Selective conversion of cellulose to hexitols over bi-functional Ru-supported sulfated zirconia and silica-zirconia catalysts

Zhiqiang Song, Hua Wang, Yufei Niu, Xiao Liu, Jinyu Han

PDF(296 KB)
PDF(296 KB)
Front. Chem. Sci. Eng. ›› 2015, Vol. 9 ›› Issue (4) : 461-466. DOI: 10.1007/s11705-015-1543-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Selective conversion of cellulose to hexitols over bi-functional Ru-supported sulfated zirconia and silica-zirconia catalysts

Author information +
History +

Abstract

We report a process of selective conversion of microcrystalline cellulose to hexitols over bi-functional Ru-supported sulfated zirconia and silica-zirconia catalysts. A 58.1% yield of hexitols and a 71.0% conversion of cellulose were achieved over Ru/SZSi(100:15)-773 catalyst at 443 K. The as-synthesized catalysts were characterized by X-ray diffraction (XRD), BET, thermogravimetric analysis and pyridine adsorption Fourier transform infrared spectroscopy (FTIR). XRD results indicated that the sulfated catalysts were pure tetragonal phase of ZrO2 when calcined at 773 K. Monoclinic zirconia appeared at the calcination temperature of 873 K, and the content of monoclinic phase increased with the elevating temperature. Compared with sulfated zirconia catalyst, sulfated silica-zirconia catalysts possessed a higher ratio of Brønsted to Lewis on the surface of catalysts, as shown from pyridine adsorption FTIR results. The reaction results indicated that the tetragonal zirconia, which is necessary for the formation of superacidity, was the active phase to cellulose conversion. The higher amounts of Brønsted acid sites can remarkably accelerate the cellulose depolymerization and promote side reactions that convert C5–C6 alcohols into the unknown soluble degradation products.

Graphical abstract

Keywords

cellulose / hexitols / hydrogenation / sulfated zirconia / ruthenium

Cite this article

Download citation ▾
Zhiqiang Song, Hua Wang, Yufei Niu, Xiao Liu, Jinyu Han. Selective conversion of cellulose to hexitols over bi-functional Ru-supported sulfated zirconia and silica-zirconia catalysts. Front. Chem. Sci. Eng., 2015, 9(4): 461‒466 https://doi.org/10.1007/s11705-015-1543-1

