REVIEW ARTICLE

Development, applications and challenges of ReaxFF reactive force field in molecular simulations

  • You Han 1 ,
  • Dandan Jiang 1 ,
  • Jinli Zhang , 1 ,
  • Wei Li 1 ,
  • Zhongxue Gan 2 ,
  • Junjie Gu 3
Expand
  • 1. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
  • 2. ENN Group, State Key Laboratory of Low Carbon Energy of Coal, Langfang 065001, China
  • 3. Mechanical and Aerospace Engineering, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S5B6, Canada

Received date: 12 Jul 2015

Accepted date: 13 Oct 2015

Published date: 29 Feb 2016

Copyright

2015 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

As an advanced and new technology in molecular simulation fields, ReaxFF reactive force field has been developed and widely applied during the last two decades. ReaxFF bridges the gap between quantum chemistry (QC) and non-reactive empirical force field based molecular simulation methods, and aims to provide a transferable potential which can describe many chemical reactions with bond formation and breaking. This review presents an overview of the development and applications of ReaxFF reactive force field in the fields of reaction processes, biology and materials, including (1) the mechanism studies of organic reactions under extreme conditions (like high temperatures and pressures) related with high-energy materials, hydrocarbons and coals, (2) the structural properties of nanomaterials such as graphene oxides, carbon nanotubes, silicon nanowires and metal nanoparticles, (3) interfacial interactions of solid-solid, solid-liquid and biological/inorganic surfaces, (4) the catalytic mechanisms of many types of metals and metal oxides, and (5) electrochemical mechanisms of fuel cells and lithium batteries. The limitations and challenges of ReaxFF reactive force field are also mentioned in this review, which will shed light on its future applications to a wider range of chemical environments.

Cite this article

You Han , Dandan Jiang , Jinli Zhang , Wei Li , Zhongxue Gan , Junjie Gu . Development, applications and challenges of ReaxFF reactive force field in molecular simulations[J]. Frontiers of Chemical Science and Engineering, 2016 , 10(1) : 16 -38 . DOI: 10.1007/s11705-015-1545-z

Acknowledgements

The authors acknowledge the financial support provided by the National High-Tech Research and Development Program of China (No. 2011AA05A201), National Natural Science Foundation of China (Grant Nos. 21106094 and 21206021), International Science & Technology Cooperation Program of China (No. 2013DFG42680), andthe Program for Changjiang Scholars, Innovative Research Team in University (No. IRT1161), Tianjin Science Foundation for Youths, China (No. 12JCQNJC03100).
1
Allinger N L, Yuh Y H, Lii J H. Molecular mechanics. The MM3 force field for hydrocarbons.1. Journal of the American Chemical Society, 1989, 111(23): 8551–8566

DOI

2
Allinger N L, Li F, Yan L, Tai J C. Molecular mechanics (MM3) calculations on conjugated hydrocarbons. Journal of Computational Chemistry, 1990, 11(7): 868–895

DOI

3
Mayo S L, Olafson B D, Goddard W A. Dreiding: A generic force-field for molecular simulations. Journal of Physical Chemistry, 1990, 94(26): 8897–8909

DOI

4
Rappé A K, Casewit C J, Colwell K S, Goddard W A, Skiff W M. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. Journal of the American Chemical Society, 1992, 114(25): 10024–10035

DOI

5
van Duin A C T, Dasgupta S, Lorant F, Goddard W A, Reax F F. A reactive force field for hydrocarbons. Journal of Physical Chemistry A, 2001, 105(41): 9396–9409

DOI

6
van Duin A C T, Strachan A, Stewman S, Zhang Q S, Xu X, Goddard W A. ReaxFFSiO reactive force field for silicon and silicon oxide systems. Journal of Physical Chemistry A, 2003, 107(19): 3803–3811

DOI

7
Han S S, Kang J K, Lee H M, van Duin A C T, Goddard W A. The theoretical study on interaction of hydrogen with single-walled boron nitride nanotubes. I. The reactive force field ReaxFFHBN development. Journal of Chemical Physics, 2005, 123(11): 114703-1–114703-8

8
Zhang Q. Ҫağin T, van Duin A, Goddard W A, Qi Y, Hector L G. Adhesion and nonwetting-wetting transition in the Al/α-Al2O3 interface. Physical Review B: Condensed Matter and Materials Physics, 2004, 69(4): 045423-1–045423-11

9
Cheung S, Deng W Q, van Duin A C T, Goddard W A. ReaxFFMgH reactive force field for magnesium hydride systems. Journal of Physical Chemistry A, 2005, 109(5): 851–859

DOI

10
Nielson K D, van Duin A C T, Oxgaard J, Deng W Q, Goddard W A. Development of the ReaxFF reactive force field for describing transition metal catalyzed reactions, with application to the initial stages of the catalytic formation of carbon nanotubes. Journal of Physical Chemistry A, 2005, 109(3): 493–499

DOI

11
Dewer M J S, Thiel W. Ground states of molecules. 38. The MNDO method approximations and parameters. Journal of the American Chemical Society, 1977, 99(15): 4899–4907

