REVIEW ARTICLE

Application of membrane separation technology in post-combustion carbon dioxide capture process

  • Mo LI ,
  • Xiaobin JIANG ,
  • Gaohong HE
Expand
  • State Key Laboratory of Fine Chemicals, R&D Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China

Received date: 29 Sep 2013

Accepted date: 13 Dec 2013

Published date: 22 May 2014

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Membrane separation technology is a possible breakthrough in post-combustion carbon dioxide capture process. This review first focuses on the requirements for CO2 separation membrane, and then outlines the existing competitive materials, promising preparation methods and processes to achieve desirable CO2 selectivity and permeability. A particular emphasis is addressed on polyimides, poly (ethylene oxide), mixed-matrix membrane, thermally-rearranged polymer, fixed site carrier membrane, ionic liquid membrane and electrodialysis process. The advantages and drawbacks of each of materials and methods are discussed. Research threads and methodology of CO2 separation membrane and the key issue in this area are concluded

Cite this article

Mo LI , Xiaobin JIANG , Gaohong HE . Application of membrane separation technology in post-combustion carbon dioxide capture process[J]. Frontiers of Chemical Science and Engineering, 2014 , 8(2) : 233 -239 . DOI: 10.1007/s11705-014-1408-z

Acknowledgements

This work was supported by the National High Technology Research and Development Program of China (Grant No. 2012AA03A611), the National Science Fund for Distinguished Young Scholars of China (21125628), the National Natural Science Foundation of China (Grant No. 21306017), the China Postdoctoral Science Foundation (2013M530126) and the Fundamental Research Funds for the Central Universities of China (DUT12RC(3)43).
1
RubinE S, MantripragadaH, MarksA, VersteegP, KitchinJ. The outlook for improved carbon capture technology. Progress in Energy and Combustion Science, 2012, 38(5): 630–671

DOI

2
HerzogH J. Peer reviewed: What future for carbon capture and sequestration? Environmental Science & Technology, 2001, 35(7): 148–153

DOI

3
DavisonJ, ThambimuthuK. Technologies for capture of carbon dioxide. In: Proceedings of the Seventh Greenhouse Gas Technology Conference, Vancouver, Canada, International Energy Association (IEA), Greenhouse Gas R&D Progamme. 2004, 3–13

4
SteeneveldtR, BergerB, TorpT. CO2 Capture and storage: Closing the knowing-doing gap. Chemical Engineering Research & Design, 2006, 84(9): 739–763

DOI

5
DukeM C, LadewigB, SmartS, RudolphV, Diniz da CostaJ C. Assessment of postcombustion carbon capture technologies for power generation. Frontiers of Chemical Engineering in China, 2009, 4(2): 184–195

DOI

6
OexmannJ, KatherA. Minimising the regeneration heat duty of post-combustion CO2 capture by wet chemical absorption: The misguided focus on low heat of absorption solvents. International Journal of Greenhouse Gas Control, 2010, 4(1): 36–43

DOI

7
FavreE. Membrane processes and postcombustion carbon dioxide capture: Challenges and prospects. Chemical Engineering Journal, 2011, 171(3): 782–793

DOI

8
GraniteE J, PennlineH W. Photochemical removal of mercury from flue gas. Industrial & Engineering Chemistry Research, 2002, 41(22): 5470–5476

DOI

9
PowellC E, QiaoG G. Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases. Journal of Membrane Science, 2006, 279(1–2): 1–49

DOI

10
FavreE. Carbon dioxide recovery from post-combustion processes: Can gas permeation membranes compete with absorption? Journal of Membrane Science, 2007, 294(1–2): 50–59

DOI

11
BrunettiA, ScuraF, BarbieriG, DrioliE. Membrane technologies for CO2 separation. Journal of Membrane Science, 2010, 359(1–2): 115–125

DOI

12
JolyC, GoizetS, SchrotterJ C, SanchezJ, EscoubesM. Sol-gel polyimide-silica composite membrane: gas transport properties. Journal of Membrane Science, 1997, 130(1–2): 63–74

DOI

13
RobesonL M. The upper bound revisited. Journal of Membrane Science, 2008, 320(1–2): 390–400

DOI

14
Cecopieri-GómezM L, Palacios-AlquisiraJ, DomínguezJ M. On the limits of gas separation in CO2/CH4, N2/CH4 and CO2/N2 binary mixtures using polyimide membranes. Journal of Membrane Science, 2007, 293(1–2): 53–65

DOI

15
DuN Y, ParkH B, Dal-CinM M, GuiverM D. Advances in high permeability polymeric membrane materials for CO2 separations. Energy & Environmental Science, 2012, 5(6): 7306–7322

DOI

16
HuL, XuX L, ColemanM R. Impact of H+ ion beam irradiation on Matrimid (R).II.Evolution in gas transport properties. Journal of Applied Polymer Science, 2007, 103(3): 1670–1680