References

[1]
Dhepe P L, Fukuoka A. Cellulose conversion under heterogeneous catalysis. ChemSusChem, 2008, 1(12): 969–975
CrossRef Google scholar
[2]
Yang P F, Kobayashi H, Fukuoka A. Recent developments in the catalytic conversion of cellulose into valuable chemicals. Chinese Journal of Catalysis, 2011, 32(5): 716–722
CrossRef Google scholar
[3]
Van de Vyver S, Geboers J, Jacobs P A, Sels B F. Recent advances in the catalytic conversion of cellulose. ChemCatChem, 2011, 3(1): 82–94
CrossRef Google scholar
[4]
Luo C, Wang S, Liu H C. Cellulose conversion into polyols catalyzed by reversibly formed acids and supported ruthenium clusters in hot water. Angewandte Chemie International Edition, 2007, 119(46): 7780–7783
CrossRef Google scholar
[5]
Ji N, Zhang T, Zheng M Y, Wang A Q, Wang H, Wang X D, Chen J G. Direct catalytic conversion of cellulose into ethylene glycol using nickel-promoted tungsten carbide catalysts. Angewandte Chemie International Edition, 2008, 47(44): 8510–8513
CrossRef Google scholar
[6]
Palkovits R, Tajvidi K, Procelewska J, Rinaldi R, Ruppert A. Hydrogenolysis of cellulose combining mineral acids and hydrogenation catalysts. Green Chemistry, 2010, 12(6): 972–978
CrossRef Google scholar
[7]
Geboers J, Van de Vyver S, Carpentier K, Jacobs P, Sels B. Efficient hydrolytic hydrogenation of cellulose in the presence of Ru-loaded zeolites and trace amounts of mineral acid. Chemical Communications, 2011, 47(19): 5590–5592
CrossRef Google scholar
[8]
Rinaldi R, Palkovits R, Schuth F. Depolymerization of cellulose using solid catalysts in ionic liquids. Angewandte Chemie International Edition, 2008, 47(42): 8047–8050
CrossRef Google scholar
[9]
Li C Z, Zhao Z K. Efficient acid-catalyzed hydrolysis of cellulose in ionic liquid. Advanced Synthesis & Catalysis, 2007, 349(11-12): 1847–1850
CrossRef Google scholar
[10]
Ignatyev I A, Doorslaer C V, Mertens P G, Binnemans K, Vos D E. Reductive splitting of cellulose in the ionic liquid 1-butyl-3-methylimidazolium chloride. ChemSusChem, 2010, 3(1): 91–96
CrossRef Google scholar
[11]
Onda A, Ochi T, Yanagisawa K. Selective hydrolysis of cellulose into glucose over solid acid catalysts. Green Chemistry, 2008, 10(10): 1033–1037
CrossRef Google scholar
[12]
Chambon F, Rataboul F, Pinel C, Cabiac A, Guillon E, Essayem N. Cellulose hydrothermal conversion promoted by heterogeneous Brønsted and Lewis acids: Remarkable efficiency of solid Lewis acids to produce lactic acid. Applied Catalysis B: Environmental, 2011, 105(1-2): 171–181
CrossRef Google scholar
[13]
Pang J F, Wang A Q, Zheng M Y, Zhang T. Hydrolysis of cellulose into glucose over carbons sulfonated at elevated temperatures. Chemical Communications, 2010, 46(37): 6935–6937
CrossRef Google scholar
[14]
Cabiac A, Guillon E, Chambon F, Pinel C, Rataboul F, Essayem N. Cellulose reactivity and glycosidic bond cleavage in aqueous phase by catalytic and non catalytic transformations. Applied Catalysis A, 2011, 402(1-2): 1–10
CrossRef Google scholar
[15]
Kobayashi H, Ito Y, Komaanoya T, Hosaka Y, Dhepe P L, Kasai K, Hara K, Fukuoka A. Synthesis of sugar alcohols by hydrolytic hydrogenation of cellulose over supported metal catalysts. Green Chemistry, 2011, 13(2): 326–333
CrossRef Google scholar
[16]
Fukuoka A, Dhepe P L. Catalytic conversion of cellulose into sugar alcohols. Angewandte Chemie International Edition, 2006, 45(31): 5161–5163
CrossRef Google scholar
[17]
Deng W P, Tan X S, Fang W H, Zhang Q H, Wang Y. Conversion of cellulose into sorbitol over carbon nanotube-supported ruthenium catalyst. Catalysis Letters, 2009, 133(1-2): 167–174
CrossRef Google scholar
[18]
Han J W, Lee H. Direct conversion of cellulose into sorbitol using dual-functionalized catalysts in neutral aqueous solution. Catalysis Communications, 2012, 19: 115–118
CrossRef Google scholar
[19]
Cutrufello M G, Diebold U, Gonzalez R C. Optimization of synthesis variables in the preparation of active sulfated zirconia catalysts. Catalysis Letters, 2005, 101(1-2): 5–13
CrossRef Google scholar
[20]
Li X B, Nagaoka K, Simon L J, Olindo R, Lercher J A. Influence of calcination procedure on the catalytic property of sulfated zirconia. Catalysis Letters, 2007, 113(1-2): 34–40
CrossRef Google scholar
[21]
Zhao E, Isaev Y, Sklyarov A, Fripiat J J. Acid centers in sulfated, phosphated and/or aluminated zirconias. Catalysis Letters, 1999, 60(4): 173–181
CrossRef Google scholar
[22]
Barthos R, Lonyi F, Engelhardt J, Valyon J. A study of the acidic and catalytic properties of pure and sulfated zirconia-titania and zirconia-silica mixed oxides. Topics in Catalysis, 2000, 10(1-2): 79–87
CrossRef Google scholar
[23]
Chen X R, Ju Y H, Mou C Y. Direct synthesis of mesoporous sulfated silica-zirconia catalysts with high catalytic activity for biodiesel via esterification. Journal of Physical Chemistry C, 2007, 111(50): 18731–18737
CrossRef Google scholar
[24]
Oh J, Dash S, Lee H. Selective conversion of glycerol to 1,3-propanediol using Pt-sulfated zirconia. Green Chemistry, 2011, 13(8): 2004–2007
CrossRef Google scholar
[25]
Wang Y, Ma J H, Liang D, Zhou M M, Li F X, Li R F. Lewis and Brønsted acids in super-acid catalyst SO42−/ZrO2-SiO2. Journal of Materials Science, 2009, 44(24): 6736–6740
CrossRef Google scholar
[26]
Hammache S, Goodwin J G Jr. Characteristics of the active sites on sulfated zirconia for n-butane isomerization. Journal of Catalysis, 2003, 218(2): 258–266
CrossRef Google scholar
[27]
Li X B, Nagaoka K, Lercher J A. Labile sulfates as key components in active sulfated zirconia for n-butane isomerization at low temperatures. Journal of Catalysis, 2004, 227(1): 130–137
CrossRef Google scholar
[28]
Deutschmann O, Knözinger H, Kochloefl K, Turek T. Heterogeneous catalysis and solid catalysts. Ullmann’s Encyclopedia of Industrial Chemistry , Wiley, 2009, 38–39
[29]
Li X B, Nagaoka K, Lercher J A. Labile sulfates as key components in active sulfated zirconia for n-butane isomerization at low temperatures. Journal of Catalysis, 2004, 227(1): 130–137
CrossRef Google scholar
[30]
Suwannakarn K, Lotero E, Goodwin J G Jr, Lu C. Stability of sulfated zirconia and the nature of the catalytically active species in the transesterification of triglycerides. Journal of Catalysis, 2008, 255(2): 279–286
CrossRef Google scholar
[31]
Thitsartarn W, Kawi S. Transesterification of oil by sulfated Zr-supported mesoporous silica. Industrial & Engineering Chemistry Research, 2011, 50(13): 7857–7865
CrossRef Google scholar

Acknowledgments

The work was supported by National Natural Sciences Foundation of China (Grant Nos. 21076152 and 21276191). Special Research Fund for the Doctoral Program of Higher Education of China (Grant No. 2100032110018), and the Program of Introducing Talents of Discipline to Universities, China (Grant No. B06006). The authors would like to thank Dr. Li Fang for the in situ FTIR of pyridine adsorption measurement.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(296 KB)

Accesses

Citations

Detail

Sections
Recommended

/