RESEARCH ARTICLE

Selective conversion of cellulose to hexitols over bi-functional Ru-supported sulfated zirconia and silica-zirconia catalysts

  • Zhiqiang Song ,
  • Hua Wang ,
  • Yufei Niu ,
  • Xiao Liu ,
  • Jinyu Han
Expand
  • Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China

Received date: 05 Jul 2015

Accepted date: 12 Sep 2015

Published date: 26 Nov 2015

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

We report a process of selective conversion of microcrystalline cellulose to hexitols over bi-functional Ru-supported sulfated zirconia and silica-zirconia catalysts. A 58.1% yield of hexitols and a 71.0% conversion of cellulose were achieved over Ru/SZSi(100:15)-773 catalyst at 443 K. The as-synthesized catalysts were characterized by X-ray diffraction (XRD), BET, thermogravimetric analysis and pyridine adsorption Fourier transform infrared spectroscopy (FTIR). XRD results indicated that the sulfated catalysts were pure tetragonal phase of ZrO2 when calcined at 773 K. Monoclinic zirconia appeared at the calcination temperature of 873 K, and the content of monoclinic phase increased with the elevating temperature. Compared with sulfated zirconia catalyst, sulfated silica-zirconia catalysts possessed a higher ratio of Brønsted to Lewis on the surface of catalysts, as shown from pyridine adsorption FTIR results. The reaction results indicated that the tetragonal zirconia, which is necessary for the formation of superacidity, was the active phase to cellulose conversion. The higher amounts of Brønsted acid sites can remarkably accelerate the cellulose depolymerization and promote side reactions that convert C5–C6 alcohols into the unknown soluble degradation products.

Cite this article

Zhiqiang Song , Hua Wang , Yufei Niu , Xiao Liu , Jinyu Han . Selective conversion of cellulose to hexitols over bi-functional Ru-supported sulfated zirconia and silica-zirconia catalysts[J]. Frontiers of Chemical Science and Engineering, 2015 , 9(4) : 461 -466 . DOI: 10.1007/s11705-015-1543-1

Acknowledgments

The work was supported by National Natural Sciences Foundation of China (Grant Nos. 21076152 and 21276191). Special Research Fund for the Doctoral Program of Higher Education of China (Grant No. 2100032110018), and the Program of Introducing Talents of Discipline to Universities, China (Grant No. B06006). The authors would like to thank Dr. Li Fang for the in situ FTIR of pyridine adsorption measurement.
1
Dhepe P L, Fukuoka A. Cellulose conversion under heterogeneous catalysis. ChemSusChem, 2008, 1(12): 969–975

DOI

2
Yang P F, Kobayashi H, Fukuoka A. Recent developments in the catalytic conversion of cellulose into valuable chemicals. Chinese Journal of Catalysis, 2011, 32(5): 716–722

DOI

3
Van de Vyver S, Geboers J, Jacobs P A, Sels B F. Recent advances in the catalytic conversion of cellulose. ChemCatChem, 2011, 3(1): 82–94

DOI

4
Luo C, Wang S, Liu H C. Cellulose conversion into polyols catalyzed by reversibly formed acids and supported ruthenium clusters in hot water. Angewandte Chemie International Edition, 2007, 119(46): 7780–7783

DOI

5
Ji N, Zhang T, Zheng M Y, Wang A Q, Wang H, Wang X D, Chen J G. Direct catalytic conversion of cellulose into ethylene glycol using nickel-promoted tungsten carbide catalysts. Angewandte Chemie International Edition, 2008, 47(44): 8510–8513

DOI

6
Palkovits R, Tajvidi K, Procelewska J, Rinaldi R, Ruppert A. Hydrogenolysis of cellulose combining mineral acids and hydrogenation catalysts. Green Chemistry, 2010, 12(6): 972–978

DOI

7
Geboers J, Van de Vyver S, Carpentier K, Jacobs P, Sels B. Efficient hydrolytic hydrogenation of cellulose in the presence of Ru-loaded zeolites and trace amounts of mineral acid. Chemical Communications, 2011, 47(19): 5590–5592

DOI

8
Rinaldi R, Palkovits R, Schuth F. Depolymerization of cellulose using solid catalysts in ionic liquids. Angewandte Chemie International Edition, 2008, 47(42): 8047–8050

DOI

9
Li C Z, Zhao Z K. Efficient acid-catalyzed hydrolysis of cellulose in ionic liquid. Advanced Synthesis & Catalysis, 2007, 349(11-12): 1847–1850

DOI

10
Ignatyev I A, Doorslaer C V, Mertens P G, Binnemans K, Vos D E. Reductive splitting of cellulose in the ionic liquid 1-butyl-3-methylimidazolium chloride. ChemSusChem, 2010, 3(1): 91–96

DOI

11
Onda A, Ochi T, Yanagisawa K. Selective hydrolysis of cellulose into glucose over solid acid catalysts. Green Chemistry, 2008, 10(10): 1033–1037

