REVIEW ARTICLE

Treatment of landfill waste, leachate and landfill gas: A review

  • Hecham OMAR ,
  • Sohrab ROHANI
Expand
  • The University of Western Ontario, Department of Chemical and Biochemical Engineering, London, Ontario N6A 5B9, Canada

Received date: 08 Oct 2014

Accepted date: 06 Dec 2014

Published date: 07 Apr 2015

Copyright

2015 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

This review aims at the treatment of the entire landfill, including the waste mass and the harmful emissions: leachate and landfill gas. Different landfill treatments (aerobic, anaerobic and semi-aerobic bioreactor landfills, dry-tomb landfills), leachate treatments (anaerobic and aerobic treatments, anammox, adsorption, chemical oxidation, coagulation/flocculation and membrane processes) and landfill gas treatments (flaring, adsorption, absorption, permeation and cryogenic treatments) are reviewed. Available information and the gaps present in current knowledge is summarized. The most significant areas to expand are landfill waste treatments, which in recent years has begun to grow but there is an opportunity for much more. Another area to explore is the treatment of landfill gas, a very large field to which not much effort has been put forth. This review is to compare different treatment methods and give direction to future research.

Cite this article

Hecham OMAR , Sohrab ROHANI . Treatment of landfill waste, leachate and landfill gas: A review[J]. Frontiers of Chemical Science and Engineering, 2015 , 9(1) : 15 -32 . DOI: 10.1007/s11705-015-1501-y

Acknowledgements

The authors acknowledge the financial support provided by the Natural Sciences and Engineering Research Council of Canada and Mitacs Canada.
1
United States Environmental Protection Agency. Municipal solid waste generation, recycling, and disposal in the United States: Facts and figures for 2012. 2014

2
Arsova L, van Haaren R, Goldstein N, Kaufman S M, Themelis N J. The state of garbage in America. BioCycle, 2008, 49(12), 22

3
Hudgins M, Harper S. Operational characteristics of two aerobic landfill systems. 1999

4
Huber-Humer M, Kjeldsen P, Spokas K A. Special issue on landfill gas emission and mitigation. Waste Management, 2011, 31(5): 821–822

5
Bogner J, Pipatti R, Hashimoto S, Diaz C, Mareckova K, Diaz L, Kjeldsen P, Monni S, Faaij A, Gao Q, Zhang T, Ahmed M A, Sutamihardja R T M, Gregory R. Mitigation of global greenhouse gas emissions from waste: Conclusions and strategies from the intergovernmental panel on climate change (IPCC) fourth assessment report. Working Group III (Mitigation). Waste Management & Research, 2008, 26(1): 11–32

6
Rasmussen R A, Khalil M A K. Atmospheric methane in the recent and ancient atmospheres: Concentrations, trends, and interhemispheric gradient. Journal of Geophysical Research, D, Atmospheres, 1984, 89(D7): 11599–11605

7
Mehta R, Barlaz M, Yazdani R, Augenstein D, Bryars M, Sinderson L. Refuse decomposition in the presence and absence of leachate recirculation. Journal of Environmental Engineering, 2002, 128(3): 228–236

8
Reinhart D R, McCreanor P T, Townsend T. The bioreactor landfill: Its status and future. Waste Management & Research, 2002, 20(2): 172–186

9
Reinhart D R, Townsend T. Landfill Bioreactor Design and Operation. New York: Lewis Publishers, 1998

10
Kulkarni H S, Reddy K R. Moisture distribution in bioreactor landfills: A review. Indian Geotechnical Journal, 2012, 42(3): 125–149

11
Reddy K, Hettiarachchi H, Parakalla N, Gangathulasi J, Bogner J, Lagier T. Hydraulic Conductivity of MSW in Landfills. Journal of Environmental Engineering, 2009, 135(8): 677–683

12
Jiang J, Yang G, Deng Z, Huang Y, Huang Z, Feng X, Zhou S, Zhang C. Pilot-scale experiment on anaerobic bioreactor landfills in China. Waste Management, 2007, 27(7): 893–901

13
McCreanor P, Reinhart D. Hydrodynamic modeling of leachate recirculating landfills. Waste Management & Research, 1999, 17(6): 465–469

