Selective conversion of cellulose to hexitols over bi-functional Ru-supported sulfated zirconia and silica-zirconia catalysts

Zhiqiang Song , Hua Wang , Yufei Niu , Xiao Liu , Jinyu Han

Front. Chem. Sci. Eng. ›› 2015, Vol. 9 ›› Issue (4) : 461 -466.

PDF (296KB)
Front. Chem. Sci. Eng. ›› 2015, Vol. 9 ›› Issue (4) : 461 -466. DOI: 10.1007/s11705-015-1543-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Selective conversion of cellulose to hexitols over bi-functional Ru-supported sulfated zirconia and silica-zirconia catalysts

Author information +
History +
PDF (296KB)

Abstract

We report a process of selective conversion of microcrystalline cellulose to hexitols over bi-functional Ru-supported sulfated zirconia and silica-zirconia catalysts. A 58.1% yield of hexitols and a 71.0% conversion of cellulose were achieved over Ru/SZSi(100:15)-773 catalyst at 443 K. The as-synthesized catalysts were characterized by X-ray diffraction (XRD), BET, thermogravimetric analysis and pyridine adsorption Fourier transform infrared spectroscopy (FTIR). XRD results indicated that the sulfated catalysts were pure tetragonal phase of ZrO2 when calcined at 773 K. Monoclinic zirconia appeared at the calcination temperature of 873 K, and the content of monoclinic phase increased with the elevating temperature. Compared with sulfated zirconia catalyst, sulfated silica-zirconia catalysts possessed a higher ratio of Brønsted to Lewis on the surface of catalysts, as shown from pyridine adsorption FTIR results. The reaction results indicated that the tetragonal zirconia, which is necessary for the formation of superacidity, was the active phase to cellulose conversion. The higher amounts of Brønsted acid sites can remarkably accelerate the cellulose depolymerization and promote side reactions that convert C5–C6 alcohols into the unknown soluble degradation products.

Graphical abstract

Keywords

cellulose / hexitols / hydrogenation / sulfated zirconia / ruthenium

Cite this article

Download citation ▾
Zhiqiang Song, Hua Wang, Yufei Niu, Xiao Liu, Jinyu Han. Selective conversion of cellulose to hexitols over bi-functional Ru-supported sulfated zirconia and silica-zirconia catalysts. Front. Chem. Sci. Eng., 2015, 9(4): 461-466 DOI:10.1007/s11705-015-1543-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Dhepe P LFukuoka A. Cellulose conversion under heterogeneous catalysis. ChemSusChem20081(12): 969–975

[2]

Yang P FKobayashi HFukuoka A. Recent developments in the catalytic conversion of cellulose into valuable chemicals. Chinese Journal of Catalysis201132(5): 716–722

[3]

Van de Vyver SGeboers JJacobs P ASels B F. Recent advances in the catalytic conversion of cellulose. ChemCatChem20113(1): 82–94

[4]

Luo CWang SLiu H C. Cellulose conversion into polyols catalyzed by reversibly formed acids and supported ruthenium clusters in hot water. Angewandte Chemie International Edition2007119(46): 7780–7783

[5]

Ji NZhang TZheng M YWang A QWang HWang X DChen J G. Direct catalytic conversion of cellulose into ethylene glycol using nickel-promoted tungsten carbide catalysts. Angewandte Chemie International Edition200847(44): 8510–8513

[6]

Palkovits RTajvidi KProcelewska JRinaldi RRuppert A. Hydrogenolysis of cellulose combining mineral acids and hydrogenation catalysts. Green Chemistry201012(6): 972–978

[7]

Geboers JVan de Vyver SCarpentier KJacobs PSels B. Efficient hydrolytic hydrogenation of cellulose in the presence of Ru-loaded zeolites and trace amounts of mineral acid. Chemical Communications201147(19): 5590–5592

[8]

Rinaldi RPalkovits RSchuth F. Depolymerization of cellulose using solid catalysts in ionic liquids. Angewandte Chemie International Edition200847(42): 8047–8050

[9]

Li C ZZhao Z K. Efficient acid-catalyzed hydrolysis of cellulose in ionic liquid. Advanced Synthesis & Catalysis2007349(11-12): 1847–1850

[10]

Ignatyev I ADoorslaer C VMertens P GBinnemans KVos D E. Reductive splitting of cellulose in the ionic liquid 1-butyl-3-methylimidazolium chloride. ChemSusChem20103(1): 91–96