DOI

12
Anders E, Koch R, Freunscht P. Optimization and application of lithium parameters for PM3. Journal of Computational Chemistry, 1993, 14(11): 1301–1312

DOI

13
Han S S, van Duin A C T, Goddard W A, Lee H M. Optimization and application of lithium parameters for the reactive force field, ReaxFF. Journal of Physical Chemistry A, 2005, 109(20): 4575–4582

DOI

14
Goddard W A, van Duin A, Chenoweth K, Cheng M J, Pudar S, Oxgaard J, Merinov B, Jang Y H, Persson P. Development of the ReaxFF reactive force field for mechanistic studies of catalytic selective oxidation processes on BiMoO x. Topics in Catalysis, 2006, 38(1-3): 93–103

DOI

15
Raymand D, van Duin A C T, Baudin M, Hermansson K. A reactive force field (ReaxFF) for zinc oxide. Surface Science, 2008, 602(5): 1020–1031

DOI

16
Ojwang J G O, van Santen R, Kramer G J, van Duin A C T, Goddard W A. Modeling the sorption dynamics of NaH using a reactive force field. Journal of Chemical Physics, 2008, 128(16): 164714-1–164714-9

DOI

17
Chenoweth K, van Duin A C T, Persson P, Cheng M J, Oxgaard J, Goddard W A. Development and application of a ReaxFF reactive force field for oxidative dehydrogenation on vanadium oxide catalysts. Journal of Physical Chemistry C, 2008, 112(37): 14645–14654

DOI

18
Järvi T T, Kuronen A, Hakala M, Nordlund K, van Duin A C T, Goddard W A III, Jacob T. Development of a ReaxFF description for gold. European Physical Journal B, 2008, 66(1): 75–79

DOI

19
van Duin A C T, Merinov B V, Han S S, Dorso C O, Goddard W A. ReaxFF reactive force field for the Y-doped BaZrO3 proton conductor with applications to diffusion rates for multigranular systems. Journal of Physical Chemistry A, 2008, 112(45): 11414–11422

DOI

20
Mueller J E, van Duin A C T, Goddard W A III. Development and validation of ReaxFF reactive force field for hydrocarbon chemistry catalyzed by nickel. Journal of Physical Chemistry C, 2010, 114(11): 4939–4949

DOI

21
Rahaman O, van Duin A C T, Bryantsev V S, Mueller J E, Solares S D, Goddard W A III, Doren D J. Development of a ReaxFF reactive force field for aqueous chloride and copper chloride. Journal of Physical Chemistry A, 2010, 114(10): 3556–3568

DOI

22
van Duin A C T, Bryantsev V S, Diallo M S, Goddard W A, Rahaman O, Doren D J, Raymand D, Hermansson K. Development and validation of a ReaxFF reactive force field for Cu cation/water interactions and copper metal/metal oxide/metal hydroxide condensed phases. Journal of Physical Chemistry A, 2010, 114(35): 9507–9514

DOI

23
Weismiller M R, van Duin A C T, Lee J, Yetter R A. ReaxFF reactive force field development and applications for molecular dynamics simulations of ammonia borane dehydrogenation and combustion. Journal of Physical Chemistry A, 2010, 114(17): 5485–5492

DOI

24
Aryanpour M, van Duin A C T, Kubicki J D. Development of a reactive force field for iron-oxyhydroxide systems. Journal of Physical Chemistry A, 2010, 114(21): 6298–6307

DOI

25
Joshi K, van Duin A C T, Jacob T. Development of a ReaxFF description of gold oxides and initial application to cold welding of partially oxidized gold surfaces. Journal of Materials Chemistry, 2010, 20(46): 10431–10437

DOI

26
Rahaman O, van Duin A C T, Goddard W A III, Doren D J. Development of a ReaxFF reactive force field for glycine and application to solvent effect and tautomerization. Journal of Physical Chemistry B, 2011, 115(2): 249–261

DOI

27
Agrawalla S, van Duin A C T. Development and application of a ReaxFF reactive force field for hydrogen combustion. Journal of Physical Chemistry A, 2011, 115(6): 960–972

DOI

28
Järvi T T, van Duin A C T, Nordlund K, Goddard W A III. Development of interatomic ReaxFF potentials for Au-S-C-H systems. Journal of Physical Chemistry A, 2011, 115(37): 10315–10322

DOI

29
Gale J D, Raiteri P, van Duin A C T. A reactive force field for aqueous-calcium carbonate systems. Physical Chemistry Chemical Physics, 2011, 13(37): 16666–16679

DOI

30
Narayanan B, van Duin A C T, Kappes B B, Reimanis I E, Ciobanu C V. A reactive force field for lithium-aluminum silicates with applications to eucryptite phases. Modelling and Simulation in Materials Science and Engineering, 2012, 20(1): 015002-1–015002-24

DOI

31
Liu L C, Jaramillo-Botero A, Goddard W A III, Sun H. Development of a ReaxFF reactive force field for ettringite and study of its mechanical failure modes from reactive dynamics simulations. Journal of Physical Chemistry A, 2012, 116(15): 3918–3925