14
Westlake K. Sustainable landfill—possibility or pipe-dream? Waste Management & Research, 1997, 15(5): 453–461

15
Wang Y, Pelkonen M, Kaila J. Optimization of landfill leachate management in the aftercare period. Waste Management & Research, 2012, 30(8): 789–799

16
Méry J, Bayer S. Comparison of external costs between dry tomb and bioreactor landfills: Taking intergenerational effects seriously. Waste Management & Research, 2005, 23(6): 514–526

17
Laner D, Crest M, Scharff H, Morris J W F, Barlaz M A. A review of approaches for the long-term management of municipal solid waste landfills. Waste Management, 2012, 32(3): 498–512

18
Hirata O, Matsufuji Y, Tachifuji A, Yanase R. Waste stabilization mechanism by a recirculatory semi-aerobic landfill with the aeration system. Journal of Material Cycles and Waste Management, 2012, 14(1): 47–51

19
Ritzkowski M, Heyer K U, Stegmann R. Fundamental processes and implications during in situ aeration of old landfills. Waste Management, 2006, 26(4): 356–372

20
Benefield J C, Randall S J. Biological Process Design for Wastewater Treatment. New Jersey: Prentice-Hall, 1980

21
Dong J, Sheng H, Wen C, Hong M, Jiang H. Effects of phosphorous on the stabilization of solid waste in anaerobic landfill. Process Safety and Environmental Protection, 2013, 91(6): 483–488

22
Jegatheesan V, Kastl G, Fisher I, Chandy J, Angles M. Modeling bacterial growth in drinking water: Effect of nutrients. American Water Works Association Journal, 2004, 96(5): 129–135

23
Miettinen I T, Vartiainen T, Martikainen P J. Phosphorus and bacterial growth in drinking water. Applied and Environmental Microbiology, 1997, 63(8): 3242–3245

24
Sathasivan A, Ohgaki S, Yamamoto K, Kamiko N. Role of inorganic phosphorus in controlling regrowth in water distribution system. Water Science and Technology, 1997, 35(8): 37–44

25
Fielding E R, Archer D B, de Macario E C, Macario A J L. Isolation and characterization of methanogenic bacteria from landfills. Applied and Environmental Microbiology, 1988, 54(3): 835–836

26
Ritzkowski M, Stegmann R. Landfill aeration worldwide: Concepts, indications and findings. Waste Management, 2012, 32(7): 1411–1419

27
Leikam K, Heyer K U, Stegmann R. In situ stabilization of completed landfills and old sites. In: Proceedings Sardinia, 1997. Sixth International Waste Management Landfill Symptomatology. Cagliari, Italy, 1997

28
Berge N D, Reinhart D R, Townsend T G. The fate of nitrogen in bioreactor landfills. Critical Reviews in Environmental Science and Technology, 2005, 35(4): 365–399

29
Bonany J E, Geel P J V, Gunay H B, Isgor O B. Simulating waste temperatures in an operating landfill in Québec, Canada. Waste Management & Research, 2013, 31(7): 692–699

30
Crutcher A J, Rovers F A, McBean E A. Temperature as an indicator of landfill behavior. Water, Air, and Soil Pollution, 1982, 17(2): 213–223

31
Hettiarachchi H, Meegoda J, Hettiaratchi P. Effects of gas and moisture on modeling of bioreactor landfill settlement. Waste Management, 2009, 29(3): 1018–1025

32
Öncü G, Reiser M, Kranert M. Aerobic in situ stabilization of Landfill Konstanz Dorfweiher: Leachate quality after 1 year of operation. Waste Management, 2012, 32(12): 2374–2384

33
Zanetti M C. Aerobic biostabilization of old MSW landfills. American Journal Engineering Application Science, 2008, 1(4): 393–398

34
Erses A S, Onay T T, Yenigun O. Comparison of aerobic and anaerobic degradation of municipal solid waste in bioreactor landfills. Bioresource Technology, 2008, 99(13): 5418–5426

35
Slezak R, Krzystek L, Ledakowicz S. Mathematical model of aerobic stabilization of old landfills. Chemical Papers, 2012, 66(6): 543–549

