Application of membrane separation technology in post-combustion carbon dioxide capture process

Mo LI, Xiaobin JIANG, Gaohong HE

PDF(235 KB)
PDF(235 KB)
Front. Chem. Sci. Eng. ›› 2014, Vol. 8 ›› Issue (2) : 233-239. DOI: 10.1007/s11705-014-1408-z
REVIEW ARTICLE
REVIEW ARTICLE

Application of membrane separation technology in post-combustion carbon dioxide capture process

Author information +
History +

Abstract

Membrane separation technology is a possible breakthrough in post-combustion carbon dioxide capture process. This review first focuses on the requirements for CO2 separation membrane, and then outlines the existing competitive materials, promising preparation methods and processes to achieve desirable CO2 selectivity and permeability. A particular emphasis is addressed on polyimides, poly (ethylene oxide), mixed-matrix membrane, thermally-rearranged polymer, fixed site carrier membrane, ionic liquid membrane and electrodialysis process. The advantages and drawbacks of each of materials and methods are discussed. Research threads and methodology of CO2 separation membrane and the key issue in this area are concluded

Keywords

membranes / carbon dioxide capture / separation / polymers / post-combustion

Cite this article

Download citation ▾
Mo LI, Xiaobin JIANG, Gaohong HE. Application of membrane separation technology in post-combustion carbon dioxide capture process. Front. Chem. Sci. Eng., 2014, 8(2): 233‒239 https://doi.org/10.1007/s11705-014-1408-z