DOI

32
Shin Y K, Kwak H, Zou C Y, Vasenkov A V, van Duin A C T. Development and validation of a ReaxFF reactive force field for Fe/Al/Ni alloys: Molecular dynamics study of elastic constants, diffusion, and segregation. Journal of Physical Chemistry A, 2012, 116(49): 12163–12174

DOI

33
Kulkarni A D, Truhlar D G, Srinivasan S G, van Duin A C T, Norman P, Schwartzentruber T E. Oxygen interactions with silica surfaces: Coupled cluster and density functional investigation and the development of a new ReaxFF potential. Journal of Physical Chemistry C, 2013, 117(1): 258–269

DOI

34
Naserifar S, Liu L C, Goddard W A III, Tsotsis T T, Sahimi M. Toward a process-based molecular model of SiC membranes. 1. Development of a reactive force field. Journal of Physical Chemistry C, 2013, 117(7): 3308–3319

DOI

35
Gouissem A, Fan W, van Duin A C T, Sharma P. A reactive force-field for Zirconium and hafnium di-boride. Computational Materials Science, 2013, 70: 171–177

DOI

36
Kaledin A L, van Duin A C T, Hill C L, Musaev D G. Parameterization of reactive force field: Dynamics of the [Nb6O19H x](8−x)− Lindqvist polyoxoanion in bulk water. Journal of Physical Chemistry A, 2013, 117(32): 6967–6974

DOI

37
Kim S Y, Kumar N, Persson P, Sofo J, van Duin A C T, Kubicki J D. Development of a ReaxFF reactive force field for titanium dioxide/water systems. Langmuir, 2013, 29(25): 7838–7846

DOI

38
Song W X, Zhao S J. Development of the ReaxFF reactive force field for aluminum-molybdenum alloy. Journal of Materials Research, 2013, 28(9): 1155–1164

DOI

39
Iype E, Hütter M, Jansen A P J, Nedea S V, Rindt C C M. Parameterization of a reactive force field using a Monte Carlo algorithm. Journal of Computational Chemistry, 2013, 34(13): 1143–1154

DOI

40
Senftle T P, Meyer R J, Janik M J, van Duin A C T. Development of a ReaxFF potential for Pd/O and application to palladium oxide formation. Journal of Chemical Physics, 2013, 139(4): 044109-1–044109-15

DOI

41
Monti S, Corozzi A, Fristrup P, Joshi K L, Shin Y K, Oelschlaeger P, van Duin A C T, Barone V. Exploring the conformational and reactive dynamics of biomolecules in solution using an extended version of the glycine reactive force field. Physical Chemistry Chemical Physics, 2013, 15(36): 15062–15077

DOI

42
Bae G T, Aikens C M. Improved ReaxFF force field parameters for Au-S-C-H systems. Journal of Physical Chemistry A, 2013, 117(40): 10438–10446

DOI

43
Fan F F, Huang S, Yang H, Raju M, Datta D, Shenoy V B, van Duin A C T, Zhang S L, Zhu T. Mechanical properties of amorphous Li xSi alloys: A reactive force field study. Modelling and Simulation in Materials Science and Engineering, 2013, 21(7): 074002-1–074002-15

DOI

44
Shan T R, van Duin A C T, Thompson A P. Development of a ReaxFF reactive force field for ammonium nitrate and application to shock compression and thermal decomposition. Journal of Physical Chemistry A, 2014, 118(8): 1469–1478

DOI

45
Schönfelder T, Friedrich J, Prehl J, Seeger S, Spange S, Hoffmann K H. Reactive force field for electrophilic substitution at an aromatic system in twin polymerization. Chemical Physics, 2014, 440: 119–126

DOI

46
Deetz J D, Faller R. Parallel optimization of a reactive force field for polycondensation of alkoxysilanes. Journal of Physical Chemistry B, 2014, 118(37): 10966–10978

DOI

47
Huygh S, Bogaerts A, van Duin A C T, Neyts E C. Development of a ReaxFF reactive force field for intrinsic point defects in titanium dioxide. Computational Materials Science, 2014, 95: 579–591

DOI

48
Zhang B, van Duin A C T, Johnson J K. Development of a ReaxFF reactive force field for tetrabutylphosphonium glycinate/CO2 mixtures. Journal of Physical Chemistry B, 2014, 118(41): 12008–12016

DOI

49
Fantauzzi D, Bandlow J, Sabo L, Mueller J E, van Duin A C T, Jacob T. Development of a ReaxFF potential for Pt-O systems describing the energetics and dynamics of Pt-oxide formation. Physical Chemistry Chemical Physics, 2014, 16(42): 23118–23133

DOI

50
Mackenzie F O V, Thijsse B J. Study of metal/epoxy interfaces between epoxy precursors and metal surfaces using a newly developed reactive force field for alumina-amine adhesion. Journal of Physical Chemistry C, 2015, 119(9): 4796–4804

DOI

51
van Duin A C T, Raju M, Srinivasan S, Yeon J, Kim S Y, Senftle T, Joshi K. Development and application of the ReaxFF reactive force field method. LAMMPS workshop. Department of Mechanical and Nuclear Engineering Pennsylvania State University, 2013: 12