[11]

Onda AOchi TYanagisawa K. Selective hydrolysis of cellulose into glucose over solid acid catalysts. Green Chemistry200810(10): 1033–1037

[12]

Chambon FRataboul FPinel CCabiac AGuillon EEssayem N. Cellulose hydrothermal conversion promoted by heterogeneous Brønsted and Lewis acids: Remarkable efficiency of solid Lewis acids to produce lactic acid. Applied Catalysis B: Environmental2011105(1-2): 171–181

[13]

Pang J FWang A QZheng M YZhang T. Hydrolysis of cellulose into glucose over carbons sulfonated at elevated temperatures. Chemical Communications201046(37): 6935–6937

[14]

Cabiac AGuillon EChambon FPinel CRataboul FEssayem N. Cellulose reactivity and glycosidic bond cleavage in aqueous phase by catalytic and non catalytic transformations. Applied Catalysis A2011402(1-2): 1–10

[15]

Kobayashi HIto YKomaanoya THosaka YDhepe P LKasai KHara KFukuoka A. Synthesis of sugar alcohols by hydrolytic hydrogenation of cellulose over supported metal catalysts. Green Chemistry201113(2): 326–333

[16]

Fukuoka ADhepe P L. Catalytic conversion of cellulose into sugar alcohols. Angewandte Chemie International Edition200645(31): 5161–5163

[17]

Deng W PTan X SFang W HZhang Q HWang Y. Conversion of cellulose into sorbitol over carbon nanotube-supported ruthenium catalyst. Catalysis Letters2009133(1-2): 167–174

[18]

Han J WLee H. Direct conversion of cellulose into sorbitol using dual-functionalized catalysts in neutral aqueous solution. Catalysis Communications201219: 115–118

[19]

Cutrufello M GDiebold UGonzalez R C. Optimization of synthesis variables in the preparation of active sulfated zirconia catalysts. Catalysis Letters2005101(1-2): 5–13

[20]

Li X BNagaoka KSimon L JOlindo RLercher J A. Influence of calcination procedure on the catalytic property of sulfated zirconia. Catalysis Letters2007113(1-2): 34–40

[21]

Zhao EIsaev YSklyarov AFripiat J J. Acid centers in sulfated, phosphated and/or aluminated zirconias. Catalysis Letters199960(4): 173–181

[22]

Barthos RLonyi FEngelhardt JValyon J. A study of the acidic and catalytic properties of pure and sulfated zirconia-titania and zirconia-silica mixed oxides. Topics in Catalysis200010(1-2): 79–87

[23]

Chen X RJu Y HMou C Y. Direct synthesis of mesoporous sulfated silica-zirconia catalysts with high catalytic activity for biodiesel via esterification. Journal of Physical Chemistry C2007111(50): 18731–18737

[24]

Oh JDash SLee H. Selective conversion of glycerol to 1,3-propanediol using Pt-sulfated zirconia. Green Chemistry201113(8): 2004–2007

[25]

Wang YMa J HLiang DZhou M MLi F XLi R F. Lewis and Brønsted acids in super-acid catalyst SO42−/ZrO2-SiO2Journal of Materials Science200944(24): 6736–6740

[26]

Hammache SGoodwin J G Jr. Characteristics of the active sites on sulfated zirconia for n-butane isomerization. Journal of Catalysis2003218(2): 258–266

[27]

Li X BNagaoka KLercher J A. Labile sulfates as key components in active sulfated zirconia for n-butane isomerization at low temperatures. Journal of Catalysis2004227(1): 130–137

[28]

Deutschmann OKnözinger HKochloefl KTurek T. Heterogeneous catalysis and solid catalysts. Ullmann’s Encyclopedia of Industrial Chemistry  Wiley2009, 38–39

[29]

Li X BNagaoka KLercher J A. Labile sulfates as key components in active sulfated zirconia for n-butane isomerization at low temperatures. Journal of Catalysis2004227(1): 130–137

[30]

Suwannakarn KLotero EGoodwin J G Jr, Lu C. Stability of sulfated zirconia and the nature of the catalytically active species in the transesterification of triglycerides. Journal of Catalysis2008255(2): 279–286

[31]

Thitsartarn WKawi S. Transesterification of oil by sulfated Zr-supported mesoporous silica. Industrial & Engineering Chemistry Research201150(13): 7857–7865

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (296KB)

2272

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/