36
Wu C, Shimaoka T, Nakayama H, Komiya T, Chai X, Hao Y. Influence of aeration modes on leachate characteristic of landfills that adopt the aerobic–anaerobic landfill method. Waste Management, 2014, 34(1): 101–111

37
Borglin S E, Hazen T C, Oldenburg C M, Zawislanski P T. Comparison of aerobic and anaerobic biotreatment of municipal solid waste. Journal of the Air & Waste Management Association, 2004, 54(7): 815–822

38
Vitello C. Aerobic degradation: increasing landfill efficiency. Solid Waste Recycle, 2001, 6(1): 25–27

39
Bilgili M S, Demir A, Varank G. Effect of leachate recirculation and aeration on volatile fatty acid concentrations in aerobic and anaerobic landfill leachate. Waste Management & Research, 2012, 30(2): 161–170

40
Zhang X, Matsuto T. Assessment of internal condition of waste in a roofed landfill. Waste Management, 2013, 33(1): 102–108

41
Bilgili M S, Demir A, Özkaya B. Influence of leachate recirculation on aerobic and anaerobic decomposition of solid wastes. Journal of Hazardous Materials, 2007, 143(1-2): 177–183

42
Kallel A, Matsuto T, Tanaka N. Determination of oxygen consumption for landfilled municipal solid wastes. Waste Management & Research, 2003, 21(4): 346–355

43
El-Fadel M, Fayyad W, Hashisho J. Enhanced solid waste stabilization in aerobic landfills using low aeration rates and high density compaction. Waste Management & Research, 2013, 31(1): 30–40

44
Warith M. Bioreactor landfills: Experimental and field results. Waste Management, 2002, 22(1): 7–17

45
Yang Y, Yue B, Yang Y, Huang Q. Influence of semi-aerobic and anaerobic landfill operation with leachate recirculation on stabilization processes. Waste Management & Research, 2011, 30(3): 255–265

46
Tang P, Zhao Y, Liu D. A laboratory study on stabilization criteria of semi-aerobic landfill. Waste Management & Research, 2008, 26(6): 566–572

47
Huang Q, Yang Y, Pang X, Wang Q. Evolution on qualities of leachate and landfill gas in the semi-aerobic landfill. Journal of Environmental Sciences (China), 2008, 20(4): 499–504

48
Aziz S Q, Aziz H A, Yusoff M S, Bashir M J K, Umar M. Leachate characterization in semi-aerobic and anaerobic sanitary landfills: a comparative study. Journal of Environmental Management, 2010, 91(12): 2608–2614

49
Kumar S, Chiemchaisri C, Mudhoo A. Bioreactor landfill technology in municipal solid waste treatment: An overview. Critical Reviews in Biotechnology, 2010, 31(1): 77–97

50
Green L C. US Patent, 5888022, 1999-03-30

51
Yazdani R, Mostafid M E, Han B, Imhoff P T, Chiu P, Augenstein D, Kayhanian M, Tchobanoglous G. Quantifying factors limiting aerobic degradation during aerobic bioreactor landfilling. Environmental Science & Technology, 2010, 44(16): 6215–6220

52
Rendra S, Warith M A, Fernandes L. Degradation of municipal solid waste in aerobic bioreactor landfills. Environmental Technology, 2007, 28(6): 609–620

53
Wadkar D V, Modak P R, Chavan V S. Aerobic thermophilic composting of municipal solid waste. International Journal of Engineering Science and Technology, 2013, 5(3): 716–718

54
Senior E, ed. Microbiology of Landfill Sites. 2nd ed. Boca Raton: Lewis Publishers, 1995

55
Renou S, Givaudan J G, Poulain S, Dirassouyan F, Moulin P. Landfill leachate treatment: Review and opportunity. Journal of Hazardous Materials, 2008, 150(3): 468–493

56
Lu J C S, Eichenberger B, Stearns R J. Leachate from municipal landfills: Production and management. New Jersey: Noyes Publications, 1985

57
Vadillo I, Carrasco F, Andreo B, de Torres A G, Bosch C. Chemical composition of landfill leachate in a karst area with a Mediterranean climate (Marbella, southern Spain). Environmental Geology, 1999, 37(4): 326–332

