Room temperature in-situ preparation of hydrazine-linked covalent organic frameworks coated capillaries for separation and determination of polycyclic aromatic hydrocarbons

Yanli Zhang , Wenjuan Lv , Fangling Wang , Xiao Niu , Guoxiu Wang , Xuequan Wu , Xiaoyun Zhang , Xingguo Chen

Front. Chem. Sci. Eng. ›› 2023, Vol. 17 ›› Issue (5) : 548 -556.

PDF (2918KB)
Front. Chem. Sci. Eng. ›› 2023, Vol. 17 ›› Issue (5) : 548 -556. DOI: 10.1007/s11705-022-2252-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Room temperature in-situ preparation of hydrazine-linked covalent organic frameworks coated capillaries for separation and determination of polycyclic aromatic hydrocarbons

Author information +
History +
PDF (2918KB)

Abstract

Covalent organic frameworks (COFs) have been increasingly used in capillary electrochromatography due to their excellent characteristics. In this work, hydrazine-linked TFPB-DHzDS (TFPB: 1,3,5-tris(4-formylphenyl)benzene; DHzDS: 2,5-bis(3-(ethylthio)propoxy)terephthalohydrazide) was first synthesized by a simpler and easier method at room temperature and introduced into capillary electrochromatography as coating material. The TFPB-DHzDS coated capillaries were prepared by an in-situ growth process at room temperature. After optimizing the coating concentration and experimental conditions of capillary electrochromatography, baseline separation of two groups of polycyclic aromatic hydrocarbons was achieved based on the TFPB-DHzDS coated capillary. And the established method was used successfully to determine PAHs in natural water and soil samples. The spiked recoveries of polycyclic aromatic hydrocarbons in these samples ranged from 90.01% to 111.0%, indicating that the method is reliable and could detect polycyclic aromatic hydrocarbons in natural samples. Finally, molecular simulation was applied to study and visualize the interaction between the analytes and coating COF materials to investigate the molecular level separation mechanism further.

Graphical abstract

Keywords

hydrazine-linked TFPB-DHzDS / in-situ growth method / open-tubular capillary electrochromatography / molecular simulations

Cite this article

Download citation ▾
Yanli Zhang, Wenjuan Lv, Fangling Wang, Xiao Niu, Guoxiu Wang, Xuequan Wu, Xiaoyun Zhang, Xingguo Chen. Room temperature in-situ preparation of hydrazine-linked covalent organic frameworks coated capillaries for separation and determination of polycyclic aromatic hydrocarbons. Front. Chem. Sci. Eng., 2023, 17(5): 548-556 DOI:10.1007/s11705-022-2252-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cote A P, Benin A I, Ockwig N W, O’Keeffe M, Matzger A J, Yaghi O M. Porous, crystalline, covalent organic frameworks. Science, 2005, 310(5751): 1166–1170

[2]

Li Y, Pei B, Chen J J, Bing S S, Hou L X, Sun Q, Xu G, Yao Z K, Zhang L. Hollow nanosphere construction of covalent organic frameworks for catalysis: (Pd/C)@TpPa COFs in Suzuki coupling reaction. Journal of Colloid and Interface Science, 2021, 591: 273–280

[3]

Liu X M, Lim G J H, Wang Y X, Zhang L, Mullangi D, Wu Y, Zhao D, Ding J, Cheetham A K, Wang J. Binder-free 3D printing of covalent organic framework (COF) monoliths for CO2 adsorption. Chemical Engineering Journal, 2021, 403(1): 126333

[4]

Zhao K, Gong P W, Huang J, Huang Y, Wang D D, Peng J Y, Shen D Y, Zheng X F, You J M, Liu Z. Fluorescence turn-off magnetic COF composite as a novel nanocarrier for drug loading and targeted delivery. Microporous and Mesoporous Materials, 2021, 311: 110713

[5]

Guan Q, Guo H, Xue R, Wang M, Wu N, Cao Y, Zhao X, Yang W. Electrochemical sensing platform based on covalent organic framework materials and gold nanoparticles for high sensitivity determination of theophylline and caffeine. Mikrochimica Acta, 2021, 188(3): 85

[6]

Wu M, Chen G, Liu P, Zhou W, Jia Q. Polydopamine-based immobilization of a hydrazone covalent organic framework for headspace solid-phase microextraction of pyrethroids in vegetables and fruits. Journal of Chromatography A, 2016, 1456: 34–41

[7]

Wang H, Jiao F, Gao F, Lv Y, Wu Q, Zhao Y, Shen Y, Zhang Y, Qian X. Titanium(IV) ion-modified covalent organic frameworks for specific enrichment of phosphopeptides. Talanta, 2017, 166: 133–140

[8]

Chen Y, Chen Z. COF-1-modified magnetic nanoparticles for highly selective and efficient solid-phase microextraction of paclitaxel. Talanta, 2017, 165: 188–193

[9]

Feng L L, Qian C, Zhao Y L. Recent advances in covalent organic framework-based nanosystems for bioimaging and therapeutic applications. ACS Materials Letters, 2020, 2(9): 1074–1092

[10]

Zhou L, Lun J, Liu Y, Jiang Z, Di X, Guo X. In-situ immobilization of sulfated-β-cyclodextrin as stationary phase for capillary electrochromatography enantioseparation. Talanta, 2019, 200: 1–8

[11]

Sun W Q, Liu Y K, Zhou W, Li Z T, Chen Z L. In-situ growth of a spherical vinyl-functionalized covalent organic framework as stationary phase for capillary electrochromatography-mass spectrometry analysis. Talanta, 2021, 230: 122330

