi W, Kim J, Yoo Y, Joo S W, Park Q H, Ihee H, Kim B. Single nanowire on a film as an efficient SERS-active platform. Journal of the American Chemical Society, 2009, 131(2): 758–762
CrossRef
Google scholar
|
[181] |
Hong X, Wang D, Li Y. Kinked gold nanowires and their SPR/SERS properties. Chemical Communications, 2011, 47(35): 9909–9911
CrossRef
Google scholar
|
[182] |
Jena B K, Raj C R. Shape-controlled synthesis of gold nanoprism and nanoperiwinkles with pronounced electrocatalytic activity. Journal of Physical Chemistry C, 2007, 111(42): 15146–15153
CrossRef
Google scholar
|
[183] |
Corma A, Concepción P, Boronat M, Sabater M J, Navas J, Yacaman M J, Larios E, Posadas A, Arturo López-Quintela M, Buceta D, Mendoza E, Guilera G, Mayoral A. Exceptional oxidation activity with size-controlled supported gold clusters of low atomicity. Nature Chemistry, 2013, 5(9): 775–781
CrossRef
Google scholar
|
[184] |
Chen M, Goodman D W. Catalytically active gold: From nanoparticles to ultrathin films. Accounts of Chemical Research, 2006, 39(10): 739–746
CrossRef
Google scholar
|
[185] |
Zhang H, Jin M, Xiong Y, Lim B, Xia Y. Shape-controlled synthesis of Pd nanocrystals and their catalytic applications. Accounts of Chemical Research, 2013, 46(8): 1783–1794
CrossRef
Google scholar
|
[186] |
Andoy N M, Zhou X, Choudhary E, Shen H, Liu G, Chen P. Single-molecule catalysis mapping quantifies site-specific activity and uncovers radial activity gradient on single 2D nanocrystals. Journal of the American Chemical Society, 2013, 135(5): 1845–1852
CrossRef
Google scholar
|
[187] |
Tian N, Zhou Z Y, Sun S G. Platinum metal catalysts of high-index surfaces: From single-crystal planes to electrochemically shape-controlled nanoparticles. Journal of Physical Chemistry C, 2008, 112(50): 19801–19817
CrossRef
Google scholar
|
[188] |
Sun S G, Chen A C, Huang T S, Li J B, Tian Z W. Electrocatalytic properties of Pt(111), Pt(332), Pt(331) and Pt(110) single-crystal electrodes towards ethylene-glycol oxidation in sulfuric-acid-solutions. Journal of Electroanalytical Chemistry, 1992, 340(1-2): 213–226
CrossRef
Google scholar
|
[189] |
Liao H G, Jiang Y X, Zhou Z Y, Chen S P, Sun S G. Shape-controlled synthesis of gold nanoparticles in deep eutectic solvents for studies of structure-functionality relationships in electrocatalysis. Angewandte Chemie International Edition, 2008, 47(47): 9100–9103
CrossRef
Google scholar
|
[190] |
Li L, Wang Z, Huang T, Xie J, Qi L. Porous gold nanobelts templated by metal-surfactant complex nanobelts. Langmuir, 2010, 26(14): 12330–12335
CrossRef
Google scholar
|
[191] |
Wang Z L. Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. Journal of Physical Chemistry B, 2000, 104(6): 1153–1175
CrossRef
Google scholar
|
[192] |
Somorjai G A, Blakely D W. Mechanism of catalysis of hydrocarbon reactions by platinum surfaces. Nature, 1975, 258(5536): 580–583
CrossRef
Google scholar
|
[193] |
Lee C L, Tseng C M, Wu C C, Chou T C, Syu C M. High activity of hexagonal Ag/Pt nanoshell catalyst for oxygen electroreduction. Nanoscale Research Letters, 2009, 4(3): 193–196
CrossRef
Google scholar
|
[194] |
Jang H J, Hong S, Park S. Shape-controlled synthesis of Pt nanoframes. Journal of Materials Chemistry, 2012, 22(37): 19792–19797
CrossRef
Google scholar
|
[195] |
Lee C L, Tseng C M, Wu R B, Yang K L. Hollow Ag/Pd triangular nanoplate: A novel activator for electroless nickel deposition. Nanotechnology, 2008, 19(21): 215709
CrossRef
Google scholar
|
[196] |
