LC/MS/MS and radioisotope method combined for recognizing the affinity between catalpol and OCT2 transporter
Zhiyu ZHANG, Changxiao LIU, Duanyun SI, Rong LU, Xiulin YI
LC/MS/MS and radioisotope method combined for recognizing the affinity between catalpol and OCT2 transporter
More and more herbal medicines are found to be the substrates of drug transporters. In this paper, chromatography/tandem mass spectrometry (LC/MS/MS) combined with radioisotope method was used for the quantification of catalpol, a traditional Chinese medicine, to study the affinity relationship between herbal medicines and transporters. Catalpol uptake experiment was carried out by using several transporters (OAT1, OCT2, OAT3, OATP1B1 and OATP2B1). And samples were precipitated with methanol and quantified with LC/MS/MS. The results show that catalpol has a good affinity with OCT2-transfected S2 cells. After studying drug-drug interaction between catalpol and 14C-tetraethylammonium (TEA), we found that catalpol is able to facilitate TEA transport mediated by OCT2, suggesting that catalpol could probably be a new promoter of OCT2.
[1] |
Giacomini K M, Huang S M, Tweedie D J, Benet L Z, Brouwer K L R, Chu X, Dahlin A, Evers R, Fischer V, Hillgren K M, Hoffmaster K A, Ishikawa T, Keppler D, Kim R B, Lee C A, Niemi M, Polli J W, Sugiyama Y, Swaan P W, Ware J A, Wright S H, Wah Yee S, Zamek-Gliszczynski M J, Zhang L. Membrane transporters in drug development. Nature Reviews. Drug Discovery, 2010, 9(3): 215–236
CrossRef
Google scholar
|
[2] |
Flynn C A, Alnouti Y, Reed G A. Quantification of the transporter substrate fexofenadine in cell lysates by liquid chromatography/tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 2011, 25(16): 2361–2366
CrossRef
Google scholar
|
[3] |
Huang W J, Niu H S, Lin M H, Cheng J T, Hsu F L. Antihyperglycemic effect of catalpol in streptozotocin-induced diabetic rats. Journal of Natural Products, 2010, 73(6): 1170–1172
CrossRef
Google scholar
|
[4] |
Shieh J P, Cheng K C, Chung H H, Kerh Y F, Yeh C H, Cheng J T. Plasma glucose lowering mechanisms of catalpol, an active principle from roots of Rehmannia glutinosa, in streptozotocin-induced diabetic rats. Journal of Agricultural and Food Chemistry, 2011, 59(8): 3747–3753
CrossRef
Google scholar
|
[5] |
Wang Z, Liu Q, Zhang R, Liu S, Xia Z, Hu Y. Catalpol ameliorates beta amyloid-induced degeneration of cholinergic neurons by elevating brain-derived neurotrophic factors. Neuroscience, 2009, 163(4): 1363–1372
CrossRef
Google scholar
|
[6] |
Lu R, Gu Y, Si D, Liu C. Quantitation of catalpol in rat plasma by liquid chromatography/electrospray ionization tandem mass spectrometry and its pharmacokinetic study. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 2009, 877(29): 3589–3594
CrossRef
Google scholar
|
[7] |
Li X E, Yang S L, Yang J S. Comparison and correlative analysis on characters of Rehmannia glutinosa Libosch. Varieties. Acta Academiae Medicinae Sinicae, 2001, 23(6): 560–562 (in Chinese)
|
[8] |
Tamura Y, Nishibe S. Changes in the concentrations of bioactive compounds in plantain leaves. Journal of Agricultural and Food Chemistry, 2002, 50(9): 2514–2518
CrossRef
Google scholar
|
[9] |
Wu H K, Chuang W C, Sheu S J. Separation of nine iridoids by capillary electrophoresis and high-performance liquid chromatography. Journal of Chromatography. A, 1998, 803(1): 179–187
CrossRef
Google scholar
|
[10] |
Suomi J, Sirén H, Wiedmer S K, Riekkola M L. Isolation of aucubin and catalpol from Melitaea cinxia larvae and quantification by micellar electrokinetic capillary chromatography. Analytica Chimica Acta, 2001, 429(1): 91–99
CrossRef
Google scholar
|
[11] |
Suomi J, Wiedmer S K, Jussila M, Riekkola M L. Determination of iridoid glycosides by micellar electrokinetic capillary chromatography-mass spectrometry with use of the partial filling technique. Electrophoresis, 2001, 22(12): 2580–2587
CrossRef
Google scholar
|
[12] |
Suomi J, Wiedmer S K, Jussila M, Riekkola M L. Analysis of eleven iridoid glycosides by micellar electrokinetic capillary chromatography (MECC) and screening of plant samples by partial filling (MECC)-electrospray ionisation mass spectrometry. Journal of Chromatography. A, 2002, 970(1): 287–296
CrossRef
Google scholar
|
[13] |
Suomi J, Sirén H, Jussila M, Wiedmer S K, Riekkola M L. Determination of iridoid glycosides in larvae and adults of butterfly Melitaea cinxia by partial filling micellar electrokinetic capillary chromatography-electrospray ionisation mass spectrometry. Analytical and Bioanalytical Chemistry, 2003, 376(6): 884–889
CrossRef
Google scholar
|
[14] |
Helfrich E, Rimpler H. Iridoid glycosides from Gmelina philippensis. Phytochemistry, 2000, 54(2): 191–199
CrossRef
Google scholar
|
[15] |
Bowers M D. Hostplant suitability and defensive chemistry of the Catalpa sphinx, Ceratomia catalpae. Journal of Chemical Ecology, 2003, 29(10): 2359–2367
CrossRef
Google scholar
|
[16] |
Fan L, Zhang W, Guo D, Tan Z R, Xu P, Li Q, Liu Y Z, Zhang L, He T Y, Hu D L, Wang D, Zhou H H. The effect of herbal medicine baicalin on pharmacokinetics of rosuvastatin, substrate of organic anion-transporting polypeptide 1B1. Clinical Pharmacology and Therapeutics, 2008, 83(3): 471–476
CrossRef
Google scholar
|
[17] |
Liu C X, Yi X L, Si D Y, Xiao X F, He X, Li Y Z. Herb-drug interactions involving drug metabolizing enzymes and transporters. Current Drug Metabolism, 2011, 12(9): 835–849
CrossRef
Google scholar
|
/
〈 | 〉 |