58
Hudgins M P, March J. In-situ solid waste composting using an aerobic landfill system. In: Oral Present. Conference Attendees Composting in the Southeast, 1998

59
Wiszniowski J, Robert D, Surmacz-Gorska J, Miksch K, Weber J V. Landfill leachate treatment methods: A review. Environmental Chemistry Letters, 2006, 4(1): 51–61

60
Dhokpande S R, Kaware J P. Biological methods for heavy metal removal—A review. International Journal Engineering Science Innovation Technology, 2013, 2(5): 304–309

61
Rivas F J, Beltrán F, Carvalho F, Acedo B, Gimeno O. Stabilized leachates: Sequential coagulation-flocculation+ chemical oxidation process. Journal of Hazardous Materials, 2004, 116(1-2): 95–102

62
Berrueta J, Castrillón L. Anaerobic treatment of leachates in UASB reactors. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 1992, 54(1): 33–37

63
Chang J E. Treatment of landfill leachate with an upflow anaerobic reactor containing a sludge bed and a filter. Water Science and Technology, 1989, 21: 133–143

64
Henry J G, Prasad D, Young H. Removal of organics from leachates by anaerobic filter. Water Research, 1987, 21(11): 1395–1399

65
Kennedy K J, Hamoda M F, Guiot S G. Anaerobic treatment of leachate using fixed film and sludge bed filter systems. Journal- Water Pollution Control Federation, 1988, 60(9): 1675–1683

66
Timur H, Özturk I. Anaerobic sequencing batch reactor treatment of landfill leachate. Water Research, 1999, 33(15): 3225–3230

67
Cameron R D, Koch F A. Trace metals and anaerobic digestion of leachate. Journal-Water Pollution Control Federation, 1980, 52(2): 282–292

68
Kheradmand S, Karimi-Jashni A, Sartaj M. Treatment of municipal landfill leachate using a combined anaerobic digester and activated sludge system. Waste Management, 2010, 30(6): 1025–1031

69
Kim H, Jang Y C, Townsend T. The behavior and long-term fate of metals in simulated landfill bioreactors under aerobic and anaerobic conditions. Journal of Hazardous Materials, 2011, 194: 369–377

70
Robinson H D, Barr M J. Aerobic biological treatment of landfill leachates. Waste Management & Research, 1999, 17(6): 478–486

71
Giannis A, Makripodis G, Simantiraki F, Somara M, Gidarakos E. Monitoring operational and leachate characteristics of an aerobic simulated landfill bioreactor. Waste Management, 2008, 28(8): 1346–1354

72
Liu Y. Chemically reduced excess sludge production in the activated sludge process. Chemosphere, 2003, 50(1): 1–7

73
Bilgili M S, Demir A, Özkaya B. Quality and quantity of leachate in aerobic pilot-scale landfills. Environmental Management, 2006, 38(2): 189–196

74
Sartaj M, Ahmadifar M, Jashni A K. Assessment of in-situ aerobic treatment of municipal landfill leachate at laboratory scale. Iranian Journal of Sciene and Technology Transaction B-Engineering, 2010, 34(B1): 107–116

75
Wei Y, Ji M, Li R, Qin F. Organic and nitrogen removal from landfill leachate in aerobic granular sludge sequencing batch reactors. Waste Management, 2012, 32(3): 448–455

76
Yahmed A B, Saidi N, Trabelsi I, Murano F, Dhaifallah T, Bousselmi L, Ghrabi A. Microbial characterization during aerobic biological treatment of landfill leachate (Tunisia). Desalination, 2009, 246(1-3): 378–388

77
Andrés P, Gutierrez F, Arrabal C, Cortijo M. Aerobic biological treatment of leachates from municipal solid waste landfill. Journal of Environment Science Health, Part A. Environmental Sciences, 2004, 39(5): 1319–1328

78
Bilgili M S, Demir A, Akkaya E, Özkaya B. COD fractions of leachate from aerobic and anaerobic pilot scale landfill reactors. Journal of Hazardous Materials, 2008, 158(1): 157–163