52
Strachan A, van Duin A C T, Chakraborty D, Dasgupta S, Goddard W A. Shock waves in high-energy materials: The initial chemical events in nitramine RDX. Physical Review Letters, 2003, 91(9): 098301-1–098301-4

DOI

53
van Duin A C T, Zeiri Y, Dubnikova F, Kosloff R, Goddard W A. Atomistic-scale simulations of the initial chemical events in the thermal initiation of triacetonetriperoxide. Journal of the American Chemical Society, 2005, 127(31): 11053–11062

DOI

54
Dubnikova F, Kosloff R, Zeiri Y, Karpas Z. Novel approach to the detection of triacetone triperoxide (TATP): Its structure and its complexes with ions. Journal of Physical Chemistry A, 2002, 106(19): 4951–4956

DOI

55
Schmidt E. Hydrazine and its derivatives: Preparation, properties and applications. New York: Wiley, 1984: 1243–1260

56
Cooper P W. Explosive Engineering. New York: Wiley, 1996: 251–273

57
Soares Neto T G, Cobo A J G, Cruz G M. Textural properties evolution of Ir and Ru supported on alumina catalysts during hydrazine decomposition in satellite thruster. Applied Catalysis A, General, 2003, 250(2): 331–340

DOI

58
Zhang L Z, van Duin A C T, Zybin S V, Goddard W A. Thermal decomposition of hydrazines from reactive dynamics using the ReaxFF reactive force field. Journal of Physical Chemistry B, 2009, 113(31): 10770–10778

DOI

59
An Q, Liu Y, Zybin S V, Kim H, Goddard W A III. Anisotropic shock sensitivity of cyclotrimethylene trinitramine (RDX) from compress-and-shear reactive dynamics. Journal of Physical Chemistry C, 2012, 116(18): 10198–10206

DOI

60
Guo D Z, An Q, Goddard W A III, Zybin S V, Huang F L. Compressive shear reactive molecular dynamics studies indicating that cocrystals of TNT/CL-20 decrease sensitivity. Journal of Physical Chemistry C, 2014, 118(51): 30202–30208

DOI

61
Furman D, Kosloff R, Dubnikova F, Zybin S V, Goddard W A III, Rom N, Hirshberg B, Zeiri Y. Decomposition of condensed phase energetic materials: Interplay between uni- and bimolecular mechanisms. Journal of the American Chemical Society, 2014, 136(11): 4192–4200

DOI

62
Yan Q L, Zeman S, Sánchez Jiménez P E, Zhang T L, Pérez-Maqueda L A, Elbeih A. The mitigation effect of synthetic polymers on initiation reactivity of CL-20: Physical models and chemical pathways of thermolysis. Journal of Physical Chemistry C, 2014, 118(40): 22881–22895

DOI

63
Zhang J L, Gu J T, Han Y, Li W, Gan Z X, Gu J J. Supercritical water oxidation vs. supercritical gasification: Which process is better for explosive wastewater treatment? Industrial & Engineering Chemistry Research, 2015, 54(4): 1251–1260

DOI

64
van Duin A C T, Damsté J S S. Computational chemical investigation into isorenieratene cyclisation. Organic Geochemistry, 2003, 34(4): 515–526

DOI

65
Chenoweth K, van Duin A C T, Goddard W A. ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation. Journal of Physical Chemistry A, 2008, 112(5): 1040–1053

DOI

66
Page A J, Moghtaderi B. Molecular dynamics simulation of the low-temperature partial oxidation of CH4. Journal of Physical Chemistry A, 2009, 113(8): 1539–1547

DOI

67
He Z H, Li X B, Liu L M, Zhu W J. The intrinsic mechanism of methane oxidation under explosion condition: A combined ReaxFF and DFT study. Fuel, 2014, 124: 85–90

DOI

68
He Z H, Li X B, Zhu W J, Liu L M, Ji G F. Effect of water on gas explosions: Combined ReaxFF and ab initio MD calculations. RSC Advances, 2014, 4(66): 35048–35054

DOI

69
Chenoweth K, van Duin A C T, Dasgupta S, Goddard W A III. Initiation mechanisms and kinetics of pyrolysis and combustion of JP-10 hydrocarbon jet fuel. Journal of Physical Chemistry A, 2009, 113(9): 1740–1746

DOI

70
Wang Q D, Wang J B, Li J Q, Tan N X, Li X Y. Reactive molecular dynamics simulation and chemical kinetic modeling of pyrolysis and combustion of n-dodecane. Combustion and Flame, 2011, 158(2): 217–226

DOI

71
Cheng X M, Wang Q D, Li J Q, Wang J B, Li X Y. ReaxFF molecular dynamics simulations of oxidation of toluene at high temperature. Journal of Physical Chemistry A, 2012, 116(40): 9811–9818

DOI

72
World Coal Association. Annual Energy Report, 2011.

73
Salmon E, van Duin A C T, Lorant F, Marquaire P M, Goddard W A III. Early maturation processes in coal. Part 2: Reactive dynamics simulations using the ReaxFF reactive force field on Morwell Brown coal structures. Organic Geochemistry, 2009, 40(12): 1195–1209