[12]

Yu Y X, Li G L, Liu J H, Yuan D Q. A recyclable fluorescent covalent organic framework for exclusive detection and removal of mercury(II). Chemical Engineering Journal, 2020, 401: 126139

[13]

Geng K, He T, Liu R, Dalapati S, Tan K T, Li Z, Tao S, Gong Y, Jiang Q, Jiang D. Covalent organic frameworks: design, synthesis, and functions. Chemical Reviews, 2020, 120(16): 8814–8933

[14]

Ma W D, Zheng Q, He Y T, Li G R, Guo W J, Lin Z, Zhang L. Size-controllable synthesis of uniform spherical covalent organic frameworks at room temperature for highly efficient and selective enrichment of hydrophobic peptides. Journal of the American Chemical Society, 2019, 141(45): 18271–18277

[15]

Li X, Qiao J, Chee S W, Xu H S, Zhao X, Choi H S, Yu W, Quek S Y, Mirsaidov U, Loh K P. Rapid, scalable construction of highly crystalline acylhydrazone two-dimensional covalent organic frameworks via dipole-induced antiparallel stacking. Journal of the American Chemical Society, 2020, 142(10): 4932–4943

[16]

Zhao L, Lv W, Niu X, Pan C, Chen H, Chen X. An azine-linked covalent organic framework as stationary phase for separation of environmental endocrine disruptors by open-tubular capillary electrochromatography. Journal of Chromatography A, 2020, 1615: 460722

[17]

Bao T, Wang S, Zhang N, Zhang J. Facile synthesis and immobilization of functionalized covalent organic framework-1 for electrochromatographic separation. Journal of Chromatography A, 2021, 1645: 462130

[18]

Hu Y, Chen B, Qian J, Jin L, Jin T, Lu D. Occupational coke oven emissions exposure and risk of abnormal liver function: modifications of body mass index and hepatitis virus infection. Occupational and Environmental Medicine, 2010, 67(3): 159–165

[19]

Auer R, Concha-Lozano N, Jacot-Sadowski I, Cornuz J, Berthet A. Heat-not-burn tobacco cigarettes: smoke by any other name. JAMA Internal Medicine, 2017, 177(7): 1050–1052

[20]

Kim D Y, Lee B E, Shin H S. Determination of polycyclic aromatic hydrocarbons (PAHs) in smoking cessation aids by using high-performance liquid chromatography. Analytical Biochemistry, 2021, 617(15): 114119

[21]

Wang X, Wang C, Gong P, Wang X, Zhu H, Gao S. Century-long record of polycyclic aromatic hydrocarbons from tree rings in the southeastern Tibetan Plateau. Journal of Hazardous Materials, 2021, 412: 125152

[22]

Cieslik E, Fabianska M J. Preservation of geochemical markers during co-combustion of hard coal and various domestic waste materials. Science of the Total Environment, 2021, 768: 144638

[23]

Schmutz A, Tremblay R, Audet C, Gagne J P, Pelletier E, St-Louis R. Under ice spills of conventional crude oil and diluted bitumen: physiological resilience of the blue mussel and transgenerational effects. Science of the Total Environment, 2021, 779: 146316

[24]

Zhang M, Tang Z, Yin H, Meng T. Concentrations, distribution and risk of polycyclic aromatic hydrocarbons in sediments from seven major river basins in China over the past 20 years. Journal of Environmental Management, 2021, 280: 111717

[25]

Tevlin A, Galarneau E, Zhang T, Hung H. Polycyclic aromatic compounds (PACs) in the Canadian environment: ambient air and deposition. Environmental Pollution, 2021, 271: 116232

[26]

Sosnowski T R, Kolinski M, Gradon L. Interactions of benzo[a]pyrene and diesel exhaust particulate matter with the lung surfactant system. Annals of Occupational Hygiene, 2011, 55(3): 329–338

[27]

Karami S, Boffetta P, Brennan P, Stewart P A, Zaridze D, Matveev V, Janout V, Kollarova H, Bencko V, Navratilova M, Szeszenia-Dabrowska N, Mates D, Gromiec J P, Sobotka R, Chow W H, Rothman N, Moore L E. Renal cancer risk and occupational exposure to polycyclic aromatic hydrocarbons and plastics. Journal of Occupational and Environmental Medicine, 2011, 53(2): 218–223

[28]

Xu L, Zhou S, Yu K, Gao B, Jiang H, Zhen X, Fu W. Molecular modeling of the 3D structure of 5-HT(1A)R: discovery of novel 5-HT(1A)R agonists via dynamic pharmacophore-based virtual screening. Journal of Chemical Information and Modeling, 2013, 53(12): 3202–3321

[29]

Yan W, Ling L, Wu Y, Yang K, Liu R, Zhang J, Zhao S, Zhong G, Zhao S, Jiang H, Xie C, Cheng J. Structure-based design of dual-acting compounds targeting adenosine A2A receptor and histone deacetylase as novel tumor immunotherapeutic agents. Journal of Medicinal Chemistry, 2021, 64(22): 16573–16597

[30]

Li X, Gao Q, Wang J, Chen Y, Chen Z H, Xu H S, Tang W, Leng K, Ning G H, Wu J, Xu Q H, Quek S Y, Lu Y, Loh K P. Tuneable near white-emissive two-dimensional covalent organic frameworks. Nature Communications, 2018, 9(1): 2335

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (2918KB)

Supplementary files

FCE-22077-OF-ZY_suppl_1

3694

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/