Efficient acetylene/carbon dioxide separation with excellent dynamic capacity and low regeneration energy by anion-pillared hybrid materials

Yijian Li, Jianbo Hu, Jiyu Cui, Qingju Wang, Huabin Xing, Xili Cui

PDF(4428 KB)
PDF(4428 KB)
Front. Chem. Sci. Eng. ›› 2022, Vol. 16 ›› Issue (11) : 1616-1622. DOI: 10.1007/s11705-022-2183-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Efficient acetylene/carbon dioxide separation with excellent dynamic capacity and low regeneration energy by anion-pillared hybrid materials

Author information +
History +

Abstract

Adsorptive separation of acetylene/carbon dioxide mixtures by porous materials is an important and challenging task due to their similar sizes and physical properties. Here, remarkable acetylene/carbon dioxide separation featuring a high dynamic breakthrough capacity for acetylene (4.3 mmol·g–1) as well as an ultralow acetylene regeneration energy (29.5 kJ·mol–1) was achieved with the novel TiF62–-pillared material ZU-100 (TIFSIX-bpy-Ni). Construction of a pore structure with abundant TiF62– anion sites and pores with appropriate sizes enabled formation of acetylene clusters through hydrogen bonds and intermolecular interactions, which afforded a high acetylene capacity (8.3 mmol·g–1) and high acetylene/carbon dioxide uptake ratio (1.9) at 298 K and 1 bar. Moreover, the NbO52– anion-pillared material ZU-61 investigated for separation of acetylene/carbon dioxide. In addition, breakthrough experiments were also conducted to further confirm the excellent dynamic acetylene/carbon dioxide separation performance of ZU-100.

Graphical abstract

Keywords

adsorption / acetylene/carbon dioxide separation / dynamic capacity / anion-pillared hybrid material

Cite this article

Download citation ▾
Yijian Li, Jianbo Hu, Jiyu Cui, Qingju Wang, Huabin Xing, Xili Cui. Efficient acetylene/carbon dioxide separation with excellent dynamic capacity and low regeneration energy by anion-pillared hybrid materials. Front. Chem. Sci. Eng., 2022, 16(11): 1616‒1622 https://doi.org/10.1007/s11705-022-2183-x