DOI

74
Castro-Marcano F, Kamat A M, Russo M F Jr, van Duin A C T, Mathews J P. Combustion of an Illinois No. 6 coal char simulated using an atomistic char representation and the ReaxFF reactive force field. Combustion and Flame, 2012, 159(3): 1272–1285

DOI

75
Chen B, Wei X Y, Yang Z S, Liu C, Fan X, Qing Y, Zong Z M. ReaxFF reactive force field for molecular dynamics simulations of lignite depolymerization in supercritical methanol with lignite-related model compounds. Energy & Fuels, 2012, 26(2): 984–989

DOI

76
Chen B, Diao Z J, Lu H Y. Using the ReaxFF reactive force field for molecular dynamics simulations of the spontaneous combustion of lignite with the Hatcher lignite model. Fuel, 2014, 116: 7–13

DOI

77
Zheng M, Li X X, Liu J, Guo L. Initial chemical reaction simulation of coal pyrolysis via ReaxFF molecular dynamics. Energy & Fuels, 2013, 27(6): 2942–2951

DOI

78
Zhang J L, Weng X X, Han Y, Li W, Cheng J Y, Gan Z X, Gu J J. The effect of supercritical water on coal pyrolysis and hydrogen production: A combined ReaxFF and DFT study. Fuel, 2013, 108: 682–690

DOI

79
Chenoweth K, Cheung S, van Duin A C T, Goddard W A, Kober E M. Simulations on the thermal decomposition of a poly(dimethylsiloxane) polymer using the ReaxFF reactive force field. Journal of the American Chemical Society, 2005, 127(19): 7192–7202

DOI

80
Jiang D E, van Duin A C T, Goddard W A, Dai S. Simulating the initial stage of phenolic resin carbonization via the ReaxFF reactive force field. Journal of Physical Chemistry A, 2009, 113(25): 6891–6894

DOI

81
Zhang Z Q, Yan K F, Zhang J L. ReaxFF molecular dynamics simulations of non-catalytic pyrolysis of triglyceride at high temperatures. RSC Advances, 2013, 3(18): 6401–6407

DOI

82
Beste A. ReaxFF study of the oxidation of lignin model compounds for the most common linkages in softwood in view of carbon fiber production. Journal of Physical Chemistry A, 2014, 118(5): 803–814

DOI

83
Beste A. ReaxFF study of the oxidation of softwood lignin in view of carbon fiber production. Energy & Fuels, 2014, 28(11): 7007–7013

DOI

84
Zhu R, Janetzko F, Zhang Y, van Duin A C T, Goddard W A, Salahub D R. Characterization of the active site of yeast RNA polymerase II by DFT and ReaxFF calculations. Theoretical Chemistry Accounts, 2008, 120(4-6): 479–489

DOI

85
Abolfath R M, van Duin A C T, Brabec T. Reactive molecular dynamics study on the first steps of DNA damage by free hydroxyl radicals. Journal of Physical Chemistry A, 2011, 115(40): 11045–11049

DOI

86
Abolfath R M, Carlson D J, Chen Z J, Nath R. A molecular dynamics simulation of DNA damage induction by ionizing radiation. Physics in Medicine and Biology, 2013, 58(20): 7143–7157

DOI

87
Zhang J L, Gu J T, Han Y, Li W, Gan Z X, Gu J J. Analysis of degradation mechanism of disperse orange 25 in supercritical water oxidation using molecular dynamic simulations based on the reactive force field. Journal of Molecular Modeling, 2015, 21(3): 54-1–54-13

88
Huang X, Yang H, van Duin A C T, Hsia K J, Zhang S L. Chemomechanics control of tearing paths in graphene. Physical Review B: Condensed Matter and Materials Physics, 2012, 85(19): 195453-1–195453-6

DOI

89
Bagri A, Mattevi C, Acik M, Chabal Y J, Chhowalla M, Shenoy V B. Structural evolution during the reduction of chemically derived graphene oxide. Nature Chemistry, 2010, 2(7): 581–587

DOI

90
Medhekar N V, Ramasubramaniam A, Ruoff R S, Shenoy V B. Hydrogen bond networks in graphene oxide composite paper: Structure and mechanical properties. ACS Nano, 2010, 4(4): 2300–2306

DOI

91
Han S S, Kang J K, Lee H M, van Duin A C T, Goddard W A. Liquefaction of H2 molecules upon exterior surfaces of carbon nanotube bundles. Applied Physics Letters, 2005, 86(20): 203108-1–203108-3

DOI

92
Neyts E C, van Duin A C T, Bogaerts A. Changing chirality during single-walled carbon nanotube growth: A reactive molecular dynamics/Monte Carlo study. Journal of the American Chemical Society, 2011, 133(43): 17225–17231

DOI

93
Zaminpayma E, Mirabbaszadeh K. Interaction between single-walled carbon nanotubes and polymers: A molecular dynamics simulation study with reactive force field. Computational Materials Science, 2012, 58: 7–11

