Facile synthesis and enhanced visible-light photocatalytic activity of Ti3+-doped TiO2 sheets with tunable phase compositionŽ 

Xiaojie Zhang , Lei Wang , Shuqing Chen , Yi Huang , Zhuonan Song , Miao Yu

Front. Chem. Sci. Eng. ›› 2015, Vol. 9 ›› Issue (3) : 349 -358.

PDF (956KB)
Front. Chem. Sci. Eng. ›› 2015, Vol. 9 ›› Issue (3) : 349 -358. DOI: 10.1007/s11705-015-1523-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Facile synthesis and enhanced visible-light photocatalytic activity of Ti3+-doped TiO2 sheets with tunable phase compositionŽ 

Author information +
History +
PDF (956KB)

Abstract

Ti3+-doped TiO2 nanosheets with tunable phase composition (doped TiO2 (A/R)) were synthesized via a hydrothermal method with high surface area anatase TiO2 nanosheets TiO2 (A) as a substrate, structure directing agent, and inhibitor; the activity was evaluated using a probe reaction-photocatalytic CO2 conversion to methane under visible light irradiation with H2 as an electron donor and hydrogen source. High-resolution transmission electron microscope (HRTEM), field emission scanning electron microscope, UV-Vis diffuse reflectance spectra, and X-ray diffraction (XRD) etc., were used to characterize the photocatalysts. XRD and HRTEM measurements confirmed the existence of anatase-rutile phase junction, while Ti3+ and single-electron-trapped oxygen vacancy in the doped TiO2 (A/R) photocatalyst were revealed byelectron paramagnetic resonance (EPR) measurements. Effects of hydrothermal synthesis temperature and the amount of added anatase TiO2 on the photocatalytic activity were elucidated. Significantly enhanced photocatalytic activity of doped TiO2 (A/R) was observed; under the optimized synthesis conditions, CH4 generation rate of doped TiO2 (A/R) was 2.3 times that of Ti3+-doped rutile TiO2.

Graphical abstract

Keywords

Ti3+-doped TiO2 / photocatalytic CO2 conversion / visible light irradiation

Cite this article

Download citation ▾
Xiaojie Zhang, Lei Wang, Shuqing Chen, Yi Huang, Zhuonan Song, Miao Yu. Facile synthesis and enhanced visible-light photocatalytic activity of Ti3+-doped TiO2 sheets with tunable phase compositionŽ . Front. Chem. Sci. Eng., 2015, 9(3): 349-358 DOI:10.1007/s11705-015-1523-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yu KCurcic IGabriel JTsang S. Recent Advances in CO2 Capture and Utilization. ChemSusChem20081: 893–899

[2]

Chen XShen SGuo LMao S. Semiconductor-based photocatalytic hydrogen generation. Chemical Reviews2010110: 6503–6570

[3]

Habisreutinger SSchmidt-Mende LStolarczyk J. Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angewandte Chemie International Edition201352: 2–39

[4]

Varghese OPaulose MLaTempa TGrimes C. High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels. Nano Letters20099: 731–737

[5]

Zhang XLi JLu XTang CLu G. Visible light induced CO2 reduction and Rh B decolorization over electrostatic-assembled AgBr/palygorskite. Journal of Colloid and Interface Science2012377: 277–283

[6]

Vaughn II DSchaak R. Hybrid CuO-TiO2‒xNx hollow nanocubes for photocatalytic conversion of CO2 into methane under solar irradiation. Angewandte Chemie International Edition201251: 3915–3918

[7]

Tamaki YMorimoto TKoike KIshitani O. Photocatalytic CO2 reduction with high turnover frequency and selectivity of formic acid formation using Ru(II) multinuclear complexes. Proceedings of the National Academy of Sciences of the United States of America2012109: 15673–15678

[8]

Asahi RMorikawa TOhwaki TAoki KTaga Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science2001293: 269–271

[9]

Zuo FWang LWu TZhang ZBorchardt DFeng P. Self-doped Ti3+ enhanced photocatalyst for hydrogen production under visible light. Journal of the American Chemical Society2010132: 11856–11857

[10]

Xie KUmezawa NZhang NReunchan PZhang Y JYe J H. Self-doped SrTiO3−δ photocatalyst with enhanced activity for artificial photosynthesis under visible light. Energy & Environmental Science20114: 4211–4219

[11]

Zuo FBozhilov KDillon RWang LSmith PZhao XBardeen CFeng P. Active facets on titanium(III)-doped TiO2: An effective strategy to improve the visible-light photocatalytic activity. Angewandte Chemie International Edition201251: 6223–6226

[12]

Chen QMa WChen CJi HZhao J. Anatase TiO2 mesocrystals enclosed by (001) and (101) facets: Synergistic effects between Ti3+ and facets for their photocatalytic performance. Chemistry (Weinheim an der Bergstrasse, Germany)201218: 12584–12589

[13]

Zheng ZHuang BMeng XWang JWang SLou ZWang ZQin XZhang XDai Y. Metallic zinc-assisted synthesis of Ti3+ self-doped TiO2 with tunable phase composition and visible-light photocatalytic activity. Chemical Communications201349: 868–870

[14]

Wang JZhang PLi XZhu JLi H. Synchronical pollutant degradation and H2 production on a Ti3+-doped TiO2 visible photocatalyst with dominant (001) facets. Applied Catalysis B: Environmental2013134-135: 198–204

