RESEARCH ARTICLE

Facile synthesis and enhanced visible-light photocatalytic activity of Ti3+-doped TiO2 sheets with tunable phase compositionŽ 

  • Xiaojie Zhang 1,2 ,
  • Lei Wang 1 ,
  • Shuqing Chen 3 ,
  • Yi Huang 1 ,
  • Zhuonan Song 1 ,
  • Miao Yu , 1
Expand
  • 1. Department of Chemical Engineering and Catalysis for Renewable Fuels (CReF) Center, University of South Carolina, Columbia, SC 29208, USA
  • 2. Department of Metallurgical and Chemical Engineering, Jiyuan Vocational and Technical Collage, Jiyuan 459000, China
  • 3. State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China

Received date: 17 Apr 2015

Accepted date: 15 Jun 2015

Published date: 30 Sep 2015

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Ti3+-doped TiO2 nanosheets with tunable phase composition (doped TiO2 (A/R)) were synthesized via a hydrothermal method with high surface area anatase TiO2 nanosheets TiO2 (A) as a substrate, structure directing agent, and inhibitor; the activity was evaluated using a probe reaction-photocatalytic CO2 conversion to methane under visible light irradiation with H2 as an electron donor and hydrogen source. High-resolution transmission electron microscope (HRTEM), field emission scanning electron microscope, UV-Vis diffuse reflectance spectra, and X-ray diffraction (XRD) etc., were used to characterize the photocatalysts. XRD and HRTEM measurements confirmed the existence of anatase-rutile phase junction, while Ti3+ and single-electron-trapped oxygen vacancy in the doped TiO2 (A/R) photocatalyst were revealed byelectron paramagnetic resonance (EPR) measurements. Effects of hydrothermal synthesis temperature and the amount of added anatase TiO2 on the photocatalytic activity were elucidated. Significantly enhanced photocatalytic activity of doped TiO2 (A/R) was observed; under the optimized synthesis conditions, CH4 generation rate of doped TiO2 (A/R) was 2.3 times that of Ti3+-doped rutile TiO2.

Cite this article

Xiaojie Zhang , Lei Wang , Shuqing Chen , Yi Huang , Zhuonan Song , Miao Yu . Facile synthesis and enhanced visible-light photocatalytic activity of Ti3+-doped TiO2 sheets with tunable phase compositionŽ [J]. Frontiers of Chemical Science and Engineering, 2015 , 9(3) : 349 -358 . DOI: 10.1007/s11705-015-1523-5

Acknowledgements

We acknowledge the financial support from USC start-up funding and the experimental help from Prof. Haijun Yang (EPR, Tsinghua University), Prof. Yingpu Bi (UV-Vis DRS, Lanzhou Institute of Chemical physics, CAS), and Dr. Quanchao Du (HRTEM, Shanxi University of Technology). Dr. Zhang also acknowledges gratefully the financial supports from the National Natural Science Foundation of China, Henan Educational Committee, the College Young Backbone Teacher foundation of Henan Province, and Jiyuan Vocational and Technical Collage.
1
Yu K, Curcic I, Gabriel J, Tsang S. Recent Advances in CO2 Capture and Utilization. ChemSusChem, 2008, 1: 893–899

2
Chen X, Shen S, Guo L, Mao S. Semiconductor-based photocatalytic hydrogen generation. Chemical Reviews, 2010, 110: 6503–6570

3
Habisreutinger S, Schmidt-Mende L, Stolarczyk J. Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angewandte Chemie International Edition, 2013, 52: 2–39

4
Varghese O, Paulose M, LaTempa T, Grimes C. High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels. Nano Letters, 2009, 9: 731–737

5
Zhang X, Li J, Lu X, Tang C, Lu G. Visible light induced CO2 reduction and Rh B decolorization over electrostatic-assembled AgBr/palygorskite. Journal of Colloid and Interface Science, 2012, 377: 277–283