References

[1]
RubinE S, MantripragadaH, MarksA, VersteegP, KitchinJ. The outlook for improved carbon capture technology. Progress in Energy and Combustion Science, 2012, 38(5): 630–671
CrossRef Google scholar
[2]
HerzogH J. Peer reviewed: What future for carbon capture and sequestration? Environmental Science & Technology, 2001, 35(7): 148–153
CrossRef Google scholar
[3]
DavisonJ, ThambimuthuK. Technologies for capture of carbon dioxide. In: Proceedings of the Seventh Greenhouse Gas Technology Conference, Vancouver, Canada, International Energy Association (IEA), Greenhouse Gas R&D Progamme. 2004, 3–13
[4]
SteeneveldtR, BergerB, TorpT. CO2 Capture and storage: Closing the knowing-doing gap. Chemical Engineering Research & Design, 2006, 84(9): 739–763
CrossRef Google scholar
[5]
DukeM C, LadewigB, SmartS, RudolphV, Diniz da CostaJ C. Assessment of postcombustion carbon capture technologies for power generation. Frontiers of Chemical Engineering in China, 2009, 4(2): 184–195
CrossRef Google scholar
[6]
OexmannJ, KatherA. Minimising the regeneration heat duty of post-combustion CO2 capture by wet chemical absorption: The misguided focus on low heat of absorption solvents. International Journal of Greenhouse Gas Control, 2010, 4(1): 36–43
CrossRef Google scholar
[7]
FavreE. Membrane processes and postcombustion carbon dioxide capture: Challenges and prospects. Chemical Engineering Journal, 2011, 171(3): 782–793
CrossRef Google scholar
[8]
GraniteE J, PennlineH W. Photochemical removal of mercury from flue gas. Industrial & Engineering Chemistry Research, 2002, 41(22): 5470–5476
CrossRef Google scholar
[9]
PowellC E, QiaoG G. Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases. Journal of Membrane Science, 2006, 279(1–2): 1–49
CrossRef Google scholar
[10]
FavreE. Carbon dioxide recovery from post-combustion processes: Can gas permeation membranes compete with absorption? Journal of Membrane Science, 2007, 294(1–2): 50–59
CrossRef Google scholar
[11]
BrunettiA, ScuraF, BarbieriG, DrioliE. Membrane technologies for CO2 separation. Journal of Membrane Science, 2010, 359(1–2): 115–125
CrossRef Google scholar
[12]
JolyC, GoizetS, SchrotterJ C, SanchezJ, EscoubesM. Sol-gel polyimide-silica composite membrane: gas transport properties. Journal of Membrane Science, 1997, 130(1–2): 63–74
CrossRef Google scholar
[13]
RobesonL M. The upper bound revisited. Journal of Membrane Science, 2008, 320(1–2): 390–400
CrossRef Google scholar
[14]
Cecopieri-GómezM L, Palacios-AlquisiraJ, DomínguezJ M. On the limits of gas separation in CO2/CH4, N2/CH4 and CO2/N2 binary mixtures using polyimide membranes. Journal of Membrane Science, 2007, 293(1–2): 53–65
CrossRef Google scholar
[15]
DuN Y, ParkH B, Dal-CinM M, GuiverM D. Advances in high permeability polymeric membrane materials for CO2 separations. Energy & Environmental Science, 2012, 5(6): 7306–7322
CrossRef Google scholar
[16]
HuL, XuX L, ColemanM R. Impact of H+ ion beam irradiation on Matrimid (R).II.Evolution in gas transport properties. Journal of Applied Polymer Science, 2007, 103(3): 1670–1680
CrossRef Google scholar
[17]
SternS A. Polymers for gas separations—the next decade. Journal of Membrane Science, 1994, 94(1): 1–65
CrossRef Google scholar
[18]
HirayamaY, KaseY, TaniharaR, SumiyamaY, KusukiY, HarayaK. Permeation properties to CO2 and N2 of poly(ethylene oxide)-containing and crosslinked polymer films. Journal of Membrane Science, 1999, 160(1): 87–99
CrossRef Google scholar
[19]
PotreckJ, NijmeijerK, KosinskiT, WesslingM. Mixed water vapor/gas transport through the rubbery polymer PEBAX (R) 1074. Journal of Membrane Science, 2009, 338(1–2): 11–16
CrossRef Google scholar
[20]
HashemifardS A, IsmailA F, MatsuuraT. Effects of montmorillonite nano-clay fillers on PEI mixed matrix membrane for CO2 removal. Chemical Engineering Journal, 2011, 170(1): 316–325
CrossRef Google scholar
[21]
HusainS, KorosW J. Mixed matrix hollow fiber membranes made with modified HSSZ-13 zeolite in polyetherimide polymer matrix for gas separation. Journal of Membrane Science, 2007, 288(1–2): 195–207
CrossRef Google scholar
[22]
LiJ R, SculleyJ, ZhouH C. Metal-organic frameworks for separations. Chemical Reviews, 2012, 112(2): 869–932
CrossRef Google scholar
[23]
D'AlessandroD M, SmitB, LongJ R. Carbon dioxide capture: Prospects for new materials. Angewandte Chemie International Edition in English, 2010, 49(35): 6058–6082
CrossRef Google scholar
[24]
DaiY, JohnsonJ R, KarvanO, ShollD S, KorosW J. Ultem®/ZIF-8 mixed matrix hollow fiber membranes for CO2/N2 separations. Journal of Membrane Science, 2012, 401–402: 76–82
CrossRef Google scholar
[25]
BrownA J, JohnsonJ R, LydonM E, KorosW J, JonesC W, NairS. Continuous polycrystalline zeolitic imidazolate framework-90 membranes on polymeric hollow fibers. Angewandte Chemie International Edition, 2012, 51(42): 10615–10618
CrossRef Google scholar
[26]
ParkH B, JungC H, LeeY M, HillA J, PasS J, MudieS T, van WagnerE, FreemanB D, CooksonD J. Polymers with cavities tuned for fast selective transport of small molecules and ions. Science, 2007, 318(5848): 254–258
CrossRef Google scholar
[27]
KimS, HanS H, LeeY M. Thermally rearranged (TR) polybenzoxazole hollow fiber membranes for CO2 capture. Journal of Membrane Science, 2012, 403: 169–178
CrossRef Google scholar
[28]
ParkH B, HanS H, JungC H, LeeY M, HillA J. Thermally rearranged (TR) polymer membranes for CO2 separation. Journal of Membrane Science, 2010, 359(1–2): 11–24
CrossRef Google scholar
[29]
HuangJ, ZouJ, HoW S W. Carbon dioxide capture using a CO2-selective facilitated transport membrane. Industrial & Engineering Chemistry Research, 2008, 47(4): 1261–1267
CrossRef Google scholar
[30]
MatsuyamaH, TeradaA, NakagawaraT, KitamuraY, TeramotoM. Facilitated transport of CO2 through polyethylenimine/poly(vinyl alcohol) blend membrane. Journal of Membrane Science, 1999, 163(2): 221–227
CrossRef Google scholar
[31]
KimT J, LiB A, HaggM B. Novel fixed-site-carrier polyvinylamine membrane for carbon dioxide capture. Journal of Polymer Science. Part B, Polymer Physics, 2004, 42(23): 4326–4336
CrossRef Google scholar
[32]
WangM, YangD, WangZ, WangJ, WangS. Effects of pressure and temperature on fixed-site carrier membrane for CO2 separation from natural gas. Frontiers of Chemical Engineering in China, 2009, 4(2): 127–132
CrossRef Google scholar
[33]
Andrew LeeS, StevensG W, KentishS E. Facilitated transport behavior of humidified gases through thin-film composite polyamide membranes for carbon dioxide capture. Journal of Membrane Science, 2013, 429(0): 349–354
CrossRef Google scholar
[34]
LozanoL J, GodinezC, de los RiosA P, Hernandez-FernandezF J, Sanchez-SegadoS, AlguacilF J. Recent advances in supported ionic liquid membrane technology. Journal of Membrane Science, 2011, 376(1–2): 1–14
CrossRef Google scholar
[35]
ZhaoW, HeG, NieF, ZhangL, FengH, LiuH. Membrane liquid loss mechanism of supported ionic liquid membrane for gas separation. Journal of Membrane Science, 2012, 411–412: 73–80
CrossRef Google scholar
[36]
EisamanM D, AlvaradoL, LarnerD, WangP, GargB, LittauK A. CO2 separation using bipolar membrane electrodialysis. Energy & Environmental Science, 2011, 4(4): 1319–1328
CrossRef Google scholar
[37]
EisamanM D, AlvaradoL, LarnerD, WangP, LittauK A. CO2 desorption using high-pressure bipolar membrane electrodialysis. Energy & Environmental Science, 2011, 4(10): 4031–4037
CrossRef Google scholar

Acknowledgements

This work was supported by the National High Technology Research and Development Program of China (Grant No. 2012AA03A611), the National Science Fund for Distinguished Young Scholars of China (21125628), the National Natural Science Foundation of China (Grant No. 21306017), the China Postdoctoral Science Foundation (2013M530126) and the Fundamental Research Funds for the Central Universities of China (DUT12RC(3)43).

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(235 KB)

Accesses

Citations

Detail

Sections
Recommended

/