References

[1]
Luna-Triguero A, Vicent-Luna J M, Madero-Castro R M, Gomez-Alvarez P, Calero S. Acetylene storage and separation using metal-organic frameworks with open metal sites. ACS Applied Materials & Interfaces, 2019, 11( 34): 31499– 31507
CrossRef Google scholar
[2]
Matsuda R, Kitaura R, Kitagawa S, Kubota Y, Belosludov R V, Kobayashi T, Sakamoto H, Chiba T, Takata M, Kawazoe Y, Mita Y. Highly controlled acetylene accommodation in a metal−organic microporous material. Nature, 2005, 436( 7048): 238– 241
CrossRef Google scholar
[3]
Xiang S, Zhou W, Gallegos J M, Liu Y, Chen B L. Exceptionally high acetylene uptake in a microporous metal−organic framework with open metal sites. Journal of the American Chemical Society, 2009, 131( 34): 12415– 12419
CrossRef Google scholar
[4]
Foo M L, Matsuda R, Hijikata Y, Krishna R, Sato H, Horike S, Hori A, Duan J, Sato Y, Kubota Y, Takata M, Kitagawa S. An adsorbate discriminatory gate effect in a flexible porous coordination polymer for selective adsorption of CO2 over C2H2. Journal of the American Chemical Society, 2016, 138( 9): 3022– 3030
CrossRef Google scholar
[5]
Peng Y, Pham T, Li P, Wang T, Chen Y, Chen K J, Forrest K A, Space B, Cheng P, Zaworotko M J, Zhang Z. Robust ultramicroporous metal−organic frameworks with benchmark affinity for acetylene. Angewandte Chemie International Edition, 2018, 57( 34): 10971– 10975
CrossRef Google scholar
[6]
Yao Z, Zhang Z, Liu L, Li Z, Zhou W, Zhao Y, Han Y, Chen B, Krishna R, Xiang S. Extraordinary separation of acetylene-containing mixtures with microporous metal−organic frameworks with open O donor sites and tunable robustness through control of the helical chain secondary building units. Chemistry, 2016, 22( 16): 5676– 5683
CrossRef Google scholar
[7]
Scott H S, Shivanna M, Bajpai A, Madden D G, Chen K J, Pham T, Forrest K A, Hogan A, Space B, Perry J J IV, Zaworotko M J. Highly selective separation of C2H2 from CO2 by a new dichromate-based hybrid ultramicroporous material. ACS Applied Materials & Interfaces, 2017, 9( 39): 33395– 33400
CrossRef Google scholar
[8]
Li P, He Y, Zhao Y, Weng L, Wang H, Krishna R, Wu H, Zhou W, O’Keeffe M, Han Y, Chen B. A rod-packing microporous hydrogen-bonded organic framework for highly selective separation of C2H2/CO2 at room temperature. Angewandte Chemie International Edition, 2015, 54( 2): 574– 577
[9]
Zhang L, Jiang K, Zhang J, Pei J, Shao K, Cui Y, Yang Y, Li B, Chen B, Qian G. Low-cost and high-performance microporous metal−organic framework for separation of acetylene from carbon dioxide. ACS Sustainable Chemistry & Engineering, 2019, 7( 1): 1667– 1672
CrossRef Google scholar
[10]
Zhang J, Chen X. Optimized acetylene/carbon dioxide sorption in a dynamic porous crystal. Journal of the American Chemical Society, 2009, 131( 15): 5516– 5521
CrossRef Google scholar
[11]
Qazvini O, Babarao R, Telfer S. Multipurpose metal-organic framework for the adsorption of acetylene: ethylene purification and carbon dioxide removal. Chemistry of Materials, 2019, 31( 13): 4919– 4926
CrossRef Google scholar
[12]
Moreau F, da Silva I, Al Smail N, Easun T, Savage M, Godfrey M, Parker S, Manuel P, Yang S, Schroder M. Unravelling exceptional acetylene and carbon dioxide adsorption within a tetra-amide functionalized metal−organic framework. Nature Communications, 2017, 8( 1): 14085
CrossRef Google scholar
[13]
Zhang Y, Hu J, Krishna R, Wang L, Yang L, Cui X, Duttwyler S, Xing H. Rational design of microporous MOFs with anionic boron cluster functionality and cooperative dihydrogen binding sites for highly selective capture of acetylene. Angewandte Chemie International Edition, 2020, 59( 40): 17664– 17669
CrossRef Google scholar
[14]
Liu R, Liu Q, Krishna R, Wang W, He C, Wang Y. Water-stable europium 1,3,6,8-tetrakis(4-carboxylphenyl)pyrene framework for efficient C2H2/CO2 separation. Inorganic Chemistry, 2019, 58( 8): 5089– 5095
CrossRef Google scholar
[15]
Xie Y, Cui H, Wu H, Lin R, Zhou W, Chen B. Electrostatically driven selective adsorption of carbon dioxide over acetylene in an ultramicroporous material. Angewandte Chemie International Edition, 2021, 60( 17): 9604– 9609