79
Kamaruddin M A, Yusoff M S, Aziz H A, Basri N K. Removal of COD, ammoniacal nitrogen and colour from stabilized landfill leachate by anaerobic organism. Applied Water Science, 2013, 3(2): 359–366

80
Thabet O B D, Bouallagui H, Cayol J, Ollivier B, Fardeau M L, Hamdi M. Anaerobic degradation of landfill leachate using an upflow anaerobic fixed-bed reactor with microbial sulfate reduction. Journal of Hazardous Materials, 2009, 167(1-3): 1133–1140

81
David R. Environmental microbiology: Deciphering anammox. Nature Reviews. Microbiology, 2011, 9(12): 833

82
Kartal B, Maalcke W J, de Almeida N M, Cirpus I, Gloerich J, Geerts W, Op den Camp H J M, Harhangi H R, Janssen-Megens E M, Francoijs K J, Stunnenberg H G, Keltjens J T, Jetten M S M, Strous M. Molecular mechanism of anaerobic ammonium oxidation. Nature, 2011, 479(7371): 127–130

83
Strous M, Van Gerven E, Zheng P, Kuenen J G, Jetten M S M. Ammonium removal from concentrated waste streams with the anaerobic ammonium oxidation (Anammox) process in different reactor configurations. Water Research, 1997, 31(8): 1955–1962

84
Kartal B, Kuenen J G, van Loosdrecht M C M. Sewage treatment with anammox. Science, 2010, 328(5979): 702–703

85
Cema G, Wiszniowski J, Żabczyński S, Zabłocka-Godlewska E, Raszka A, Surmacz-Górska J. Biological nitrogen removal from landfill leachate by deammonification assisted by heterotrophic denitrification in a rotating biological contactor (RBC). Water Science and Technology, 2007, 55(8-9): 35–42

86
Liu S, Yang F, Meng F, Chen H, Gong Z. Enhanced anammox consortium activity for nitrogen removal: Impacts of static magnetic field. Journal of Biotechnology, 2008, 138(3-4): 96–102

87
Qiao S, Yin X, Zhou J, Furukawa K. Inhibition and recovery of continuous electric field application on the activity of anammox biomass. Biodegradation, 2014, 25(4): 505–513

88
Duan X, Zhou J, Qiao S, Wei H. Application of low intensity ultrasound to enhance the activity of anammox microbial consortium for nitrogen removal. Bioresource Technology, 2011, 102(5): 4290–4293

89
Marañón E, Castrillón L, Fernández-Nava Y, Fernández-Méndez A, Fernández-Sánchez A. Tertiary treatment of landfill leachates by adsorption. Waste Management & Research, 2009, 27(5): 527–533

90
Malliou E, Loizidou M, Spyrellis N. Uptake of lead and cadmium by clinoptilolite. Science of the Total Environment, 1994, 149(3): 139–144

91
Davis M E, Lobo R F. Zeolite and molecular sieve synthesis. Chemistry of Materials, 1992, 4(4): 756–768

92
Zamzow M J, Eichbaum B R, Sandgren K R, Shanks D E. Removal of heavy metals and other cations from wastewater using zeolites. Separation Science and Technology, 1990, 25(13-15): 1555–1569

93
Marco A, Esplugas S, Saum G. How and why combine chemical and biological processes for wastewater treatment. Water Science and Technology, 1997, 35(4): 321–327

94
Derco J, Gotvajn A Ž, Zagorc-Končan J, Almásiová B, Kassai A. Pretreatment of landfill leachate by chemical oxidation processes. Chemical Papers, 2010, 64(2): 237–245

95
Boumechhour F, Rabah K, Lamine C, Said B M. Treatment of landfill leachate using Fenton process and coagulation/flocculation. Water and Environment Journal, 2013, 27(1): 114–119

96
Samadi M T, Saghi M H, Rahmani A, Hasanvand J, Rahimi S, Syboney M S. Hamadan landfill leachate treatment by coagulation-flocculation process. Iranian Journal of Environmental Health Sciences & Engineering, 2010, 7(3): 253–258

97
Tatsi A A, Zouboulis A I, Matis K A, Samaras P. Coagulation-flocculation pretreatment of sanitary landfill leachates. Chemosphere, 2003, 53(7): 737–744