DOI

94
Papkov D, Beese A M, Goponenko A, Zou Y, Naraghi M, Espinosa H D, Saha B, Schatz G C, Moravsky A, Loutfy R, Nguyen S T, Dzenis Y. Extraordinary improvement of the graphitic structure of continuous carbon nanofibers templated with double wall carbon nanotubes. ACS Nano, 2013, 7(1): 126–142

DOI

95
Ning N, Calvo F, van Duin A C T, Wales D J, Vach H. Spontaneous self-assembly of silica nanocages into inorganic framework materials. Journal of Physical Chemistry C, 2009, 113(2): 518–523

DOI

96
Garcia A P, Buehler M J. Bioinspired nanoporous silicon provides great toughness at great deformability. Computational Materials Science, 2010, 48(2): 303–309

DOI

97
Garcia A P, Sen D, Buehler M J. Hierarchical silica nanostructures inspired by diatom algae yield superior deformability, toughness, and strength. Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science, 2011, 42A(13): 3889–3897

DOI

98
Nedd S, Kobayashi T, Tsai C H, Slowing I I, Pruski M, Gordon M S. Using a reactive force field to correlate mobilities obtained from solid-state 13C NMR on mesoporous silica nanoparticle systems. Journal of Physical Chemistry C, 2011, 115(33): 16333–16339

DOI

99
Khalilov U, Pourtois G, van Duin A C T, Neyts E C. Self-limiting oxidation in small-diameter Si nanowires. Chemistry of Materials, 2012, 24(11): 2141–2147

DOI

100
Song P X, Ding Y L, Wen D S. A reactive molecular dynamic simulation of oxidation of a silicon nanocluster. Journal of Nanoparticle Research, 2013, 15(1): 1309-1–1309-11

101
Keith J A, Fantauzzi D, Jacob T, van Duin A C T. Reactive forcefield for simulating gold surfaces and nanoparticles. Physical Review B: Condensed Matter and Materials Physics, 2010, 81(23): 235404-1–235404-8

DOI

102
Iacovella C R, French W R, Cook B G, Kent P R C, Cummings P T. Role of polytetrahedral structures in the elongation and rupture of gold nanowires. ACS Nano, 2011, 5(12): 10065–10073

DOI

103
Raju M, van Duin A C T, Fichthorn K A. Mechanisms of oriented attachment of TiO2 nanocrystals in vacuum and humid environments: Reactive molecular dynamics. Nano Letters, 2014, 14(4): 1836–1842

DOI

104
Senftle T P, Janik M J, van Duin A C T. A ReaxFF investigation of hydride formation in palladium nanoclusters via Monte Carlo and molecular dynamics simulations. Journal of Physical Chemistry C, 2014, 118(9): 4967–4981

DOI

105
Cheng H Y, Zhu Y A, Chen D, Åstrand P O, Li P, Qi Z W, Zhou X G. Evolution of carbon nanofiber-supported Pt nanoparticles of different particle sizes: A molecular dynamics study. Journal of Physical Chemistry C, 2014, 118(41): 23711–23722

DOI

106
Zhang X Q, Iype E, Nedea S V, Jansen A P J, Szyja B M, Hensen E J M, van Santen R A. Site stability on cobalt nanoparticles: A molecular dynamics ReaxFF reactive force field study. Journal of Physical Chemistry C, 2014, 118(13): 6882–6886

DOI

107
Zhang Q, Qi Y, Hector L G, Ҫağin T, Goddard W A. Atomic simulations of kinetic friction and its velocity dependence at Al/Al and α-Al2O3/α-Al2O3 interfaces. Physical Review B: Condensed Matter and Materials Physics, 2005, 72(4): 045406-1–045406-12

DOI

108
Russo M F Jr, Li R, Mench M, van Duin A C T. Molecular dynamic simulation of aluminum-water reactions using the ReaxFF reactive force field. International Journal of Hydrogen Energy, 2011, 36(10): 5828–5835

DOI

109
Fogarty J C, Aktulga H M, Grama A Y, van Duin A C T, Pandit S A. A reactive molecular dynamics simulation of the silica-water interface. Journal of Chemical Physics, 2010, 132(17): 174704-1–174704-10

DOI

110
Quenneville J, Taylor R S, van Duin A C T. Reactive molecular dynamics studies of DMMP adsorption and reactivity on amorphous silica surfaces. Journal of Physical Chemistry C, 2010, 114(44): 18894–18902

DOI

111
Khalilov U, Pourtois G, van Duin A C T, Neyts E C. Hyperthermal oxidation of Si(100)2×1 surfaces: Effect of growth temperature. Journal of Physical Chemistry C, 2012, 116(15): 8649–8656

DOI

112
Raymand D, van Duin A C T, Spångberg D, Goddard W A III, Hermansson K. Water adsorption on stepped ZnO surfaces from MD simulation. Surface Science, 2010, 604(9-10): 741–752

DOI

113
Raymand D, van Duin A C T, Goddard W A III, Hermansson K, Spångberg D. Hydroxylation structure and proton transfer reactivity at the zinc oxide-water interface. Journal of Physical Chemistry C, 2011, 115(17): 8573–8579