CrossRef Google scholar
[16]
Wang J, Zhang Y, Su Y, Liu X, Zhang P, Lin R, Chen S, Deng Q, Zeng Z, Deng S, Chen B. Fine pore engineering in a series of isoreticular metal−organic frameworks for efficient C2H2/CO2 separation. Nature Communications, 2022, 13( 1): 200
CrossRef Google scholar
[17]
Qazvini O, Babarao R, Telfer S. Selective capture of carbon dioxide from hydrocarbons using a metal−organic framework. Nature Communications, 2021, 12( 1): 197
CrossRef Google scholar
[18]
Choi D, Kim D, Kang D, Kang M, Chae Y, Hong C. Highly selective CO2 separation from a CO2/C2H2 mixture using a diamine-appended metal−organic framework. Angewandte Chemie International Edition, 2021, 9( 37): 21424– 21428
[19]
Shi Y, Xie Y, Cui H, Ye Y, Wu H, Zhou W, Arman H, Lin R, Chen B. Highly selective adsorption of carbon dioxide over acetylene in an ultramicroporous metal−organic framework. Advanced Materials, 2021, 33( 45): 2105880
CrossRef Google scholar
[20]
Ye Y, Xian S, Cui H, Tan K, Gong L, Liang B, Pham T, Pandey H, Krishna R, Lan P, Forrest K A, Space B, Thonhauser T, Li J, Ma S. Metal−organic framework based hydrogen-bonding nanotrap for efficient acetylene storage and separation. Journal of the American Chemical Society, 2022, 144( 4): 1681– 1689
CrossRef Google scholar
[21]
Dong Q, Zhang X, Liu S, Lin R, Guo Y, Ma Y, Yonezu A, Krishna R, Liu G, Duan J, Matsuda R, Jin W, Chen B. Tuning gate-opening of a flexible metal−organic framework for ternary gas sieving separation. Angewandte Chemie International Edition, 2020, 59( 50): 22756– 22762
CrossRef Google scholar
[22]
Fan W, Yuan S, Wang W, Feng L, Liu X, Zhang X, Wang X, Kang Z, Dai F, Yuan D, Sun D, Zhou H C. Optimizing multivariate metal−organic frameworks for efficient C2H2/CO2 separation. Journal of the American Chemical Society, 2020, 142( 19): 8728– 8737
CrossRef Google scholar
[23]
Pei J, Shao K, Wang J, Wen H, Yang Y, Cui Y, Krishna R, Li B, Qian G. A chemically stable hofmann-type metal−organic framework with sandwich-like binding sites for benchmark acetylene capture. Advanced Materials, 2020, 32( 24): 1908275
CrossRef Google scholar
[24]
Mukherjee S, He Y, Franz D, Wang S, Xian W, Bezrukov A, Space B, Xu Z, He J, Zaworotko M. Halogen-C2H2 binding in ultramicroporous metal−organic frameworks (MOFs) for benchmark C2H2/CO2 separation selectivity. Chemistry, 2020, 26( 22): 4923– 4929
CrossRef Google scholar
[25]
Kumar N, Mukherjee S, Harvey-Reid N, Bezrukov A, Tan K, Martins V, Vandichel M, Pham T, van Wyk L, Oyekan K, Kumar A, Forrest K A, Patil K M, Barbour L J, Space B, Huang Y, Kruger P E, Zaworotko M J. Breaking the trade-off between selectivity and adsorption capacity for gas separation. Chem, 2021, 7( 11): 3085– 3098
CrossRef Google scholar
[26]
Yang L, Yan L, Wang Y, Liu Z, He J, Fu Q, Liu D, Gu X, Dai P, Li L, Zhao X. Adsorption site selective occupation strategy within a metal−organic framework for highly efficient sieving acetylene from carbon dioxide. Angewandte Chemie International Edition, 2021, 60( 9): 4570– 4574
CrossRef Google scholar
[27]
Luo F, Yan C, Dang L, Krishna R, Zhou W, Wu H, Dong X, Han Y, Hu T L, O’Keeffe M, Wang L, Luo M, Lin R B, Chen B. UTSA-74: a MOF-74 isomer with two accessible binding sites per metal center for highly selective gas separation. Journal of the American Chemical Society, 2016, 138( 17): 5678– 5684
CrossRef Google scholar
[28]
Zhang L, Jiang K, Yang L, Li L, Hu E, Yang L, Shao K, Xing H, Cui Y, Yang Y, Li B, Chen B, Qian G. Benchmark C2H2/CO2 separation in an ultra-microporous metal−organic framework via copper(I)-alkynyl chemistry. Angewandte Chemie International Edition, 2021, 60( 29): 15995– 16002
CrossRef Google scholar
[29]
Chen K J, Scott H, Madden D, Pham T, Kumar A, Bajpai A, Lusi M, Forrest K, Space B, Perry J IV, Zaworotko M J. Benchmark C2H2/CO2 and CO2/C2H2 separation by two closely related hybrid ultramicroporous materials. Chem, 2016, 1( 5): 753– 765
CrossRef Google scholar