DOI

17
SternS A. Polymers for gas separations—the next decade. Journal of Membrane Science, 1994, 94(1): 1–65

DOI

18
HirayamaY, KaseY, TaniharaR, SumiyamaY, KusukiY, HarayaK. Permeation properties to CO2 and N2 of poly(ethylene oxide)-containing and crosslinked polymer films. Journal of Membrane Science, 1999, 160(1): 87–99

DOI

19
PotreckJ, NijmeijerK, KosinskiT, WesslingM. Mixed water vapor/gas transport through the rubbery polymer PEBAX (R) 1074. Journal of Membrane Science, 2009, 338(1–2): 11–16

DOI

20
HashemifardS A, IsmailA F, MatsuuraT. Effects of montmorillonite nano-clay fillers on PEI mixed matrix membrane for CO2 removal. Chemical Engineering Journal, 2011, 170(1): 316–325

DOI

21
HusainS, KorosW J. Mixed matrix hollow fiber membranes made with modified HSSZ-13 zeolite in polyetherimide polymer matrix for gas separation. Journal of Membrane Science, 2007, 288(1–2): 195–207

DOI

22
LiJ R, SculleyJ, ZhouH C. Metal-organic frameworks for separations. Chemical Reviews, 2012, 112(2): 869–932

DOI

23
D'AlessandroD M, SmitB, LongJ R. Carbon dioxide capture: Prospects for new materials. Angewandte Chemie International Edition in English, 2010, 49(35): 6058–6082

DOI

24
DaiY, JohnsonJ R, KarvanO, ShollD S, KorosW J. Ultem®/ZIF-8 mixed matrix hollow fiber membranes for CO2/N2 separations. Journal of Membrane Science, 2012, 401–402: 76–82

DOI

25
BrownA J, JohnsonJ R, LydonM E, KorosW J, JonesC W, NairS. Continuous polycrystalline zeolitic imidazolate framework-90 membranes on polymeric hollow fibers. Angewandte Chemie International Edition, 2012, 51(42): 10615–10618

DOI

26
ParkH B, JungC H, LeeY M, HillA J, PasS J, MudieS T, van WagnerE, FreemanB D, CooksonD J. Polymers with cavities tuned for fast selective transport of small molecules and ions. Science, 2007, 318(5848): 254–258

DOI

27
KimS, HanS H, LeeY M. Thermally rearranged (TR) polybenzoxazole hollow fiber membranes for CO2 capture. Journal of Membrane Science, 2012, 403: 169–178

DOI

28
ParkH B, HanS H, JungC H, LeeY M, HillA J. Thermally rearranged (TR) polymer membranes for CO2 separation. Journal of Membrane Science, 2010, 359(1–2): 11–24

DOI

29
HuangJ, ZouJ, HoW S W. Carbon dioxide capture using a CO2-selective facilitated transport membrane. Industrial & Engineering Chemistry Research, 2008, 47(4): 1261–1267

DOI

30
MatsuyamaH, TeradaA, NakagawaraT, KitamuraY, TeramotoM. Facilitated transport of CO2 through polyethylenimine/poly(vinyl alcohol) blend membrane. Journal of Membrane Science, 1999, 163(2): 221–227

DOI

31
KimT J, LiB A, HaggM B. Novel fixed-site-carrier polyvinylamine membrane for carbon dioxide capture. Journal of Polymer Science. Part B, Polymer Physics, 2004, 42(23): 4326–4336

DOI

32
WangM, YangD, WangZ, WangJ, WangS. Effects of pressure and temperature on fixed-site carrier membrane for CO2 separation from natural gas. Frontiers of Chemical Engineering in China, 2009, 4(2): 127–132

DOI

33
Andrew LeeS, StevensG W, KentishS E. Facilitated transport behavior of humidified gases through thin-film composite polyamide membranes for carbon dioxide capture. Journal of Membrane Science, 2013, 429(0): 349–354

DOI

34
LozanoL J, GodinezC, de los RiosA P, Hernandez-FernandezF J, Sanchez-SegadoS, AlguacilF J. Recent advances in supported ionic liquid membrane technology. Journal of Membrane Science, 2011, 376(1–2): 1–14

DOI

35
ZhaoW, HeG, NieF, ZhangL, FengH, LiuH. Membrane liquid loss mechanism of supported ionic liquid membrane for gas separation. Journal of Membrane Science, 2012, 411–412: 73–80

DOI

36
EisamanM D, AlvaradoL, LarnerD, WangP, GargB, LittauK A. CO2 separation using bipolar membrane electrodialysis. Energy & Environmental Science, 2011, 4(4): 1319–1328

DOI

37
EisamanM D, AlvaradoL, LarnerD, WangP, LittauK A. CO2 desorption using high-pressure bipolar membrane electrodialysis. Energy & Environmental Science, 2011, 4(10): 4031–4037

DOI

Outlines

/