Strengthening mechanisms in carbon nanotube reinforced bioglass composites

Jing ZHANG , Chengchang JIA , Zhizhong JIA , Jillian LADEGARD , Yanhong GU , Junhui NIE

Front. Chem. Sci. Eng. ›› 2012, Vol. 6 ›› Issue (2) : 126 -131.

PDF (280KB)
Front. Chem. Sci. Eng. ›› 2012, Vol. 6 ›› Issue (2) : 126 -131. DOI: 10.1007/s11705-012-1279-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Strengthening mechanisms in carbon nanotube reinforced bioglass composites

Author information +
History +
PDF (280KB)

Abstract

Carbon nanotube reinforced bioglass composites have been successfully synthesized by two comparative sintering techniques, i.e., spark plasma sintering (SPS) and conventional compaction and sinteirng. The composites show improved mechanical properties, with SPS technique substantially better than conventional compact and sintering approach. Using SPS, compared with the 45S5Bioglass matrix, the maximum flexural strength and fracture toughness increased by 159% and 105%, respectively. Enhanced strength and toughness are attributed to the interfacial bonding and bridging effects between the carbon nanotubes and bioglass powders during crack propagations.

Keywords

45S5Bioglass / multi-wall carbon nanotubes / biocomposite / mechanical properties / sintering

Cite this article

Download citation ▾
Jing ZHANG, Chengchang JIA, Zhizhong JIA, Jillian LADEGARD, Yanhong GU, Junhui NIE. Strengthening mechanisms in carbon nanotube reinforced bioglass composites. Front. Chem. Sci. Eng., 2012, 6(2): 126-131 DOI:10.1007/s11705-012-1279-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Best S M, Porter A E, Thian E S, Huang J. Bioceramics: past, present and for the future. Journal of the European Ceramic Society, 2008, 28(7): 1319-1327

[2]

Hench L L, Splinter R J, Allen W C, Greenlee T K. Bonding mechanisms at the interface of ceramic prosthetic materials. Journal of Biomedical Materials Research, 1971, 5(6): 117-141

[3]

Lefebvre L, Chevalier J, Gremillard L, Zenati R, Thollet G, Bernache-Assolant D, Govin A. Structural transformations of bioactive glass 45S5 with thermal treatments. Acta Materialia, 2007, 55(10): 3305-3313

[4]

Xynos I D, Hukkanen M V J, Batten J J, Buttery L D, Hench L L, Polak J M. Bioglass ®45S5 stimulates osteoblast turnover and enhances bone formation: implications and applications for bone tissue engineering. Calcified Tissue International, 2000, 67(4): 321-329

[5]

Stanley H R, Hall M B, Clark A E. C J K III, Hench L L, Berte J J. Using 45S5 Bioglass cones as endosseous ridge maintenance implants to prevent alveolar ridge resorption: a 5-year evaluation. International Journal of Oral & Maxillofacial Implants, 1997, 12: 95-105

[6]

Beherei H H, Mohamed K R, El-Bassyouni G T. Fabrication and characterization of bioactive glass (45S5)/titania biocomposites. Ceramics International, 2009, 35(5): 1991-1997

[7]

Guo H B, Miao X, Chen Y, Cheang P, Khor K A. Characterization of hydroxyapatite- and bioglass-316L fibre composites prepared by spark plasma sintering. Materials Letters, 2004, 58(3-4): 304-307

[8]

Iijima S. Helical microtubules of graphitic carbon. Nature, 1991, 354(6348): 56-58

[9]

Popov V N. Carbon nanotubes: properties and application. Materials Science and Engineering: R: Reports, 2004, 43(3): 61-102

[10]

Baughman R H, Zakhidov A A, de Heer W A. Carbon Nanotubes—the route toward applications. Science, 2002, 297(5582): 787-792

[11]

Meyyappan M. Carbon nanotubes: Science and Applications. Florida: CRC Press, 2004, 321-325

[12]

Wijewardane S. Potential applicability of CNT and CNT/composites to implement ASEC concept: a review article. Solar Energy, 2009, 83(8): 1379-1389

[13]

Esawi A M K, Morsi K, Sayed A, Gawad A A, Borah P. Fabrication and properties of dispersed carbon nanotube-aluminum composites. Materials Science and Engineering A, 2009, 508(1-2): 167-173

[14]

Zhao C, Hu G, Justice R, Schaefer D W, Zhang S, Yang M, Han C C. Synthesis and characterization of multi-walled carbon nanotubes reinforced polyamide 6 via in situ polymerization. Polymer, 2005, 46(14): 5125-5132

[15]

Cha S I, Kim K T, Lee K H, Mo C B, Hong S H. Strengthening and toughening of carbon nanotube reinforced alumina nanocomposite fabricated by molecular level mixing process. Scripta Materialia, 2005, 53(7): 793-797

[16]

Dai P Q, Xu W C, Huang Q Y. Mechanical properties and microstructure of nanocrystalline nickel-carbon nanotube composites produced by electrodeposition. Materials Science and Engineering A, 2008, 483-484: 172-174

[17]

Mukhopadhyay A, Chu B T T, Green M L H, Todd R I. Understanding the mechanical reinforcement of uniformly dispersed multiwalled carbon nanotubes in alumino-borosilicate glass ceramic. Acta Materialia, 2010, 58(7): 2685-2697

[18]

Mazaheri M, Mari D, Hesabi Z R, Schaller R, Fantozzi G. Multi-walled carbon nanotube/nanostructured zirconia composites: outstanding mechanical properties in a wide range of temperature. Composites Science and Technology, 2011, 71(7): 939-945

[19]

Hulbert D M, Anders A, Dudina D V, Andersson J, Jiang D, Unuvar C, Anselmi-Tamburini U, Lavernia E J, Mukherjee A K. The absence of plasma in “spark plasma sintering”. Journal of Applied Physics, 2008, 104(3): 033305-033307

[20]

Lin K, Chang J, Liu Z, Zeng Y, Shen R. Fabrication and characterization of 45S5 bioglass reinforced macroporous calcium silicate bioceramics. Journal of the European Ceramic Society, 2009, 29(14): 2937-2943

[21]

Tjong S C. Carbon Nanotube Reinforced Composites: Metals and Ceramic Materials. Weinheim: Wiley-VCH, 2009, 185-187

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (280KB)

2547

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/