DOI

114
Raju M, Kim S Y, van Duin A C T, Fichthorn K A. ReaxFF reactive force field study of the dissociation of water on titania surfaces. Journal of Physical Chemistry C, 2013, 117(20): 10558–10572

DOI

115
Tilocca A, Selloni A. Structure and reactivity of water layers on defect-free and defective anatase TiO2 (101) Surfaces. Journal of Physical Chemistry B, 2004, 108(15): 4743–4751

DOI

116
Tilocca A, Selloni A. DFT-GGA and DFT+U simulations of thin water layers on reduced TiO2 anatase. Journal of Physical Chemistry C, 2012, 116(14): 9114–9121

DOI

117
Monti S, van Duin A C T, Kim S Y, Barone V. Exploration of the conformational and reactive dynamics of glycine and diglycine on TiO2: Computational investigations in the gas phase and in solution. Journal of Physical Chemistry C, 2012, 116(8): 5141–5150

DOI

118
Li C, Monti S, Carravetta V. Journey toward the surface: How glycine adsorbs on titania in water solution. Journal of Physical Chemistry C, 2012, 116(34): 18318–18326

DOI

119
Monti S, Li C, Carravetta V. Reactive dynamics simulation of monolayer and multilayer adsorption of glycine on Cu(110). Journal of Physical Chemistry C, 2013, 117(10): 5221–5228

DOI

120
Monti S, Carravetta V, Li C, Ågren H. A computational study of the adsorption and reactive dynamics of diglycine on Cu(110). Journal of Physical Chemistry C, 2014, 118(7): 3610–3619

DOI

121
Su H B, Nielsen R J, van Duin A C T, Goddard W A III. Simulations on the effects of confinement and Ni-catalysis on the formation of tubular fullerene structures from peapod precursors. Physical Review B: Condensed Matter and Materials Physics, 2007, 75(13): 134107-1–134107-5

DOI

122
Mueller J E, van Duin A C T, Goddard W A III. Application of the ReaxFF reactive force field to reactive dynamics of hydrocarbon chemisorption and decomposition. Journal of Physical Chemistry C, 2010, 114(12): 5675–5685

DOI

123
Meng L J, Jiang J, Wang J L, Ding F. Mechanism of metal catalyzed healing of large structural defects in graphene. Journal of Physical Chemistry C, 2014, 118(1): 720–724

DOI

124
Somers W, Bogaerts A, van Duin A C T, Neyts E C. Interactions of plasma species on nickel catalysts: A reactive molecular dynamics study on the influence of temperature and surface structure. Applied Catalysis B: Environmental, 2014 (154-155): 1–8

DOI

125
Senftle T P, van Duin A C T, Janik M J. Determining in situ phases of a nanoparticle catalyst via grand canonical Monte Carlo simulations with the ReaxFF potential. Catalysis Communications, 2014, 52: 72–77

DOI

126
Lin Z Z. Graphdiyne as a promising substrate for stabilizing Pt nanoparticle catalyst. Carbon, 2015, 86: 301–309

DOI

127
Goddard W A, Chenoweth K, Pudar S, van Duin A C T, Cheng M J. Structures, mechanisms, and kinetics of selective ammoxidation and oxidation of propane over multi-metal oxide catalysts. Topics in Catalysis, 2008, 50(2-4): 2–18

DOI

128
Chenoweth K, van Duin A C T, Goddard W A III. The ReaxFF Monte Carlo reactive dynamics method for predicting atomistic structures of disordered ceramics: Application to the Mo3VO x catalyst. Angewandte Chemie International Edition, 2009, 48(41): 7630–7634

DOI

129
Zhang C Y, Wen Y S, Xue X G. Self-enhanced catalytic activities of functionalized graphene sheets in the combustion of nitromethane: Molecular dynamic simulations by molecular reactive force field. ACS Applied Materials & Interfaces, 2014, 6(15): 12235–12244

DOI

130
Bai C, Liu L C, Sun H. Molecular dynamics simulations of methanol to olefin reactions in HZSM-5 zeolite using a ReaxFF force field. Journal of Physical Chemistry C, 2012, 116(12): 7029–7039

DOI

131
Goddard W III, Merinov B, van Duin A, Jacob T, Blanco M, Molinero V, Jang S S, Jang Y H. Multi-paradigm multi-scale simulations for fuel cell catalysts and membranes. Molecular Simulation, 2006, 32(3-4): 251–268

DOI

132
van Duin A C T, Merinov B V, Jang S S, Goddard W A. ReaxFF reactive force field for solid oxide fuel cell systems with application to oxygen ion transport in yttria-stabilized zirconia. Journal of Physical Chemistry A, 2008, 112(14): 3133–3140

DOI

133
Merinov B V, Mueller J E, van Duin A C T, An Q, Goddard W A III. ReaxFF reactive force-field modeling of the triple-phase boundary in a solid oxide fuel cell. Journal of Physical Chemistry Letters, 2014, 5(22): 4039–4043

