Water-soluble BODIPY and aza-BODIPY dyes: synthetic progress and applications

Gang FAN, Le YANG, Zhijian CHEN

PDF(1399 KB)
PDF(1399 KB)
Front. Chem. Sci. Eng. ›› 2014, Vol. 8 ›› Issue (4) : 405-417. DOI: 10.1007/s11705-014-1445-7
REVIEW ARTICLE
REVIEW ARTICLE

Water-soluble BODIPY and aza-BODIPY dyes: synthetic progress and applications

Author information +
History +

Abstract

In recent years, boron-dipyrromethene (BODIPY) and boron-azadipyrromethene (aza-BODIPY) dyes have attracted considerable multidisciplinary attention due to their diverse applications. By introducing various hydrophilic groups, such as quaternary ammonium, sulfonate or oligo-ethyleneglycol moieties into the BODIPY core, the solubilities of these dyes in aqueous solution can be greatly improved while maintaining their high fluorescence quantum yields. Accordingly, applying these fluorescent dyes in aqueous systems to areas such as chemosensors, biomacromolecule labeling, bio-imaging and photodynamic therapy has been achieved. In this article, the recent progress on the synthesis, optical properties and application of water-soluble BODIPY dyes and aza-BODIPY dyes is reviewed.

Keywords

boron-dipyrromethene / boron-azadipyrromethene / synthetic progress / applications

Cite this article

Download citation ▾
Gang FAN, Le YANG, Zhijian CHEN. Water-soluble BODIPY and aza-BODIPY dyes: synthetic progress and applications. Front. Chem. Sci. Eng., 2014, 8(4): 405‒417 https://doi.org/10.1007/s11705-014-1445-7