98
Amokrane A, Comel C, Veron J. Landfill leachates pretreatment by coagulation-flocculation. Water Research, 1997, 31(11): 2775–2782

99
Ghafari S, Aziz H A, Isa M H, Zinatizadeh A A. Application of response surface methodology (RSM) to optimize coagulation-flocculation treatment of leachate using poly-aluminum chloride (PAC) and alum. Journal of Hazardous Materials, 2009, 163(2-3): 650–656

100
Ntampou X, Zouboulis A I, Samaras P. Appropriate combination of physico-chemical methods (coagulation/flocculation and ozonation) for the efficient treatment of landfill leachates. Chemosphere, 2006, 62(5): 722–730

101
Ameen E, Muyibi S, Abdulkarim M. Microfiltration of pretreated sanitary landfill leachate. Environmentalist, 2011, 31(3): 208–215

102
Primo O, Rueda A, Rivero M J, Ortiz I. An integrated process, Fenton Reaction-ultrafiltration, for the treatment of landfill leachate: Pilot plant operation and analysis. Industrial & Engineering Chemistry Research, 2008, 47(3): 946–952

103
Vandezande P, Gevers L E M, Vankelecom I F J. Solvent resistant nanofiltration: separating on a molecular level. Chemical Society Reviews, 2008, 37(2): 365–405

104
Trebouet D, Schlumpf J P, Jaouen P, Quemeneur F. Stabilized landfill leachate treatment by combined physicochemical-nanofiltration processes. Water Research, 2001, 35(12): 2935–2942

105
Renou S, Poulain S, Givaudan J G, Moulin P. Amelioration of ultrafiltration process by lime treatment: Case of landfill leachate. Desalination, 2009, 249(1): 72–82

106
Chianese A, Ranauro R, Verdone N. Treatment of landfill leachate by reverse osmosis. Water Research, 1999, 33(3): 647–652

107
Rajaram V, Siddiqui F Z, Khan M E. Landfill gas treatment technologies. In: From Landfill Gas to Energy: Technologies and Challenges, Leiden. The Netherlands: CRC/Balkema, 2012, 153–208

108
Mor S, Ravindra K, De Visscher A, Dahiya R P, Chandra A. Municipal solid waste characterization and its assessment for potential methane generation: a case study. Science of the Total Environment, 2006, 371(1-3): 1–10

109
Staley B F, Xu F, Cowie S J, Barlaz M A, Hater G R. Release of trace organic compounds during the decomposition of municipal solid waste components. Environmental Science & Technology, 2006, 40(19): 5984–5991

110
Themelis N J, Ulloa P A. Methane generation in landfills. Renewable Energy, 2007, 32(7): 1243–1257

111
Allen M R, Braithwaite A, Hills C C. Trace organic compounds in landfill gas at seven U.K. waste disposal sites. Environmental Science & Technology, 1997, 31(4): 1054–1061

112
Eklund B, Anderson E P, Walker B L, Burrows D B. Characterization of landfill gas composition at the fresh kills municipal solid-waste landfill. Environmental Science & Technology, 1998, 32(15): 2233–2237

113
Thomas C L, Barlaz M A. Production of non-methane organic compounds during refuse decomposition in a laboratory-scale landfill. Waste Management & Research, 1999, 17(3): 205–211

114
Zhang Y, Yue D, Liu J, Lu P, Wang Y, Liu J, Nie Y. Release of non-methane organic compounds during simulated landfilling of aerobically pretreated municipal solid waste. Journal of Environmental Management, 2012, 101: 54–58

115
Powell J, Jain P, Kim H, Townsend T, Reinhart D. Changes in landfill gas quality as a result of controlled air injection. Environmental Science & Technology, 2006, 40(3): 1029–1034

116
Goossens M A. Landfill gas power plants. Renewable Energy, 1996, 9(1-4): 1015–1018

117
Aguilar-Virgen Q, Taboada-González P, Ojeda-Benítez S. Analysis of the feasibility of the recovery of landfill gas: A case study of Mexico. Journal of Cleaner Production, 2014, 79: 53–60