DOI

12
Chambon F, Rataboul F, Pinel C, Cabiac A, Guillon E, Essayem N. Cellulose hydrothermal conversion promoted by heterogeneous Brønsted and Lewis acids: Remarkable efficiency of solid Lewis acids to produce lactic acid. Applied Catalysis B: Environmental, 2011, 105(1-2): 171–181

DOI

13
Pang J F, Wang A Q, Zheng M Y, Zhang T. Hydrolysis of cellulose into glucose over carbons sulfonated at elevated temperatures. Chemical Communications, 2010, 46(37): 6935–6937

DOI

14
Cabiac A, Guillon E, Chambon F, Pinel C, Rataboul F, Essayem N. Cellulose reactivity and glycosidic bond cleavage in aqueous phase by catalytic and non catalytic transformations. Applied Catalysis A, 2011, 402(1-2): 1–10

DOI

15
Kobayashi H, Ito Y, Komaanoya T, Hosaka Y, Dhepe P L, Kasai K, Hara K, Fukuoka A. Synthesis of sugar alcohols by hydrolytic hydrogenation of cellulose over supported metal catalysts. Green Chemistry, 2011, 13(2): 326–333

DOI

16
Fukuoka A, Dhepe P L. Catalytic conversion of cellulose into sugar alcohols. Angewandte Chemie International Edition, 2006, 45(31): 5161–5163

DOI

17
Deng W P, Tan X S, Fang W H, Zhang Q H, Wang Y. Conversion of cellulose into sorbitol over carbon nanotube-supported ruthenium catalyst. Catalysis Letters, 2009, 133(1-2): 167–174

DOI

18
Han J W, Lee H. Direct conversion of cellulose into sorbitol using dual-functionalized catalysts in neutral aqueous solution. Catalysis Communications, 2012, 19: 115–118

DOI

19
Cutrufello M G, Diebold U, Gonzalez R C. Optimization of synthesis variables in the preparation of active sulfated zirconia catalysts. Catalysis Letters, 2005, 101(1-2): 5–13

DOI

20
Li X B, Nagaoka K, Simon L J, Olindo R, Lercher J A. Influence of calcination procedure on the catalytic property of sulfated zirconia. Catalysis Letters, 2007, 113(1-2): 34–40

DOI

21
Zhao E, Isaev Y, Sklyarov A, Fripiat J J. Acid centers in sulfated, phosphated and/or aluminated zirconias. Catalysis Letters, 1999, 60(4): 173–181

DOI

22
Barthos R, Lonyi F, Engelhardt J, Valyon J. A study of the acidic and catalytic properties of pure and sulfated zirconia-titania and zirconia-silica mixed oxides. Topics in Catalysis, 2000, 10(1-2): 79–87

DOI

23
Chen X R, Ju Y H, Mou C Y. Direct synthesis of mesoporous sulfated silica-zirconia catalysts with high catalytic activity for biodiesel via esterification. Journal of Physical Chemistry C, 2007, 111(50): 18731–18737

DOI

24
Oh J, Dash S, Lee H. Selective conversion of glycerol to 1,3-propanediol using Pt-sulfated zirconia. Green Chemistry, 2011, 13(8): 2004–2007

DOI

25
Wang Y, Ma J H, Liang D, Zhou M M, Li F X, Li R F. Lewis and Brønsted acids in super-acid catalyst SO42−/ZrO2-SiO2. Journal of Materials Science, 2009, 44(24): 6736–6740

DOI

26
Hammache S, Goodwin J G Jr. Characteristics of the active sites on sulfated zirconia for n-butane isomerization. Journal of Catalysis, 2003, 218(2): 258–266

DOI

27
Li X B, Nagaoka K, Lercher J A. Labile sulfates as key components in active sulfated zirconia for n-butane isomerization at low temperatures. Journal of Catalysis, 2004, 227(1): 130–137

DOI

28
Deutschmann O, Knözinger H, Kochloefl K, Turek T. Heterogeneous catalysis and solid catalysts. Ullmann’s Encyclopedia of Industrial Chemistry , Wiley, 2009, 38–39

29
Li X B, Nagaoka K, Lercher J A. Labile sulfates as key components in active sulfated zirconia for n-butane isomerization at low temperatures. Journal of Catalysis, 2004, 227(1): 130–137

DOI

30
Suwannakarn K, Lotero E, Goodwin J G Jr, Lu C. Stability of sulfated zirconia and the nature of the catalytically active species in the transesterification of triglycerides. Journal of Catalysis, 2008, 255(2): 279–286

DOI

31
Thitsartarn W, Kawi S. Transesterification of oil by sulfated Zr-supported mesoporous silica. Industrial & Engineering Chemistry Research, 2011, 50(13): 7857–7865

DOI

Outlines

/