Strengthening mechanisms in carbon nanotube reinforced bioglass composites
Jing ZHANG, Chengchang JIA, Zhizhong JIA, Jillian LADEGARD, Yanhong GU, Junhui NIE
Strengthening mechanisms in carbon nanotube reinforced bioglass composites
Carbon nanotube reinforced bioglass composites have been successfully synthesized by two comparative sintering techniques, i.e., spark plasma sintering (SPS) and conventional compaction and sinteirng. The composites show improved mechanical properties, with SPS technique substantially better than conventional compact and sintering approach. Using SPS, compared with the 45S5Bioglass matrix, the maximum flexural strength and fracture toughness increased by 159% and 105%, respectively. Enhanced strength and toughness are attributed to the interfacial bonding and bridging effects between the carbon nanotubes and bioglass powders during crack propagations.
45S5Bioglass / multi-wall carbon nanotubes / biocomposite / mechanical properties / sintering
[1] |
Best S M, Porter A E, Thian E S, Huang J. Bioceramics: past, present and for the future. Journal of the European Ceramic Society, 2008, 28(7): 1319-1327
CrossRef
Google scholar
|
[2] |
Hench L L, Splinter R J, Allen W C, Greenlee T K. Bonding mechanisms at the interface of ceramic prosthetic materials. Journal of Biomedical Materials Research, 1971, 5(6): 117-141
CrossRef
Google scholar
|
[3] |
Lefebvre L, Chevalier J, Gremillard L, Zenati R, Thollet G, Bernache-Assolant D, Govin A. Structural transformations of bioactive glass 45S5 with thermal treatments. Acta Materialia, 2007, 55(10): 3305-3313
CrossRef
Google scholar
|
[4] |
Xynos I D, Hukkanen M V J, Batten J J, Buttery L D, Hench L L, Polak J M. Bioglass ®45S5 stimulates osteoblast turnover and enhances bone formation: implications and applications for bone tissue engineering. Calcified Tissue International, 2000, 67(4): 321-329
CrossRef
Google scholar
|
[5] |
Stanley H R, Hall M B, Clark A E. C J K III, Hench L L, Berte J J. Using 45S5 Bioglass cones as endosseous ridge maintenance implants to prevent alveolar ridge resorption: a 5-year evaluation. International Journal of Oral & Maxillofacial Implants, 1997, 12: 95-105
|
[6] |
Beherei H H, Mohamed K R, El-Bassyouni G T. Fabrication and characterization of bioactive glass (45S5)/titania biocomposites. Ceramics International, 2009, 35(5): 1991-1997
CrossRef
Google scholar
|
[7] |
Guo H B, Miao X, Chen Y, Cheang P, Khor K A. Characterization of hydroxyapatite- and bioglass-316L fibre composites prepared by spark plasma sintering. Materials Letters, 2004, 58(3-4): 304-307
CrossRef
Google scholar
|
[8] |
Iijima S. Helical microtubules of graphitic carbon. Nature, 1991, 354(6348): 56-58
CrossRef
Google scholar
|
[9] |
Popov V N. Carbon nanotubes: properties and application. Materials Science and Engineering: R: Reports, 2004, 43(3): 61-102
CrossRef
Google scholar
|
[10] |
Baughman R H, Zakhidov A A, de Heer W A. Carbon Nanotubes—the route toward applications. Science, 2002, 297(5582): 787-792
CrossRef
Google scholar
|
[11] |
Meyyappan M. Carbon nanotubes: Science and Applications. Florida: CRC Press, 2004, 321-325
|
[12] |
Wijewardane S. Potential applicability of CNT and CNT/composites to implement ASEC concept: a review article. Solar Energy, 2009, 83(8): 1379-1389
CrossRef
Google scholar
|
[13] |
Esawi A M K, Morsi K, Sayed A, Gawad A A, Borah P. Fabrication and properties of dispersed carbon nanotube-aluminum composites. Materials Science and Engineering A, 2009, 508(1-2): 167-173
CrossRef
Google scholar
|
[14] |
Zhao C, Hu G, Justice R, Schaefer D W, Zhang S, Yang M, Han C C. Synthesis and characterization of multi-walled carbon nanotubes reinforced polyamide 6 via in situ polymerization. Polymer, 2005, 46(14): 5125-5132
CrossRef
Google scholar
|
[15] |
Cha S I, Kim K T, Lee K H, Mo C B, Hong S H. Strengthening and toughening of carbon nanotube reinforced alumina nanocomposite fabricated by molecular level mixing process. Scripta Materialia, 2005, 53(7): 793-797
CrossRef
Google scholar
|
[16] |
Dai P Q, Xu W C, Huang Q Y. Mechanical properties and microstructure of nanocrystalline nickel-carbon nanotube composites produced by electrodeposition. Materials Science and Engineering A, 2008, 483-484: 172-174
CrossRef
Google scholar
|
[17] |
Mukhopadhyay A, Chu B T T, Green M L H, Todd R I. Understanding the mechanical reinforcement of uniformly dispersed multiwalled carbon nanotubes in alumino-borosilicate glass ceramic. Acta Materialia, 2010, 58(7): 2685-2697
CrossRef
Google scholar
|
[18] |
Mazaheri M, Mari D, Hesabi Z R, Schaller R, Fantozzi G. Multi-walled carbon nanotube/nanostructured zirconia composites: outstanding mechanical properties in a wide range of temperature. Composites Science and Technology, 2011, 71(7): 939-945
CrossRef
Google scholar
|
[19] |
Hulbert D M, Anders A, Dudina D V, Andersson J, Jiang D, Unuvar C, Anselmi-Tamburini U, Lavernia E J, Mukherjee A K. The absence of plasma in “spark plasma sintering”. Journal of Applied Physics, 2008, 104(3): 033305-033307
CrossRef
Google scholar
|
[20] |
Lin K, Chang J, Liu Z, Zeng Y, Shen R. Fabrication and characterization of 45S5 bioglass reinforced macroporous calcium silicate bioceramics. Journal of the European Ceramic Society, 2009, 29(14): 2937-2943
CrossRef
Google scholar
|
[21] |
Tjong S C. Carbon Nanotube Reinforced Composites: Metals and Ceramic Materials. Weinheim: Wiley-VCH, 2009, 185-187
|
/
〈 | 〉 |