REVIEW ARTICLE

Water-soluble BODIPY and aza-BODIPY dyes: synthetic progress and applications

  • Gang FAN ,
  • Le YANG ,
  • Zhijian CHEN
Expand
  • School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China

Received date: 30 Apr 2014

Accepted date: 19 Jun 2014

Published date: 14 Jan 2015

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

In recent years, boron-dipyrromethene (BODIPY) and boron-azadipyrromethene (aza-BODIPY) dyes have attracted considerable multidisciplinary attention due to their diverse applications. By introducing various hydrophilic groups, such as quaternary ammonium, sulfonate or oligo-ethyleneglycol moieties into the BODIPY core, the solubilities of these dyes in aqueous solution can be greatly improved while maintaining their high fluorescence quantum yields. Accordingly, applying these fluorescent dyes in aqueous systems to areas such as chemosensors, biomacromolecule labeling, bio-imaging and photodynamic therapy has been achieved. In this article, the recent progress on the synthesis, optical properties and application of water-soluble BODIPY dyes and aza-BODIPY dyes is reviewed.

Cite this article

Gang FAN , Le YANG , Zhijian CHEN . Water-soluble BODIPY and aza-BODIPY dyes: synthetic progress and applications[J]. Frontiers of Chemical Science and Engineering, 2014 , 8(4) : 405 -417 . DOI: 10.1007/s11705-014-1445-7

Acknowledgment

This work was supported by the National Natural Science Foundation of China (Grant No. 21176184) and the Program for New Century Excellent Talents by the Ministry of Education (NCET-09-0584).
1
Görl D, Zhang X, Würthner F. Molecular assemblies of perylene bisimide dyes in water. Angewandte Chemie International Edition, 2012, 51(26): 6328–6348

2
Loudet A, Burgess K. BODIPY dyes and their derivatives: Syntheses and spectroscopic properties. Chemical Reviews, 2007, 107(11): 4891–4932

3
Ziessel R, Ulrich G, Harriman A. The chemistry of bodipy: A new El Dorado for fluorescence tools. New Journal of Chemistry, 2007, 31(4): 496–501

4
Baruah M, Qin W, Vallée R A, Beljonne D, Rohand T, Dehaen W, Boens N. A highly potassium-selective fluorescent indicator based on BODIPY azacrown ether excitable with visible light. Organic Letters, 2005, 7(20): 4377–4380

5
Bricks J L, Kovalchuk A, Trieflinger C, Nofz M, Büschel M, Tolmachev A I, Daub J, Rurack K. On the development of sensor molecules that display FeIII-amplified fluorescence. Journal of the American Chemical Society, 2005, 127(39): 13522–13529

6
Ulrich G, Ziessel R, Harriman A. The chemistry of fluorescent bodipy dyes: Versatility unsurpassed. Angewandte Chemie International Edition, 2008, 47(7): 1184–1201

7
Treibs A, Kreuzer F H. Difluorboryl-komplexe von di- und tripyrrylmethenen. Justus Liebigs Annalen der Chemie, 1968, 718(1): 208–223

8
Qin W W, Baruah M, Stefan A, Auweraer M V, Boens N. Photophysical properties of BODIPY-derived fluorescent pH probes in solution. A European Journal of Chemical Physics and Physical Chemistry, 2005, 6(11): 2343–2351

9
Wagner R W, Lindsey J S. Boron-dipyrromethene dyes for incorporation in synthetic multi-pigment light-harvesting arrays. Pure and Applied Chemistry, 1996, 68(7): 1373–1380

10
Rurack K, Kollmannsberger M, Daub J. Molecular switching in the near infrared (NIR) with a functionalized boron-dipyrromethene dye. Angewandte Chemie International Edition, 2001, 40(2): 385–387

11
Gabe Y, Urano Y, Kikuchi K, Kojima H, Nagano T. Highly sensitive fluorescence probes for nitric oxide. Journal of the American Chemical Society, 2004, 126(10): 3357–3367

12
Guo B, Peng X, Cui A, Wu Y, Tian M, Zhang L, Chen X, Gao Y. Synthesis and spectral properties of new boron dipyrromethene dyes. Dyes and Pigments, 2007, 73(2): 206–210

13
Coskun A, Akkaya E U. Difluorobora-s-diazaindacene dyes as highly selective dosimetric reagents for fluoride anions. Tetrahedron Letters, 2004, 45(25): 4947–4949

14
Nicolaou K C, Claremon D A, Papahatjis D P. A mild method for the synthesis of 2-ketopyrroles from carboxylic acids. Tetrahedron Letters, 1981, 22(46): 4647–4650