References

[1]
Görl D, Zhang X, Würthner F. Molecular assemblies of perylene bisimide dyes in water. Angewandte Chemie International Edition, 2012, 51(26): 6328–6348
[2]
Loudet A, Burgess K. BODIPY dyes and their derivatives: Syntheses and spectroscopic properties. Chemical Reviews, 2007, 107(11): 4891–4932
[3]
Ziessel R, Ulrich G, Harriman A. The chemistry of bodipy: A new El Dorado for fluorescence tools. New Journal of Chemistry, 2007, 31(4): 496–501
[4]
Baruah M, Qin W, Vallée R A, Beljonne D, Rohand T, Dehaen W, Boens N. A highly potassium-selective fluorescent indicator based on BODIPY azacrown ether excitable with visible light. Organic Letters, 2005, 7(20): 4377–4380
[5]
Bricks J L, Kovalchuk A, Trieflinger C, Nofz M, Büschel M, Tolmachev A I, Daub J, Rurack K. On the development of sensor molecules that display FeIII-amplified fluorescence. Journal of the American Chemical Society, 2005, 127(39): 13522–13529
[6]
Ulrich G, Ziessel R, Harriman A. The chemistry of fluorescent bodipy dyes: Versatility unsurpassed. Angewandte Chemie International Edition, 2008, 47(7): 1184–1201
[7]
Treibs A, Kreuzer F H. Difluorboryl-komplexe von di- und tripyrrylmethenen. Justus Liebigs Annalen der Chemie, 1968, 718(1): 208–223
[8]
Qin W W, Baruah M, Stefan A, Auweraer M V, Boens N. Photophysical properties of BODIPY-derived fluorescent pH probes in solution. A European Journal of Chemical Physics and Physical Chemistry, 2005, 6(11): 2343–2351
[9]
Wagner R W, Lindsey J S. Boron-dipyrromethene dyes for incorporation in synthetic multi-pigment light-harvesting arrays. Pure and Applied Chemistry, 1996, 68(7): 1373–1380
[10]
Rurack K, Kollmannsberger M, Daub J. Molecular switching in the near infrared (NIR) with a functionalized boron-dipyrromethene dye. Angewandte Chemie International Edition, 2001, 40(2): 385–387
[11]
Gabe Y, Urano Y, Kikuchi K, Kojima H, Nagano T. Highly sensitive fluorescence probes for nitric oxide. Journal of the American Chemical Society, 2004, 126(10): 3357–3367
[12]
Guo B, Peng X, Cui A, Wu Y, Tian M, Zhang L, Chen X, Gao Y. Synthesis and spectral properties of new boron dipyrromethene dyes. Dyes and Pigments, 2007, 73(2): 206–210
[13]
Coskun A, Akkaya E U. Difluorobora-s-diazaindacene dyes as highly selective dosimetric reagents for fluoride anions. Tetrahedron Letters, 2004, 45(25): 4947–4949
[14]
Nicolaou K C, Claremon D A, Papahatjis D P. A mild method for the synthesis of 2-ketopyrroles from carboxylic acids. Tetrahedron Letters, 1981, 22(46): 4647–4650
[15]
Wu L, Burgess K. A new synthesis of symmetric boraindacene (BODIPY) dyes. Chemical Communications, 2008, (40): 4933–4935
[16]
Wories H J, Koek J H, Lodder G, Lugtenburg J, Fokkens R, Driessen O, Mohn G R. A novel water-soluble fluorescent probe: Synthesis, luminescence and biological properties of the sodium salt of the 4-sulfonato-3,3′,5,5′-tetramethyl-2,2′-pyrromethen-1,1′-BF2 complex. Recueil des Travaux Chimiques des Pays-Bas, 1985, 104(11): 288–291
[17]
Shah M, Thangaraj K, Soong M L, Wolford L T, Boyer J H, Politzer I R, Pavlopoulos T G. Pyrromethene-BF2 complexes as laser dyes: 1. Heteroatom Chemistry, 1990, 1(5): 389–399
[18]
Li L, Han J Y, Burgess K. Syntheses and spectral properties of functionalized, water-soluble BODIPY derivatives. Journal of Organic Chemistry, 2008, 73(5): 1963–1970
[19]
Dilek O, Bane S L. Synthesis, spectroscopic properties and protein labeling of water soluble 3,5-disubstituted boron dipyrromethenes. Bioorganic & Medicinal Chemistry Letters, 2009, 19(24): 6911–6913
[20]
Meltola N J, Wahlroos R, Soini A E. Hydrophilic labeling reagents of dipyrrylmethene-BF2 dyes for two-photon excited fluorometry: Syntheses and photophysical characterization. Journal of Fluorescence, 2004, 14(5): 635–647
[21]
Niu S L, Ulrich G, Ziessel R, Kiss A, Renard P Y, Romieu A. Water-soluble BODIPY derivatives. Organic Letters, 2009, 11(10): 2049–2052
[22]
Bura T, Ziessel R. Water-soluble phosphonate-substituted BODIPY derivatives with tunable emission channels. Organic Letters, 2011, 13(12): 3072–3075
[23]
Zhu S, Zhang J, Vegesna G, Luo F T, Green S, Liu H. Highly water-soluble neutral BODIPY dyes with controllable fluorescence quantum yields. Organic Letters, 2011, 13(3): 438–441
[24]
Komatsu T, Urano Y, Fujikawa Y, Kobayashi T, Kojima H, Terai T, Hanaoka K, Nagano T. Development of 2,6-carboxy-substituted boron dipyrromethene (BODIPY) as a novel scaffold of ratiometric fluorescent probes for live cell imaging. Chemical Communications, 2009, 45(45): 7015–7017
[25]
Matsui A, Umezawa K, Shindo Y, Fujii T, Citterio D, Oka K, Suzuki K. A near-infrared fluorescent calcium probe: A new tool for intracellular multicolour Ca2+ imaging. Chemical Communications, 2011, 47(37): 10407–10409
[26]
Dodani S C, He Q, Chang C J. A turn-on fluorescent sensor for detecting nickel in living cells. Journal of the American Chemical Society, 2009, 131(50): 18020–18021
[27]
Han J, Loudet A, Barhoumi R, Burghardt R C, Burgess K. A ratiometric pH reporter for imaging protein-dye conjugates in living cells. Journal of the American Chemical Society, 2009, 131(5): 1642–1643