Xiong Y, McLellan J M, Yin Y, Xia Y. Synthesis of palladium icosahedra with twinned structure by blocking oxidative etching with citric acid or citrate ions. Angewandte Chemie International Edition, 2007, 46(5): 790–794
CrossRef
Google scholar
|
[197] |
Smith P A, Nordquist C D, Jackson T N, Mayer T S, Martin B R, Mbindyo J, Mallouk T E. Electric-field assisted assembly and alignment of metallic nanowires. Applied Physics Letters, 2000, 77(9): 1399–1401
CrossRef
Google scholar
|
[198] |
Chen D, Qiao X, Qiu X, Tan F, Chen J, Jiang R. Effect of silver nanostructures on the resistivity of electrically conductive adhesives composed of silver flakes. Journal of Materials Science Materials in Electronics, 2010, 21(5): 486–490
CrossRef
Google scholar
|
[199] |
Wu B, Heidelberg A, Boland J J. Mechanical properties of ultrahigh-strength gold nanowires. Nature Materials, 2005, 4(7): 525–529
CrossRef
Google scholar
|
[200] |
Lee S, Im J, Yoo Y, Bitzek E, Kiener D, Richter G, Kim B, Oh S H. Reversible cyclic deformation mechanism of gold nanowires by twinning-detwinning transition evidenced from in situ TEM. Nature Communications, 2014, 5: 3033
CrossRef
Google scholar
|
[201] |
Wang J, Sansoz F, Huang J, Liu Y, Sun S, Zhang Z, Mao S X. Near-ideal theoretical strength in gold nanowires containing angstrom scale twins. Nature Communications, 2013, 4: 1742
CrossRef
Google scholar
|
[202] |
Wilson R. The use of gold nanoparticles in diagnostics and detection. Chemical Society Reviews, 2008, 37(9): 2028–2045
CrossRef
Google scholar
|
[203] |
Futamata M, Maruyama Y, Ishikawa M. Local electric field and scattering cross section of Ag nanoparticles under surface plasmon resonance by finite difference time domain method. Journal of Physical Chemistry B, 2003, 107(31): 7607–7617
CrossRef
Google scholar
|
[204] |
Hayazawa N, Ishitobi H, Taguchi A, Tarun A, Ikeda K, Kawata S. Focused excitation of surface plasmon polaritons based on gap-mode in tip-enhanced spectroscopy. Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, 2007, 46: 7995–7999
|
[205] |
Zhang Y, Charles D E, Ledwith D M, Aherne D, Cunningham S, Voisin M, Blau W J, Gunko Y K, Kelly J M, Brennan-Fournet M E. Wash-free highly sensitive detection of C-reactive protein using gold derivatised triangular silver nanoplates. RSC Advances, 2014, 4(55): 29022–29031
CrossRef
Google scholar
|
[206] |
Xu B B, Wang L, Ma Z C, Zhang R, Chen Q D, Lv C, Han B, Xiao X Z, Zhang X L, Zhang Y L, Ueno K, Misawa H, Sun H B. Surface-plasmon-mediated programmable optical nanofabrication of an oriented silver nanoplate. ACS Nano, 2014, 8(7): 6682–6692
CrossRef
Google scholar
|
[207] |
Lin W H, Lu Y H, Hsu Y J. Au nanoplates as robust, recyclable SERS substrates for ultrasensitive chemical sensing. Journal of Colloid and Interface Science, 2014, 418: 87–94
CrossRef
Google scholar
|
[208] |
Lai Y, Pan W, Zhang D, Zhan J. Silver nanoplates prepared by modified galvanic displacement for surface-enhanced Raman spectroscopy. Nanoscale, 2011, 3(5): 2134–2137
CrossRef
Google scholar
|
[209] |
Gunawidjaja R, Kharlampieva E, Choi I, Tsukruk V V. Bimetallic nanostructures as active Raman markers: Gold-nanoparticle assembly on 1D and 2D silver nanostructure surfaces. Small, 2009, 5(21): 2460–2466
CrossRef
Google scholar
|
[210] |
Li Z, Meng G, Liang T, Zhang Z, Zhu X. Facile synthesis of large-scale Ag nanosheet-assembled films with sub-10 nm gaps as highly active and homogeneous SERS substrates. Applied Surface Science, 2013, 264: 383–390
CrossRef
Google scholar
|
[211] |
Qian Y, Meng G, Huang Q, Zhu C, Huang Z, Sun K, Chen B. Flexible membranes of Ag-nanosheet grafted polyamide-nanofibers as effective 3D SERS substrates. Nanoscale, 2014, 6(9): 4781–4788