DOI

134
Bedrov D, Smith G D, van Duin A C T. Reactions of singly-reduced ethylene carbonate in lithium battery electrolytes: A molecular dynamics simulation study using the ReaxFF. Journal of Physical Chemistry A, 2012, 116(11): 2978–2985

DOI

135
Li H, Huang X J, Chen L Q, Wu Z G, Liang Y. A high capacity nano-Si composite anode material for lithium rechargeable batteries. Electrochemical and Solid-State Letters, 1999, 2(11): 547–549

DOI

136
Magasinski A, Dixon P, Hertzberg B, Kvit A, Ayala J, Yushin G. High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nature Materials, 2010, 9(4): 353–358

DOI

137
Kim S P, Datta D, Shenoy V B. Atomistic mechanisms of phase boundary evolution during initial lithiation of crystalline silicon. Journal of Physical Chemistry C, 2014, 118(31): 17247–17253

DOI

138
Islam M M, Bryantsev V S, van Duin A C T. ReaxFF reactive force field simulations on the influence of Teflon on electrolyte decomposition during Li/SWCNT anode discharge in lithium-sulfur batteries. Journal of the Electrochemical Society, 2014, 161(8): E3009–E3014

DOI

139
Islam M M, Ostadhossein A, Borodin O, Yeates A T, Tipton W W, Hennig R G, Kumar N, van Duin A C T. ReaxFF molecular dynamics simulations on lithiated sulfur cathode materials. Physical Chemistry Chemical Physics, 2015, 17(5): 3383–3393

DOI

140
Jung H, Lee M, Yeo B C, Lee K R, Han S S. Atomistic observation of the lithiation and delithiation behaviors of silicon nanowires using reactive molecular dynamics simulations. Journal of Physical Chemistry C, 2015, 119(7): 3447–3455

DOI

141
Rappé A K, Goddard W A. Charge equilibration for molecular dynamics simulations. Journal of Physical Chemistry, 1991, 95(8): 3358–3363

DOI

142
Valone S M, Atlas S R. An empirical charge transfer potential with correct dissociation limits. Journal of Chemical Physics, 2004, 120(16): 7262–7273

DOI

143
Morales J, Martínez T J. A new approach to reactive potentials with fluctuating charges: Quadratic valence-bond model. Journal of Physical Chemistry A, 2004, 108(15): 3076–3084

DOI

144
Morales J, Martínez T J. Classical fluctuating charge theories: The maximum entropy valence bond formalism and relationships to previous models. Journal of Physical Chemistry A, 2001, 105(12): 2842–2850

DOI

145
Chen J H, Martínez T D. QTPIE: Charge transfer with polarization current equalization. A fluctuating charge model with correct asymptotics. Chemical Physics Letters, 2007, 438(4-6): 315–320

DOI

146
Nomura K, Small P E, Kalia R K, Nakano A, Vashishta P. An extended-Lagrangian scheme for charge equilibration in reactive molecular dynamics simulations. Computer Physics Communications, 2015, 192: 91–96

DOI

147
Nomura K, Kalia R K, Nakano A, Vashishta P. A scalable parallel algorithm for large-scale reactive force-field molecular dynamics simulations. Computer Physics Communications, 2008, 178(2): 73–87

DOI

148
Aktulga H M, Fogarty J C, Pandit S A, Grama A Y. Parallel reactive molecular dynamics: Numerical methods and algorithmic techniques. Parallel Computing, 2012, 38(4-5): 245–259

DOI

149
Aktulga H M, Pandit S A, van Duin A C T, Grama A Y. Reactive molecular dynamics: Numerical methods and algorithmic techniques. SIAM Journal on Scientific Computing, 2012, 34(1): C1–C23

DOI

150
Nomura K, Kalia R K, Nakano A, Vashishta P, van Duin A C T, Goddard W A. Dynamic transition in the structure of an energetic crystal during chemical reactions at shock front prior to detonation. Physical Review Letters, 2007, 99(14): 148303-1–148303-4

DOI

151
Chen H P, Kalia R K, Kaxiras E, Lu G, Nakano A, Nomura K, van Duin A C T, Vashishta P, Yuan Z S. Embrittlement of metal by solute segregation-induced amorphization. Physical Review Letters, 2010, 104(15): 155502-1–155502-4

DOI

152
Vedadi M, Choubey A, Nomura K, Kalia R K, Nakano A, Vashishta P, van Duin A C T. Structure and dynamics of shock-induced nanobubble collapse in water. Physical Review Letters, 2010, 105(1): 014503-1–014503-4

DOI

153
Liu L C, Liu Y, Zybin S V, Sun H, Goddard W A III. ReaxFF-lg: Correction of the ReaxFF reactive force field for London dispersion, with applications to the equations of state for energetic materials. Journal of Physical Chemistry A, 2011, 115(40): 11016–11022

DOI

154
Reed E J. Electron-ion coupling in shocked energetic materials. Journal of Physical Chemistry C, 2012, 116(3): 2205–2211

DOI

155
Kuklja M M, Kunz A B. Ab initio simulation of defects in energetic materials: Hydrostatic compression of cyclotrimethylene trinitramine. Journalof Applied Physics, 1999, 86(8): 4428–4434

DOI

Outlines

/