118
Chiemchaisri C, Juanga J P, Visvanathan C. Municipal solid waste management in Thailand and disposal emission inventory. Environmental Monitoring and Assessment, 2007, 135(1-3): 13–20

119
Faour A A, Reinhart D R, You H. First-order kinetic gas generation model parameters for wet landfills. Waste Management, 2007, 27(7): 946–953

120
Garg A, Achari G, Joshi R C. A model to estimate the methane generation rate constant in sanitary landfills using fuzzy synthetic evaluation. Waste Management & Research, 2006, 24(4): 363–375

121
Machado S L, Carvalho M F, Gourc J P, Vilar O M, do Nascimento J C F. Methane generation in tropical landfills: Simplified methods and field results. Waste Management, 2009, 29(1): 153–161

122
Wanichpongpan W, Gheewala S H. Life cycle assessment as a decision support tool for landfill gas-to energy projects. Journal of Cleaner Production, 2007, 15(18): 1819–1826

123
Abushammala M F M, Basri N E A, Basri H, Kadhum A A H, El-Shafie A H. Estimation of methane emission from landfills in Malaysia using the IPCC 2006 FOD model. Journal of Applied Science, 2010, 10(15): 1603–1609

124
Börjesson G, Samuelsson J, Chanton J, Adolfsson R, Galle B, Svensson B H. A national landfill methane budget for Sweden based on field measurements, and an evaluation of IPCC models. Tellus. Series B, Chemical and Physical Meteorology, 2009, 61(2): 424–435

125
Heyer K U, Hupe K, Stegmann R. Methane emissions from MBT landfills. Waste Management, 2013, 33(9): 1853–1860

126
Penteado R, Cavalli M, Magnano E, Chiampo F. Application of the IPCC model to a Brazilian landfill: First results. Energy Policy, 2012, 42(1): 551–556

127
Amini H R, Reinhart D R, Mackie K R. Determination of first-order landfill gas modeling parameters and uncertainties. Waste Management, 2012, 32(2): 305–316

128
Tintner J, Kühleitner M, Binner E, Brunner N, Smidt E. Modeling the final phase of landfill gas generation from long-term observations. Biodegradation, 2012, 23(3): 407–414

129
Brown K A, Maunder D H. Exploitation of landfill gas: A UK perspective. Water Science and Technology, 1994, 30(12): 143–151

130
Han H, Long J, Li S, Qian G. Comparison of green-house gas emission reductions and landfill gas utilization between a landfill system and an incineration system. Waste Management & Research, 2010, 28(4): 315–321

131
Jewaskiewitz B. Landfill gas recovery, green energy, and the clean development mechanism. Civil Engineering Management South African Institution of Civil Engineering, 2010, 18(7): 19–23

132
Solov’yanov A A. Associated petroleum gas flaring: Environmental issues. Russian Journal of General Chemistry, 2011, 81(12): 2531–2541

133
Ménard C, Ramirez A A, Nikiema J, Heitz M. Biofiltration of methane and trace gases from landfills: A review. Environmental Reviews, 2012, 20(1): 40–53

134
Sircar S. Separation of methane and carbon dioxide gas mixtures by pressure swing adsorption. Separation Science and Technology, 1988, 23(6-7): 519–529

135
Shin H C, Park J W, Park K, Song H C. Removal characteristics of trace compounds of landfill gas by activated carbon adsorption. Environmental Pollution, 2002, 119(2): 227–236

136
Gaur A, Park J W, Maken S, Song H J, Park J J. Landfill gas (LFG) processing via adsorption and alkanolamine absorption. Fuel Processing Technology, 2010, 91(6): 635–640

137
Koros W J, Fleming G K. Membrane-based gas separation. Journal of Membrane Science, 1993, 83(1): 1–80

138
Rautenbach R, Welsch K. Treatment of landfill gas by gas permeation—pilot plant results and comparison to alternatives. Journal of Membrane Science, 1994, 87(1-2): 107–118

139
Gabelman A, Hwang S T. Hollow fiber membrane contactors. Journal of Membrane Science, 1999, 159(1-2): 61–106

140
Markbreiter S J, Weiss I. US Patent, 5596884, 1997-01-28

Outlines

/