CrossRef
Google scholar
|
[212] |
Liu H, Yang Q. A two-step temperature-raising process to gold nanoplates with optical and surface enhanced Raman spectrum properties. CrystEngComm, 2011, 13(7): 2281–2288
CrossRef
Google scholar
|
[213] |
Liu H, Yang Q. Feasible synthesis of etched gold nanoplates with catalytic activity and SERS properties. CrystEngComm, 2011, 13(17): 5488–5494
CrossRef
Google scholar
|
[214] |
Lu L, Kobayashi A, Tawa K, Ozaki Y. Silver nanoplates with special shapes: Controlled synthesis and their surface plasmon resonance and surface-enhanced Raman scattering properties. Chemistry of Materials, 2006, 18(20): 4894–4901
CrossRef
Google scholar
|
[215] |
Hou H, Wang P, Zhang J, Li C, Jin Y. Graphene oxide-supported Ag nanoplates as LSPR tunable and reproducible substrates for SERS applications with optimized sensitivity. ACS Applied Materials & Interfaces, 2015, 7(32): 18038–18045
CrossRef
Google scholar
|
[216] |
Liu G, Cai W, Kong L, Duan G, Li Y, Wang J, Zuo G, Cheng Z. Standing Ag nanoplate-built hollow microsphere arrays: Controllable structural parameters and strong SERS performances. Journal of Materials Chemistry, 2012, 22(7): 3177–3184
CrossRef
Google scholar
|
[217] |
Kim Y K, Min D H. Surface confined successive growth of silver nanoplates on a solid substrate with tunable surface plasmon resonance. RSC Advances, 2014, 4(14): 6950–6956
CrossRef
Google scholar
|
[218] |
Xia Y, Xiao H. Au nanoplate/polypyrrole nanofiber composite film: Preparation, characterization and application as SERS substrate. Journal of Raman Spectroscopy, 2012, 43(4): 469–473
CrossRef
Google scholar
|
[219] |
Zhu C, Meng G, Huang Q, Li Z, Huang Z, Wang M, Yuan J. Large-scale well-separated Ag nanosheet-assembled micro-hemispheres modified with HS-beta-CD as effective SERS substrates for trace detection of PCBs. Journal of Materials Chemistry, 2012, 22(5): 2271–2278
CrossRef
Google scholar
|
[220] |
Zhu C, Meng G, Huang Q, Huang Z. Vertically aligned Ag nanoplate-assembled film as a sensitive and reproducible SERS substrate for the detection of PCB-77. Journal of Hazardous Materials, 2012, 211-212: 389–395
CrossRef
Google scholar
|
[221] |
Xu P, Zhang B, Mack N H, Doorn S K, Han X, Wang H L. Synthesis of homogeneous silver nanosheet assemblies for surface enhanced Raman scattering applications. Journal of Materials Chemistry, 2010, 20(34): 7222–7226
CrossRef
Google scholar
|
[222] |
Bi L, Rao Y, Tao Q, Dong J, Su T, Liu F, Qian W. Fabrication of large-scale gold nanoplate films as highly active SERS substrates for label-free DNA detection. Biosensors & Bioelectronics, 2013, 43: 193–199
CrossRef
Google scholar
|
[223] |
Cao B, Liu B, Yang J. Facile synthesis of single crystalline gold nanoplates and SERS investigations of 4-aminothiophenol. CrystEngComm, 2013, 15(28): 5735–5738
CrossRef
Google scholar
|
[224] |
Sun Y, Lei C, Gosztola D, Haasch R. Formation of oxides and their role in the growth of Ag nanoplates on GaAs substrates. Langmuir, 2008, 24(20): 11928–11934
CrossRef
Google scholar
|
[225] |
Beeram S R, Zamborini F P. Purification of gold nanoplates grown directly on surfaces for enhanced localized surface plasmon resonance biosensing. ACS Nano, 2010, 4(7): 3633–3646
CrossRef
Google scholar
|
[226] |
Beeram S R, Zamborini F P. Selective attachment of antibodies to the edges of gold nanostructures for enhanced localized surface plasmon resonance biosensing. Journal of the American Chemical Society, 2009, 131(33): 11689–11691
CrossRef
Google scholar
|
[227] |