[28]
Zhu S, Zhang J, Vegesna G, Luo F T, Green S, Liu H. Highly water-soluble neutral BODIPY dyes with controllable fluorescence quantum yields. Organic Letters, 2011, 13(3): 438–441
[29]
Atilgan S, Ekmekci Z, Dogan A L, Guc D, Akkaya E U. Water soluble distyryl-boradiazaindacenes as efficient photosensitizers for photodynamic therapy. Chemical Communications, 2006, (42): 4398–4400
[30]
Isik M, Ozdemir T, Turan I S, Kolemen S, Akkaya E U. Chromogenic and fluorogenic sensing of biological thiols in aqueous solutions using BOIDIPY-based reagents. Organic Letters, 2013, 15(1): 216–219
[31]
Atilgan S, Ozdemir T, Akkaya E U. A sensitive and selective ratiometric near IR fluorescent probe for zinc ions based on the distyryl-bodipy fluorophore. Organic Letters, 2008, 10(18): 4065–4067
[32]
O’Shea D F. Fluorescent near infra-red (NIR) dyes. US Patent, 20120232282, 2012-09-13
[33]
McDonnell S O, Hall M J, Allen L T, Byrne A, Gallagher W M, O'Shea D F. Supramolecular photonic therapeutic agents. Journal of the American Chemical Society, 2005, 127(47): 16360–16361
[34]
Gorman A, Killoran J, O’Shea C, Kenna T, Gallagher W M, O’Shea D F. In vitro demonstration of the heavy-atom effect for photodynamic therapy. Journal of the American Chemical Society, 2004, 126(34): 10619–10631
[35]
Li F, Yang S I, Ciringh Y, Seth J, Martin C H, Singh D L, Kim D, Birge R R, Bocian D F, Holten D, Lindsey J S. Design, synthesis, and photodynamics of light-harvesting arrays comprised of a porphyrin and one, two, or eight boron-dipyrrin accessory pigments. Journal of the American Chemical Society, 1998, 120(39): 10001–10017
[36]
Zhang X F, Yu H, Xiao Y. Replacing phenyl ring with thiophene: An approach to longer wavelength aza-dipyrromethene boron difluoride (aza-BODIPY) dyes. Journal of Organic Chemistry, 2012, 77(1): 669–673
[37]
Amin A N, El-Khouly M, Subbaiyan N K, Zandler M E, Supur M, Fukuzumi S, D’Souza F. Syntheses, electrochemistry, and photodynamics of ferrocene azadipyrromethane donor Acceptor Dyads and Triads. Journal of Physical Chemistry A, 2011, 115(35): 9810–9819
[38]
Sauer R, Turshatov A, Baluschev S, Landfester K. One-Pot production of fluorescent surface-labeled polymeric nanoparticles via miniemulsion polymerization with Bodipy surfmers. Macromolecules, 2012, 45(9): 3787–3796
[39]
Poirel A, Retailleau P, Nicola A D, Ziessel R. Synthesis of water-soluble red-emitting thienyl-BODIPYs and bovine serum albumin labeling. Chemistry (Weinheim an der Bergstrasse, Germany), 2014, 20(5): 1252–1257
[40]
Monsma F J, Barton A C, Kang H C, Brassard D L, Haugland R P, Sibley D R. Characterization of novel fluorescent ligands with high affinity for D1 and D2 dopaminergic receptors. Journal of Neurochemistry, 1989, 52(5): 1641–1644
[41]
Pagano R E, Martin O C, Kang H C, Haughland R P. A novel fluorescent ceramide analogue for studying membrane traffic in animal cells: accumulation at the Golgi apparatus results in altered spectral properties of the sphingolipid precursor. Journal of Cell Biology, 1991, 113(6): 1267–1279
[42]
Knaus H G, Moshammer T, Friedrich K, Kang H C, Haugland R P, Glossman H. In vivo labeling of L-type Ca2<?A3B2 h=-0.3h?>+ channels by fluorescent dihydropyridines: Evidence for a functional, extracellular heparin-binding site. Proceeding of the National Academy of Science of the United States of America, 1992, 89(8): 3586–3590
[43]
Olivier J H, Widmaier J, Ziessel R. Near-infrared fluorescent nanoparticles formed by self-assembly of lipidic (bodipy) dyes. Chemistry (Weinheim an der Bergstrasse, Germany), 2011, 17(42): 11709–11714
[44]
Isaad J, Achari A E. A water soluble fluorescent BODIPY dye with azathiacrown ether functionality for mercury chemosensing in environmental media. Analyst (London), 2013, 138(13): 3809–3819
[45]
Xu J, Li Q, Yue Y, Guo Y, Shao S. A water-soluble BODIPY derivative as a highly selective “Turn-On” fluorescent sensor for H2O2 sensing in vivo. Biosensors & Bioelectronics, 2014, 56: 58–63
[46]
Zhu S, Zhang J, Janjanam J, Vegesna G, Luo F T, Tiwari A, Liu H. Highly water-soluble BODIPY-based fluorescent probes for sensitive fluorescent sensing of zinc(II). Journal of Materials Chemistry B, 2013, 1(12): 1722–1728
[47]
Bonnet R. Chemical Aspects of Photodynamic Therapy. Amsterdam: Gordon and Breach Science Publishers, 2000, 115–147
[48]
Bonnet R, Martínez G. Photobleaching of sensitisers used in photodynamic therapy. Tetrahedron, 2001, 57(47): 9513–9547
[49]
Capella M A, Capella L S. A light in multidrug resistance: Photodynamic treatment of multidrug-resistant tumors. Journal of Biomedical Science, 2003, 10(4): 361–366
[50]
Kamkaew A, Lim S H, Lee H B, Kiew L V, Chung L Y, Burgess K. BODIPY dyes in photodynamic therapy. Chemical Society Reviews, 2013, 42(1): 77–88

Acknowledgment

This work was supported by the National Natural Science Foundation of China (Grant No. 21176184) and the Program for New Century Excellent Talents by the Ministry of Education (NCET-09-0584).

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1399 KB)

Accesses

Citations

Detail

Sections
Recommended

/