A boronic acid-based fluorescent hydrogel for monosaccharide detection

Suying Xu , Adam C. Sedgwick , Souad A. Elfeky , Wenbo Chen , Ashley S. Jones , George T. Williams , A. Toby A. Jenkins , Steven D. Bull , John S. Fossey , Tony D. James

Front. Chem. Sci. Eng. ›› 2020, Vol. 14 ›› Issue (1) : 112 -116.

PDF (423KB)
Front. Chem. Sci. Eng. ›› 2020, Vol. 14 ›› Issue (1) : 112 -116. DOI: 10.1007/s11705-019-1812-5
COMMUNICATION
COMMUNICATION

A boronic acid-based fluorescent hydrogel for monosaccharide detection

Author information +
History +
PDF (423KB)

Abstract

A boronic acid-based anthracene fluorescent probe was functionalised with an acrylamide unit to incorporate into a hydrogel system for monosaccharide detection . In solution, the fluorescent probe displayed a strong fluorescence turn-on response upon exposure to fructose, and an expected trend in apparent binding constants, as judged by a fluorescence response where D-fructose>D-galactose>D-mannose>D-glucose. The hydrogel incorporating the boronic acid monomer demonstrated the ability to detect monosaccharides by fluorescence with the same overall trend as the monomer in solution with the addition of D-fructose resulting in a 10-fold enhancement (≤0.25 mol/L).

Graphical abstract

Cite this article

Download citation ▾
Suying Xu, Adam C. Sedgwick, Souad A. Elfeky, Wenbo Chen, Ashley S. Jones, George T. Williams, A. Toby A. Jenkins, Steven D. Bull, John S. Fossey, Tony D. James. A boronic acid-based fluorescent hydrogel for monosaccharide detection. Front. Chem. Sci. Eng., 2020, 14(1): 112-116 DOI:10.1007/s11705-019-1812-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Levine R. Monosaccharides in health and disease. Annual Review of Nutrition, 1986, 6(1): 211–224

[2]

Mergenthaler P, Lindauer U, Dienel G A, Meisel A. Sugar for the brain: The role of glucose in physiological and pathological brain function. Trends in Neurosciences, 2013, 36(10): 587–597

[3]

Pickup J C, Hussain F, Evans N D, Rolinski O J, Birch D J S. Fluorescence-based glucose sensors. Biosensors & Bioelectronics, 2005, 20(12): 2555–2565

[4]

Wu X, Li Z, Chen X X, Fossey J S, James T D, Jiang Y B. Selective sensing of saccharides using simple boronic acids and their aggregates. Chemical Society Reviews, 2013, 42(20): 8032–8048

[5]

Lorand J P, Edwards J O. Polyol complex and structure of the benzene boronate ion. Journal of Organic Chemistry, 1959, 24(6): 769–774

[6]

Sun X, James T D. Glucose sensing in supramolecular chemistry. Chemical Reviews, 2015, 115(15): 8001–8037

[7]

Huang Y J, Ouyang W J, Wu X, Li Z, Fossey J S, James T D, Jiang Y B. Glucose sensing via aggregation and the use of “knock-out” binding to improve selectivity. Journal of the American Chemical Society, 2013, 135(5): 1700–1703

[8]

Cao H S, Heagy M D. Fluorescent chemosensors for carbohydrates: A decade’s worth of bright spies for saccharides in review. Journal of Fluorescence, 2004, 14(5): 569–584

[9]

James T D, Sandanayake K, Shinkai S. Novel photoinduced electron-transfer sensor for saccharides based on the interaction of boronic acid and amine. Journal of the Chemical Society. Chemical Communications, 1994, 0(4): 477–478

[10]

Zhang X T, Liu G J, Ning Z W, Xing G W. Boronic acid-based chemical sensors for saccharides. Carbohydrate Research, 2017, 452: 129–148

[11]

James T D, Sandanayake K R A S, Shinkai S. A glucose-selective molecular fluorescence sensor. Angewvandte Chemie International Edition, 1994, 33: 2207–2209

[12]

James T D, Sandanayake K R A S, Iguchi R, Shinkai S. Novel saccharide-photoinduced electron transfer sensors based on the interaction of boronic acid and amine. Journal of the American Chemical Society, 1995, 117(35): 8982–8987

[13]

Franzen S, Ni W, Wang B. Study of the mechanism of electron-transfer quenching by boron-nitrogen adducts in fluorescent sensors. Journal of Physical Chemistry B, 2003, 107(47): 12942–12948

[14]

Ni W, Kaur G, Springsteen G, Wang B, Franzen S. Regulating the fluorescence intensity of an anthracene boronic acid system: A B–N bond or a hydrolysis mechanism? Bioorganic Chemistry, 2004, 32(6): 571–581

[15]

Chapin B M, Metola P, Vankayala S L, Woodcock H L, Mooibroek T J, Lynch V M, Larkin J D, Anslyn E V. Disaggregation is a mechanism for emission turn-on of ortho-aminomethylphenylboronic acid-based saccharide sensors. Journal of the American Chemical Society, 2017, 139(15): 5568–5578

[16]

Sun X, James T D, Anslyn E V. Arresting “loose bolt” internal conversion from -B(OH)2 groups is the mechanism for emission turn-on in ortho-aminomethylphenylboronic acid-based saccharide sensors. Journal of the American Chemical Society, 2018, 140(6): 2348–2354