[30]
Jiang M D, Cui X L, Yang L F, Yang Q W, Zhang Z Q, Yang Y W, Xing H B. A thermostable anion-pillared metal−organic framework for C2H2/C2H4 and C2H2/CO2 separations. Chemical Engineering Journal, 2018, 352 : 803– 810
CrossRef Google scholar
[31]
Cui X, Chen K, Xing H, Yang Q, Krishna R, Bao Z, Wu H, Zhou W, Dong X, Han Y, Li B, Ren Q, Zaworotko M J, Chen B. Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene. Science, 2016, 353( 6295): 141– 144
CrossRef Google scholar
[32]
Nugent P, Belmabkhout Y, Burd S, Cairns A, Luebke R, Forrest K, Pham T, Ma S, Space B, Wojtas L, Eddaoudi M, Zaworotko M J. Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation. Nature, 2013, 495( 7439): 80– 84
CrossRef Google scholar
[33]
Cui X, Niu Z, Shan C, Yang L, Hu J, Wang Q, Lan P C, Li Y, Wojtas L, Ma S, Xing H. Efficient separation of xylene isomers by a guest-responsive metal−organic framework with rotational anionic sites. Nature Communications, 2020, 11( 1): 5456
CrossRef Google scholar
[34]
Lin R B, Li L, Wu H, Arman H, Li B, Lin R G, Zhou W, Chen B. Optimized separation of acetylene from carbon dioxide and ethylene in a microporous material. Journal of the American Chemical Society, 2017, 139( 23): 8022– 8028
CrossRef Google scholar
[35]
Lee J, Chuah C Y, Kim J, Kim Y, Ko N, Seo Y, Kim K, Bae T H, Lee E. Separation of acetylene from carbon dioxide and ethylene by a water-stable microporous metal−organic framework with aligned imidazolium groups inside the channels. Angewandte Chemie International Edition, 2018, 57( 26): 7869– 7873
CrossRef Google scholar
[36]
Ye Y, Ma Z, Lin R B, Krishna R, Zhou W, Lin Q, Zhang Z, Xiang S, Chen B. Pore space partition within a metal−organic framework for highly efficient C2H2/CO2 separation. Journal of the American Chemical Society, 2019, 141( 9): 4130– 4136
CrossRef Google scholar
[37]
Li Y, Wang Y, Xue Y, Li H, Zhai Q, Li S, Jiang Y, Hu M, Bu X. Ultramicroporous building units as a path to bi-microporous metal−organic frameworks with high acetylene storage and separation performance. Angewandte Chemie International Edition, 2019, 58( 38): 13590– 13595
CrossRef Google scholar
[38]
Niu Z, Cui X, Pham T, Verma G, Lan P, Shan C, Xing H, Forrest K, Suepaul S, Space B, Nafady A, Al-Enizi A M, Ma S. A MOF-based ultra-strong acetylene nano-trap for highly efficient C2H2/CO2 separation. Angewandte Chemie International Edition, 2021, 60( 10): 5283– 5288
[39]
Duan J, Jin W, Krishna R. Natural gas purification using a porous coordination polymer with water and chemical stability. Inorganic Chemistry, 2015, 54( 9): 4279– 4284
CrossRef Google scholar
[40]
Qian Q, Gu X, Pei J, Wen H, Wu H, Zhou W, Li B, Qian G. A novel anion-pillared metal−organic framework for highly efficient separation of acetylene from ethylene and carbon dioxide. Journal of Materials Chemistry A, 2021, 9( 14): 9248– 9255
CrossRef Google scholar
[41]
Li H, Liu C, Chen C, Di Z, Yuan D, Pang J, Wei W, Wu M, Hong M. An unprecedented pillar-cage fluorinated hybrid porous framework with highly efficient acetylene storage and separation. Angewandte Chemie International Edition, 2021, 60( 14): 7547– 7552
CrossRef Google scholar
[42]
Zhang Z, Cui X, Jiang X, Ding Q, Cui J, Zhang Y, Belmabkhout Y, Adil K, Eddaoudi M, Xing H. Efficient splitting of trans-/cis-olefins using an anion-pillared ultramicroporous metal−organic framework with guest-adaptive pore channels. Engineering, 2022, 11 : 80– 86
CrossRef Google scholar

Acknowledgements

This work was financially supported by the Zhejiang Provincial Natural Science Foundation of China (Grant No. LR20B060001), the National Natural Science Foundation of China (Grant Nos. 22122811, 21938011, and 21890764), and the Research Computing Center in College of Chemical and Biological Engineering at Zhejiang University.

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://dx.doi.org/10.1007/s11705-022-2183-x and is accessible for authorized users.

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(4428 KB)

Accesses

Citations

Detail

Sections
Recommended

/