6
Vaughn II D, Schaak R. Hybrid CuO-TiO2‒xNx hollow nanocubes for photocatalytic conversion of CO2 into methane under solar irradiation. Angewandte Chemie International Edition, 2012, 51: 3915–3918

7
Tamaki Y, Morimoto T, Koike K, Ishitani O. Photocatalytic CO2 reduction with high turnover frequency and selectivity of formic acid formation using Ru(II) multinuclear complexes. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109: 15673–15678

8
Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science, 2001, 293: 269–271

9
Zuo F, Wang L, Wu T, Zhang Z, Borchardt D, Feng P. Self-doped Ti3+ enhanced photocatalyst for hydrogen production under visible light. Journal of the American Chemical Society, 2010, 132: 11856–11857

10
Xie K, Umezawa N, Zhang N, Reunchan P, Zhang Y J, Ye J H. Self-doped SrTiO3−δ photocatalyst with enhanced activity for artificial photosynthesis under visible light. Energy & Environmental Science, 2011, 4: 4211–4219

11
Zuo F, Bozhilov K, Dillon R, Wang L, Smith P, Zhao X, Bardeen C, Feng P. Active facets on titanium(III)-doped TiO2: An effective strategy to improve the visible-light photocatalytic activity. Angewandte Chemie International Edition, 2012, 51: 6223–6226

12
Chen Q, Ma W, Chen C, Ji H, Zhao J. Anatase TiO2 mesocrystals enclosed by (001) and (101) facets: Synergistic effects between Ti3+ and facets for their photocatalytic performance. Chemistry (Weinheim an der Bergstrasse, Germany), 2012, 18: 12584–12589

13
Zheng Z, Huang B, Meng X, Wang J, Wang S, Lou Z, Wang Z, Qin X, Zhang X, Dai Y. Metallic zinc-assisted synthesis of Ti3+ self-doped TiO2 with tunable phase composition and visible-light photocatalytic activity. Chemical Communications, 2013, 49: 868–870

14
Wang J, Zhang P, Li X, Zhu J, Li H. Synchronical pollutant degradation and H2 production on a Ti3+-doped TiO2 visible photocatalyst with dominant (001) facets. Applied Catalysis B: Environmental, 2013, 134-135: 198–204

15
Xing M, Fang W, Nasir M, Ma Y, Zhang J, Anpo M. Self-doped Ti3+-enhanced TiO2 nanoparticles with a high-performance photocatalysis. Journal of Catalysis, 2013, 297: 236–243

16
Zou X, Liu J, Su J, Zuo F, Chen J, Feng P. Facile synthesis of thermal- and photostable titania with paramagnetic oxygen vacancies for visible-light photocatalysis. Chemistry (Weinheim an der Bergstrasse, Germany), 2013, 19: 866–2873

17
Justicia I, Ordejón P, Canto G, Mozos J, Fraxedas J, Battiston G, Gerbasi R, Figueras A. Designed self-doped titanium oxide thin films for efficient visible-light photocatalysis. Advanced Materials, 2002, 14: 1399–1402

18
Pan X, Yang M, Fu X, Zhang N, Xu Y. Defective TiO2 with oxygen vacancies: Synthesis, properties and photocatalytic applications. Nanoscale, 2013, 5: 3601–3614

19
Xing M, Zhang J, Chen F, Tian B. An economic method to prepare vacuum activated photocatalysts with high photo-activities and photosensitivities. Chemical Communications, 2011, 47: 4947–4949

20
Wang G, Wang H, Ling Y, Tang Y, Yang X, Fitzmorris R, Wang C, Zhang J, Li Y. Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Letters, 2011, 11: 3026–3033

21
Kimmel G, Petrik N. Tetraoxygen on reduced TiO2 (110): Oxygen adsorption and reactions with bridging oxygen vacancies. Physical Review Letters, 2008, 100: 196102

22
Ohtsu N, Kodama K, Kitagawa K, Wagatsuma K. Comparison of surface films formed on titanium by pulsed Nd:YAG laser irradiation at different powers and wavelengths in nitrogen atmosphere. Applied Surface Science, 2010, 256: 4522–4526