15
Wu L, Burgess K. A new synthesis of symmetric boraindacene (BODIPY) dyes. Chemical Communications, 2008, (40): 4933–4935

16
Wories H J, Koek J H, Lodder G, Lugtenburg J, Fokkens R, Driessen O, Mohn G R. A novel water-soluble fluorescent probe: Synthesis, luminescence and biological properties of the sodium salt of the 4-sulfonato-3,3′,5,5′-tetramethyl-2,2′-pyrromethen-1,1′-BF2 complex. Recueil des Travaux Chimiques des Pays-Bas, 1985, 104(11): 288–291

17
Shah M, Thangaraj K, Soong M L, Wolford L T, Boyer J H, Politzer I R, Pavlopoulos T G. Pyrromethene-BF2 complexes as laser dyes: 1. Heteroatom Chemistry, 1990, 1(5): 389–399

18
Li L, Han J Y, Burgess K. Syntheses and spectral properties of functionalized, water-soluble BODIPY derivatives. Journal of Organic Chemistry, 2008, 73(5): 1963–1970

19
Dilek O, Bane S L. Synthesis, spectroscopic properties and protein labeling of water soluble 3,5-disubstituted boron dipyrromethenes. Bioorganic & Medicinal Chemistry Letters, 2009, 19(24): 6911–6913

20
Meltola N J, Wahlroos R, Soini A E. Hydrophilic labeling reagents of dipyrrylmethene-BF2 dyes for two-photon excited fluorometry: Syntheses and photophysical characterization. Journal of Fluorescence, 2004, 14(5): 635–647

21
Niu S L, Ulrich G, Ziessel R, Kiss A, Renard P Y, Romieu A. Water-soluble BODIPY derivatives. Organic Letters, 2009, 11(10): 2049–2052

22
Bura T, Ziessel R. Water-soluble phosphonate-substituted BODIPY derivatives with tunable emission channels. Organic Letters, 2011, 13(12): 3072–3075

23
Zhu S, Zhang J, Vegesna G, Luo F T, Green S, Liu H. Highly water-soluble neutral BODIPY dyes with controllable fluorescence quantum yields. Organic Letters, 2011, 13(3): 438–441

24
Komatsu T, Urano Y, Fujikawa Y, Kobayashi T, Kojima H, Terai T, Hanaoka K, Nagano T. Development of 2,6-carboxy-substituted boron dipyrromethene (BODIPY) as a novel scaffold of ratiometric fluorescent probes for live cell imaging. Chemical Communications, 2009, 45(45): 7015–7017

25
Matsui A, Umezawa K, Shindo Y, Fujii T, Citterio D, Oka K, Suzuki K. A near-infrared fluorescent calcium probe: A new tool for intracellular multicolour Ca2+ imaging. Chemical Communications, 2011, 47(37): 10407–10409

26
Dodani S C, He Q, Chang C J. A turn-on fluorescent sensor for detecting nickel in living cells. Journal of the American Chemical Society, 2009, 131(50): 18020–18021

27
Han J, Loudet A, Barhoumi R, Burghardt R C, Burgess K. A ratiometric pH reporter for imaging protein-dye conjugates in living cells. Journal of the American Chemical Society, 2009, 131(5): 1642–1643

28
Zhu S, Zhang J, Vegesna G, Luo F T, Green S, Liu H. Highly water-soluble neutral BODIPY dyes with controllable fluorescence quantum yields. Organic Letters, 2011, 13(3): 438–441

29
Atilgan S, Ekmekci Z, Dogan A L, Guc D, Akkaya E U. Water soluble distyryl-boradiazaindacenes as efficient photosensitizers for photodynamic therapy. Chemical Communications, 2006, (42): 4398–4400

30
Isik M, Ozdemir T, Turan I S, Kolemen S, Akkaya E U. Chromogenic and fluorogenic sensing of biological thiols in aqueous solutions using BOIDIPY-based reagents. Organic Letters, 2013, 15(1): 216–219

31
Atilgan S, Ozdemir T, Akkaya E U. A sensitive and selective ratiometric near IR fluorescent probe for zinc ions based on the distyryl-bodipy fluorophore. Organic Letters, 2008, 10(18): 4065–4067

32
O’Shea D F. Fluorescent near infra-red (NIR) dyes. US Patent, 20120232282, 2012-09-13

33
McDonnell S O, Hall M J, Allen L T, Byrne A, Gallagher W M, O'Shea D F. Supramolecular photonic therapeutic agents. Journal of the American Chemical Society, 2005, 127(47): 16360–16361