[17]

Zhao L, Huang Q W, Liu Y, Wang Q, Wang L Y, Xiao S S, Bi F, Ding J X. Boronic acid as glucose-sensitive agent regulates drug delivery for diabetes treatment. Materials, 2017, 10 (2): 170

[18]

Guan Y, Zhang Y J. Boronic acid-containing hydrogels: Synthesis and their applications. Chemical Society Reviews, 2013, 42(20): 8106–8121

[19]

Ahmed E M. Hydrogel: Preparation, characterization, and applications: A review. Journal of Advanced Research, 2015, 6(2): 105–121

[20]

Li Y Y, Zhou S Q. A simple method to fabricate fluorescent glucose sensor based on dye-complexed microgels. Sensors and Actuators. B, Chemical, 2013, 177: 792–799

[21]

Matsumoto A, Tanaka M, Matsumoto H, Ochi K, Moro-oka Y, Kuwata H, Yamada H, Shirakawa I, Miyazawa T, Ishii H. Synthetic “smart gel” provides glucose-responsive insulin delivery in diabetic mice. Science Advances, 2017, 3, eaaq0723

[22]

Matsumoto A, Kataoka K, Miyahara Y. New directions in the design of phenylboronate-functionalized polymers for diagnostic and therapeutic applications. Polymer Journal, 2014, 46(8): 483–491

[23]

Sanjoh M, Miyahara Y, Kataoka K, Matsumoto A. Phenylboronic acids-based diagnostic and therapeutic applications. Analytical Sciences, 2014, 30(1): 111–117

[24]

Sedgwick A C, Chapman R S L, Gardiner J E, Peacock L R, Kim G, Yoon J, Bull S D, James T D. A bodipy based hydroxylamine sensor. Chemical Communications, 2017, 53(75): 10441–10443

[25]

Sedgwick A C, Sun X L, Kim G, Yoon J, Bull S D, James T D. Boronate based fluorescence (ESIPT) probe for peroxynitrite. Chemical Communications, 2016, 52(83): 12350–12352

[26]

Sun X L, Odyniec M L, Sedgwick A C, Lacina K, Xu S Y, Qiang T T, Bull S D, Marken F, James T D. Reaction-based indicator displacement assay (RIA) for the colorimetric and fluorometric detection of hydrogen peroxide. Organic Chemistry Frontiers: An International Journal of Organic Chemistry, 2017, 4(6): 1058–1062

[27]

Sedgwick A C, Han H H, Gardiner J E, Bull S D, He X P, James T D. Long-wavelength fluorescent boronate probes for the detection and intracellular imaging of peroxynitrite. Chemical Communications, 2017, 53(95): 12822–12825

[28]

Wu D, Sedgwick A C, Gunnlaugsson T, Akkaya E U, Yoon J, James T D. Fluorescent chemosensors: The past, present and future. Chemical Society Reviews, 2017, 46(23): 7105–7123

[29]

Sedgwick A C, Han H H, Gardiner J E, Bull S D, He X P, James T D. The development of a novel AND logic based fluorescence probe for the detection of peroxynitrite and GSH. Chemical Science (Cambridge), 2018, 9(15): 3672–3676

[30]

Lampard E V, Sedgwick A C, Sombuttan T, Williams G T, Wannalerse B, Jenkins A T A, Bull S D, James T D. Dye displacement assay for saccharides using benzoxaborole hydrogels. ChemistryOpen, 2018, 7(3): 266–268

[31]

Kreisig T, Hoffmann R, Zuchner T. Homogeneous fluorescence-based immunoassay detects antigens within 90 seconds. Analytical Chemistry, 2011, 83(11): 4281–4287

[32]

Grabchev I, Qian X H, Xiao Y, Zhang R. Novel heterogeneous PET fluorescent sensors selective for transition metal ions or protons: Polymers regularly labelled with naphthalimide. New Journal of Chemistry, 2002, 26(7): 920–925

[33]

Basabe-Desmonts L, Reinhoudt D N, Crego-Calama M. Design of fluorescent materials for chemical sensing. Chemical Society Reviews, 2007, 36(6): 993–1017

[34]

Li M, Liu Z J, Wang H C, Sedgwick A C, Gardiner J E, Bull S D, Xiao H N, James T D. Dual-function cellulose composites for fluorescence detection and removal of fluoride. Dyes and Pigments, 2018, 149: 669–675

[35]

Hall D G. Boronic acids: Preparation and applications in organic synthesis, medicine and materials.Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2005, 1–550

[36]

Fossey J S, Brittain W D G. The CASE 2014 symposium: Catalysis and sensing for our environment, Xiamen 7th‒9th November 2014. Organic Chemistry Frontiers: An International Journal of Organic Chemistry, 2015, 2(2): 101–105

[37]

Payne D T, Fossey J S, Elmes R B P. Catalysis and Sensing for our Environment (CASE2015) and the Supramolecular Chemistry Ireland Meeting (SCI 2015): Dublin and Maynooth, Ireland. 8th‒11th July. Supramolecular Chemistry, 2016, 28(11-12): 921–931

AI Summary AI Mindmap
PDF (423KB)

Supplementary files

FCE-18089-OF-XS_suppl_1

2745

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/