Pettinger B, Ren B, Picardi G, Schuster R, Ertl G. Nanoscale probing of adsorbed species by tip-enhanced Raman spectroscopy. Physical Review Letters, 2004, 92(9): 096101
CrossRef
Google scholar
|
[228] |
Pashaee F, Hou R, Gobbo P, Workentin M S, Lagugne-Labarthet F. Tip-enhanced raman spectroscopy of self-assembled thiolated monolayers on flat gold nanoplates using gaussian-transverse and radially polarized excitations. Journal of Physical Chemistry C, 2013, 117(30): 15639–15646
CrossRef
Google scholar
|
[229] |
He X, Zhao X. Solvothermal synthesis and formation mechanism of chain-like triangular silver nanoplate assemblies: Application to metal-enhanced fluorescence (MEF). Applied Surface Science, 2009, 255(16): 7361–7368
CrossRef
Google scholar
|
[230] |
Tam F, Goodrich G P, Johnson B R, Halas N J. Plasmonic enhancement of molecular fluorescence. Nano Letters, 2007, 7(2): 496–501
CrossRef
Google scholar
|
[231] |
Liaw J W, Chen J H, Chen C S, Kuo M K. Purcell effect of nanoshell dimer on single molecule's fluorescence. Optics Express, 2009, 17(16): 13532–13540
CrossRef
Google scholar
|
[232] |
Liu N, Tang M L, Hentschel M, Giessen H, Alivisatos A P. Nanoantenna-enhanced gas sensing in a single tailored nanofocus. Nature Materials, 2011, 10(8): 631–636
CrossRef
Google scholar
|
[233] |
Song M, Wu B, Chen G, Liu Y, Ci X, Wu E, Zeng H. Photoluminescence plasmonic enhancement of single quantum dots coupled to gold microplates. Journal of Physical Chemistry C, 2014, 118(16): 8514–8520
CrossRef
Google scholar
|
[234] |
Singh A, Shukla R, Hassan S, Bhonde R R, Sastry M. Cytotoxicity and cellular internalization studies of biogenic gold nanotriangles in animal cell lines. International Journal of Green Nanotechnology, 2011, 3(4): 251–263
CrossRef
Google scholar
|
[235] |
James K T, O'Toole M G, Patel D N, Zhang G, Gobin A M, Keynton R S. A high yield, controllable process for producing tunable near infrared-absorbing gold nanoplates. RSC Advances, 2015, 5(17): 12498–12505
CrossRef
Google scholar
|
[236] |
Frederix F, Friedt J M, Choi K H, Laureyn W, Campitelli A, Mondelaers D, Maes G, Borghs G. Biosensing based on light absorption of nanoscaled gold and silver particles. Analytical Chemistry, 2003, 75(24): 6894–6900
CrossRef
Google scholar
|
[237] |
Jiang X, Liu R, Tang P, Li W, Zhong H, Zhou Z, Zhou J. Controllably tuning the near-infrared plasmonic modes of gold nanoplates for enhanced optical coherence imaging and photothermal therapy. RSC Advances, 2015, 5(98): 80709–80718
CrossRef
Google scholar
|
[238] |
Jiang Y, Horimoto N N, Imura K, Okamoto H, Matsui K, Shigemoto R. Bioimaging with two-photon-induced luminescence from triangular nanoplates and nanoparticle aggregates of gold. Advanced Materials, 2009, 21(22): 2309–2313
CrossRef
Google scholar
|
[239] |
Kunzmann A, Andersson B, Thurnherr T, Krug H, Scheynius A, Fadeel B. Toxicology of engineered nanomaterials: Focus on biocompatibility, biodistribution and biodegradation. Biochimica Et Biophysica Acta-General Subjects, 2011, 1810: 361–373
|
[240] |
Homan K A, Souza M, Truby R, Luke G P, Green C, Vreeland E, Emelianov S. Silver nanoplate contrast agents for in vivo molecular photoacoustic imaging. ACS Nano, 2012, 6(1): 641–650
CrossRef
Google scholar
|
[241] |
Xie S, Choi S I, Xia X, Xia Y. Catalysis on faceted noble-metal nanocrystals: Both shape and size matter. Current Opinion in Chemical Engineering, 2013, 2(2): 142–150
CrossRef
Google scholar
|
[242] |
Zhou K, Li Y. Catalysis based on nanocrystals with well-defined facets. Angewandte Chemie International Edition, 2012, 51(3): 602–613
CrossRef
Google scholar
|
[243] |