34
Gorman A, Killoran J, O’Shea C, Kenna T, Gallagher W M, O’Shea D F. In vitro demonstration of the heavy-atom effect for photodynamic therapy. Journal of the American Chemical Society, 2004, 126(34): 10619–10631

35
Li F, Yang S I, Ciringh Y, Seth J, Martin C H, Singh D L, Kim D, Birge R R, Bocian D F, Holten D, Lindsey J S. Design, synthesis, and photodynamics of light-harvesting arrays comprised of a porphyrin and one, two, or eight boron-dipyrrin accessory pigments. Journal of the American Chemical Society, 1998, 120(39): 10001–10017

36
Zhang X F, Yu H, Xiao Y. Replacing phenyl ring with thiophene: An approach to longer wavelength aza-dipyrromethene boron difluoride (aza-BODIPY) dyes. Journal of Organic Chemistry, 2012, 77(1): 669–673

37
Amin A N, El-Khouly M, Subbaiyan N K, Zandler M E, Supur M, Fukuzumi S, D’Souza F. Syntheses, electrochemistry, and photodynamics of ferrocene azadipyrromethane donor Acceptor Dyads and Triads. Journal of Physical Chemistry A, 2011, 115(35): 9810–9819

38
Sauer R, Turshatov A, Baluschev S, Landfester K. One-Pot production of fluorescent surface-labeled polymeric nanoparticles via miniemulsion polymerization with Bodipy surfmers. Macromolecules, 2012, 45(9): 3787–3796

39
Poirel A, Retailleau P, Nicola A D, Ziessel R. Synthesis of water-soluble red-emitting thienyl-BODIPYs and bovine serum albumin labeling. Chemistry (Weinheim an der Bergstrasse, Germany), 2014, 20(5): 1252–1257

40
Monsma F J, Barton A C, Kang H C, Brassard D L, Haugland R P, Sibley D R. Characterization of novel fluorescent ligands with high affinity for D1 and D2 dopaminergic receptors. Journal of Neurochemistry, 1989, 52(5): 1641–1644

41
Pagano R E, Martin O C, Kang H C, Haughland R P. A novel fluorescent ceramide analogue for studying membrane traffic in animal cells: accumulation at the Golgi apparatus results in altered spectral properties of the sphingolipid precursor. Journal of Cell Biology, 1991, 113(6): 1267–1279

42
Knaus H G, Moshammer T, Friedrich K, Kang H C, Haugland R P, Glossman H. In vivo labeling of L-type Ca2<?A3B2 h=-0.3h?>+ channels by fluorescent dihydropyridines: Evidence for a functional, extracellular heparin-binding site. Proceeding of the National Academy of Science of the United States of America, 1992, 89(8): 3586–3590

43
Olivier J H, Widmaier J, Ziessel R. Near-infrared fluorescent nanoparticles formed by self-assembly of lipidic (bodipy) dyes. Chemistry (Weinheim an der Bergstrasse, Germany), 2011, 17(42): 11709–11714

44
Isaad J, Achari A E. A water soluble fluorescent BODIPY dye with azathiacrown ether functionality for mercury chemosensing in environmental media. Analyst (London), 2013, 138(13): 3809–3819

45
Xu J, Li Q, Yue Y, Guo Y, Shao S. A water-soluble BODIPY derivative as a highly selective “Turn-On” fluorescent sensor for H2O2 sensing in vivo. Biosensors & Bioelectronics, 2014, 56: 58–63

46
Zhu S, Zhang J, Janjanam J, Vegesna G, Luo F T, Tiwari A, Liu H. Highly water-soluble BODIPY-based fluorescent probes for sensitive fluorescent sensing of zinc(II). Journal of Materials Chemistry B, 2013, 1(12): 1722–1728

47
Bonnet R. Chemical Aspects of Photodynamic Therapy. Amsterdam: Gordon and Breach Science Publishers, 2000, 115–147

48
Bonnet R, Martínez G. Photobleaching of sensitisers used in photodynamic therapy. Tetrahedron, 2001, 57(47): 9513–9547

49
Capella M A, Capella L S. A light in multidrug resistance: Photodynamic treatment of multidrug-resistant tumors. Journal of Biomedical Science, 2003, 10(4): 361–366

50
Kamkaew A, Lim S H, Lee H B, Kiew L V, Chung L Y, Burgess K. BODIPY dyes in photodynamic therapy. Chemical Society Reviews, 2013, 42(1): 77–88

Outlines

/