23
Kong M, Li Y, Chen X, Tian T, Fang P, Zheng F, Zhao X. Tuning the relative concentration ratio of bulk defects to surface defects in TiO2 nanocrystals leads to high photocatalytic efficiency. Journal of the American Chemical Society, 2011, 133: 16414–16417

24
Hamal D, Klabunde K. Heterogeneous photocatalysis over high-surface-area silica-supported silver halide photocatalysts for environmental remediation. In: Erickson L, Koodali R, Richards R, eds. ACS Symposium Series, Washington DC, 2010, 191–205

25
Kawahara T, Konishi Y, Tada H, Tohge N, Nishii J, Ito S. A patterned TiO2(anatase)/TiO2(rutile) bilayer-type photocatalyst: Effect of the anatase/rutile junction on the photocatalytic activity. Angewandte Chemie International Edition, 2002, 41: 2811–2813

26
Zhang J, Xu Q, Feng Z, Li M, Li C. Importance of the relationship between surface phases and photocatalytic activity of TiO2. Angewandte Chemie International Edition, 2008, 47: 1766–1769

27
Yang C, Yu Y, van der Linden B, Wu J, Mul G. Artificial photosynthesis over crystalline TiO2-based catalysts: Fact or fiction? Journal of the American Chemical Society, 2010, 132: 8398–8406

28
Uner D, Oymak M. On the mechanism of photocatalytic CO2 reduction with water in the gas phase. Catalysis Today, 2012, 181: 82–88

29
Han X, Kuang Q, Jin M, Xie Z, Zheng L. Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties. Journal of the American Chemical Society, 2009, 131: 3152–3153

30
Xiang Q, Lv K, Yu J. Pivotal role of fluorine in enhanced photocatalytic activity of anatase TiO2 nanosheets with dominant (001) facets for the photocatalytic degradation of acetone in air. Applied Catalysis B: Environmental, 2010, 96: 557–564

31
Kuznetsov V, Serpone N. On the origin of the spectral bands in the visible absorption spectra of visible-light-active TiO2 specimens analysis and assignments. Journal of Physical Chemistry C, 2009, 113: 15110–15123

32
Ismail A, Bahnemann D. Mesoporous titania photocatalysts: preparation, characterization and reaction mechanisms. Journal of Materials Chemistry, 2011, 21: 11686–11707

33
Anderson C, Bard A. Improved photocatalytic activity and characterization of mixed TiO2/SiO2 and TiO2/Al2O3 materials. Journal of Physical Chemistry B, 1997, 101: 2611–2616

34
Francisco M, Mastelaro V. Inhibition of the anatase-rutile phase transformation with addition of CeO2 to CuO-TiO2 system: Raman spectroscopy, X-ray diffraction, and textural studies. Chemistry of Materials, 2002, 14: 2514–2518

35
Zhu M, Chen P, Liu M. Graphene oxide enwrapped Ag/AgX (X= Br, Cl) nanocomposite as a highly efficient visible-light plasmonic photocatalyst. ACS Nano, 2011, 5: 4529–4536

36
Spurr R, Meyers H. Quantitative analysis of anatase-rutile mixtures with an X-ray diffractometer. Analytical Chemistry, 1957, 29: 760–776

37
Dhumal S, Daulton T, Jiang J, Khomami B, Biswas P. Synthesis of visible light-active nanostructured TiOx (x<2) photocatalysts in a flame aerosol reactor. Applied Catalysis B: Environmental, 2009, 86: 145–151

38
Hurum D, Agrios A, Gray K, Rajh T, Thurnauer M. Explaining the enhanced photocatalytic activity of degussa P25 mixed-phase TiO2 using EPR. Journal of Physical Chemistry B, 2003, 107: 4545–4549

39
Sugawara M. Theory of spontaneous-emission lifetime of Wannier excitons in mesoscopic semiconductor quantum disks. Physical Review B: Condensed Matter and Materials Physics, 1995, 51: 10743

Outlines

/