[15]

Xing MFang WNasir MMa YZhang JAnpo M. Self-doped Ti3+-enhanced TiO2 nanoparticles with a high-performance photocatalysis. Journal of Catalysis2013297: 236–243

[16]

Zou XLiu JSu JZuo FChen JFeng P. Facile synthesis of thermal- and photostable titania with paramagnetic oxygen vacancies for visible-light photocatalysis. Chemistry (Weinheim an der Bergstrasse, Germany)201319: 866–2873

[17]

Justicia IOrdejón PCanto GMozos JFraxedas JBattiston GGerbasi RFigueras A. Designed self-doped titanium oxide thin films for efficient visible-light photocatalysis. Advanced Materials200214: 1399–1402

[18]

Pan XYang MFu XZhang NXu Y. Defective TiO2 with oxygen vacancies: Synthesis, properties and photocatalytic applications. Nanoscale20135: 3601–3614

[19]

Xing MZhang JChen FTian B. An economic method to prepare vacuum activated photocatalysts with high photo-activities and photosensitivities. Chemical Communications201147: 4947–4949

[20]

Wang GWang HLing YTang YYang XFitzmorris RWang CZhang JLi Y. Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Letters201111: 3026–3033

[21]

Kimmel GPetrik N. Tetraoxygen on reduced TiO2 (110): Oxygen adsorption and reactions with bridging oxygen vacancies. Physical Review Letters2008100: 196102

[22]

Ohtsu NKodama KKitagawa KWagatsuma K. Comparison of surface films formed on titanium by pulsed Nd:YAG laser irradiation at different powers and wavelengths in nitrogen atmosphere. Applied Surface Science2010256: 4522–4526

[23]

Kong MLi YChen XTian TFang PZheng FZhao X. Tuning the relative concentration ratio of bulk defects to surface defects in TiO2 nanocrystals leads to high photocatalytic efficiency. Journal of the American Chemical Society2011133: 16414–16417

[24]

Hamal DKlabunde K. Heterogeneous photocatalysis over high-surface-area silica-supported silver halide photocatalysts for environmental remediation. In: Erickson LKoodali RRichards R, eds. ACS Symposium Series, Washington DC2010, 191–205

[25]

Kawahara TKonishi YTada HTohge NNishii JIto S. A patterned TiO2(anatase)/TiO2(rutile) bilayer-type photocatalyst: Effect of the anatase/rutile junction on the photocatalytic activity. Angewandte Chemie International Edition200241: 2811–2813

[26]

Zhang JXu QFeng ZLi MLi C. Importance of the relationship between surface phases and photocatalytic activity of TiO2Angewandte Chemie International Edition200847: 1766–1769

[27]

Yang CYu Yvan der Linden BWu JMul G. Artificial photosynthesis over crystalline TiO2-based catalysts: Fact or fiction? Journal of the American Chemical Society2010132: 8398–8406

[28]

Uner DOymak M. On the mechanism of photocatalytic CO2 reduction with water in the gas phase. Catalysis Today2012181: 82–88

[29]

Han XKuang QJin MXie ZZheng L. Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties. Journal of the American Chemical Society2009131: 3152–3153

[30]

Xiang QLv KYu J. Pivotal role of fluorine in enhanced photocatalytic activity of anatase TiO2 nanosheets with dominant (001) facets for the photocatalytic degradation of acetone in air. Applied Catalysis B: Environmental201096: 557–564

[31]

Kuznetsov VSerpone N. On the origin of the spectral bands in the visible absorption spectra of visible-light-active TiO2 specimens analysis and assignments. Journal of Physical Chemistry C2009113: 15110–15123

[32]

Ismail ABahnemann D. Mesoporous titania photocatalysts: preparation, characterization and reaction mechanisms. Journal of Materials Chemistry201121: 11686–11707

[33]

Anderson CBard A. Improved photocatalytic activity and characterization of mixed TiO2/SiO2 and TiO2/Al2O3 materials. Journal of Physical Chemistry B1997101: 2611–2616

[34]

Francisco MMastelaro V. Inhibition of the anatase-rutile phase transformation with addition of CeO2 to CuO-TiO2 system: Raman spectroscopy, X-ray diffraction, and textural studies. Chemistry of Materials200214: 2514–2518

[35]

Zhu MChen PLiu M. Graphene oxide enwrapped Ag/AgX (X= Br, Cl) nanocomposite as a highly efficient visible-light plasmonic photocatalyst. ACS Nano20115: 4529–4536

[36]

Spurr RMeyers H. Quantitative analysis of anatase-rutile mixtures with an X-ray diffractometer. Analytical Chemistry195729: 760–776

[37]

Dhumal SDaulton TJiang JKhomami BBiswas P. Synthesis of visible light-active nanostructured TiOx (x<2) photocatalysts in a flame aerosol reactor. Applied Catalysis B: Environmental200986: 145–151

[38]

Hurum DAgrios AGray KRajh TThurnauer M. Explaining the enhanced photocatalytic activity of degussa P25 mixed-phase TiO2 using EPR. Journal of Physical Chemistry B2003107: 4545–4549

[39]

Sugawara M. Theory of spontaneous-emission lifetime of Wannier excitons in mesoscopic semiconductor quantum disks. Physical Review B: Condensed Matter and Materials Physics199551: 10743

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (956KB)

3043

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/