Li Y, Wang W, Xia K, Zhang W, Jiang Y, Zeng Y, Zhang H, Jin C, Zhang Z, Yang D. Ultrathin two-dimensional Pd-based nanorings as catalysts for hydrogenation with high activity and stability. Small, 2015, 11(36): 4745–4752
CrossRef
Google scholar
|
[244] |
Bi Y, Lu G. Morphological controlled synthesis and catalytic activities of gold nanocrystals. Materials Letters, 2008, 62(17-18): 2696–2699
CrossRef
Google scholar
|
[245] |
Duan H, Yan N, Yu R, Chang C R, Zhou G, Hu H S, Rong H, Niu Z, Mao J, Asakura H, Tanaka T, Dyson P J, Li J, Li Y. Ultrathin rhodium nanosheets. Nature Communications, 2014, 5: 3093
CrossRef
Google scholar
|
[246] |
Lee C L, Syu C M, Chiou H P, Chen C H, Yang H L. High-yield, size-controlled synthesis of silver nanoplates and their applications as methanol-tolerant electrocatalysts in oxygen reduction reaction. International Journal of Hydrogen Energy, 2011, 36(17): 10502–10512
CrossRef
Google scholar
|
[247] |
Wang W, Zhao Y, Ding Y. 2D ultrathin core-shell Pd@Pt-monolayer nanosheets: Defect-mediated thin film growth and enhanced oxygen reduction performance. Nanoscale, 2015, 7(28): 11934–11939
CrossRef
Google scholar
|
[248] |
Wang R, Zhang W, He G, Gao P. Controlling fuel crossover and hydration in ultra-thin proton exchange membrane-based fuel cells using Pt-nanosheet catalysts. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(39): 16416–16423
CrossRef
Google scholar
|
[249] |
Lee C L, Syu C M, Huang C H, Chiou H P, Chao Y J, Yang C C. Cornered silver and silver-platinum nanodisks: Preparation and promising activity for alkaline oxygen reduction catalysis. Applied Catalysis B: Environmental, 2013, 132-133: 229–236
CrossRef
Google scholar
|
[250] |
Li W, Ma H, Zhang J, Liu X, Feng X. Fabrication of gold nanoprism thin films and their applications in designing high activity electrocatalysts. Journal of Physical Chemistry C, 2009, 113(5): 1738–1745
CrossRef
Google scholar
|
[251] |
Ghosh S, Teillout A L, Floresyona D, de Oliveira P, Hagege A, Remita H. Conducting polymer-supported palladium nanoplates for applications in direct alcohol oxidation. International Journal of Hydrogen Energy, 2015, 40(14): 4951–4959
CrossRef
Google scholar
|
[252] |
Ning R, Lu W, Zhang Y, Qin X, Luo Y, Hu J, Asiri A M, Ai-Youbi A O, Sun X. A novel strategy to synthesize Au nanoplates and their application for enzymeless H2O2 detection. Electrochimica Acta, 2012, 60: 13–16
CrossRef
Google scholar
|
[253] |
Zhang Y, Chang G, Liu S, Lu W, Tian J, Sun X. A new preparation of Au nanoplates and their application for glucose sensing. Biosensors & Bioelectronics, 2011, 28(1): 344–348
CrossRef
Google scholar
|
[254] |
Wiley B J, Lipomi D J, Bao J, Capasso F, Whitesides G M. Fabrication of surface plasmon resonators by nanoskiving single-crystalline gold microplates. Nano Letters, 2008, 8(9): 3023–3028
CrossRef
Google scholar
|
[255] |
Yun Y J, Park G, Ah C S, Park H J, Yun W S, Ha D H. Fabrication of versatile nanocomponents using single-crystalline Au nanoplates. Applied Physics Letters, 2005, 87(23): 233110
CrossRef
Google scholar
|
[256] |
Huang J S, Callegari V, Geisler P, Bruening C, Kern J, Prangsma J C, Wu X, Feichtner T, Ziegler J, Weinmann P, Kamp M, Forchel A, Biagioni P, Sennhauser U, Hecht B. Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry. Nature Communications, 2010, 1(9): 150
CrossRef
Google scholar
|
[257] |
Li M, Wu X, Zhou J, Kong Q, Li C. Single-crystal Au microflakes modulated by amino acids and their sensing and catalytic properties. Journal of Colloid and Interface Science, 2016, 467: 115–120
CrossRef
Google scholar
|
/
〈 | 〉 |