Dec 2024, Volume 18 Issue 6
    

  • Select all
    Software
  • RESEARCH ARTICLE
    Zhao-Hui LI, Xin-Yu FENG

    Though obstruction-free progress property is weaker than other non-blocking properties including lock-freedom and wait-freedom, it has advantages that have led to the use of obstruction-free implementations for software transactional memory (STM) and in anonymous and fault-tolerant distributed computing. However, existing work can only verify obstruction-freedom of specific data structures (e.g., STM and list-based algorithms).

    In this paper, to fill this gap, we propose a program logic that can formally verify obstruction-freedom of practical implementations, as well as verify linearizability, a safety property, at the same time. We also propose informal principles to extend a logic for verifying linearizability to verifying obstruction-freedom. With this approach, the existing proof for linearizability can be reused directly to construct the proof for both linearizability and obstruction-freedom.Finally, we have successfully applied our logic to verifying a practical obstruction-free double-ended queue implementation in the first classic paper that has proposed the definition of obstruction-freedom.

  • Artificial Intelligence
  • REVIEW ARTICLE
    Lei WANG, Chen MA, Xueyang FENG, Zeyu ZHANG, Hao YANG, Jingsen ZHANG, Zhiyuan CHEN, Jiakai TANG, Xu CHEN, Yankai LIN, Wayne Xin ZHAO, Zhewei WEI, Jirong WEN

    Autonomous agents have long been a research focus in academic and industry communities. Previous research often focuses on training agents with limited knowledge within isolated environments, which diverges significantly from human learning processes, and makes the agents hard to achieve human-like decisions. Recently, through the acquisition of vast amounts of Web knowledge, large language models (LLMs) have shown potential in human-level intelligence, leading to a surge in research on LLM-based autonomous agents. In this paper, we present a comprehensive survey of these studies, delivering a systematic review of LLM-based autonomous agents from a holistic perspective. We first discuss the construction of LLM-based autonomous agents, proposing a unified framework that encompasses much of previous work. Then, we present a overview of the diverse applications of LLM-based autonomous agents in social science, natural science, and engineering. Finally, we delve into the evaluation strategies commonly used for LLM-based autonomous agents. Based on the previous studies, we also present several challenges and future directions in this field.

  • RESEARCH ARTICLE
    Liangxuan ZHU, Han LI, Xuelin ZHANG, Lingjuan WU, Hong CHEN

    Interpretability has drawn increasing attention in machine learning. Most works focus on post-hoc explanations rather than building a self-explaining model. So, we propose a Neural Partially Linear Additive Model (NPLAM), which automatically distinguishes insignificant, linear, and nonlinear features in neural networks. On the one hand, neural network construction fits data better than spline function under the same parameter amount; on the other hand, learnable gate design and sparsity regular-term maintain the ability of feature selection and structure discovery. We theoretically establish the generalization error bounds of the proposed method with Rademacher complexity. Experiments based on both simulations and real-world datasets verify its good performance and interpretability.

  • RESEARCH ARTICLE
    Mingyue CHENG, Qi LIU, Wenyu ZHANG, Zhiding LIU, Hongke ZHAO, Enhong CHEN

    Recently advancements in deep learning models have significantly facilitated the development of sequential recommender systems (SRS). However, the current deep model structures are limited in their ability to learn high-quality embeddings with insufficient data. Meanwhile, highly skewed long-tail distribution is very common in recommender systems. Therefore, in this paper, we focus on enhancing the representation of tail items to improve sequential recommendation performance. Through empirical studies on benchmarks, we surprisingly observe that both the ranking performance and training procedure are greatly hindered by the poorly optimized tail item embeddings. To address this issue, we propose a sequential recommendation framework named TailRec that enables contextual information of tail item well-leveraged and greatly improves its corresponding representation. Given the characteristics of the sequential recommendation task, the surrounding interaction records of each tail item are regarded as contextual information without leveraging any additional side information. This approach allows for the mining of contextual information from cross-sequence behaviors to boost the performance of sequential recommendations. Such a light contextual filtering component is plug-and-play for a series of SRS models. To verify the effectiveness of the proposed TailRec, we conduct extensive experiments over several popular benchmark recommenders. The experimental results demonstrate that TailRec can greatly improve the recommendation results and speed up the training process. The codes of our methods have been available

    See github.com/Mingyue-Cheng/TailRec website.

    .

  • RESEARCH ARTICLE
    Zhi ZHOU, Yi-Xuan JIN, Yu-Feng LI

    Significant progress has been made in machine learning with large amounts of clean labels and static data. However, in many real-world applications, the data often changes with time and it is difficult to obtain massive clean annotations, that is, noisy labels and time series are faced simultaneously. For example, in product-buyer evaluation, each sample records the daily time behavior of users, but the long transaction period brings difficulties to analysis, and salespeople often erroneously annotate the user’s purchase behavior. Such a novel setting, to our best knowledge, has not been thoroughly studied yet, and there is still a lack of effective machine learning methods. In this paper, we present a systematic approach RTS both theoretically and empirically, consisting of two components, Noise-Tolerant Time Series Representation and Purified Oversampling Learning. Specifically, we propose reducing label noise’s destructive impact to obtain robust feature representations and potential clean samples. Then, a novel learning method based on the purified data and time series oversampling is adopted to train an unbiased model. Theoretical analysis proves that our proposal can improve the quality of the noisy data set. Empirical experiments on diverse tasks, such as the house-buyer evaluation task from real-world applications and various benchmark tasks, clearly demonstrate that our new algorithm robustly outperforms many competitive methods.

  • RESEARCH ARTICLE
    Lei YUAN, Feng CHEN, Zongzhang ZHANG, Yang YU

    Communication can promote coordination in cooperative Multi-Agent Reinforcement Learning (MARL). Nowadays, existing works mainly focus on improving the communication efficiency of agents, neglecting that real-world communication is much more challenging as there may exist noise or potential attackers. Thus the robustness of the communication-based policies becomes an emergent and severe issue that needs more exploration. In this paper, we posit that the ego system

    Here ego system means the multi-agent communication system itself. We use the word ego to distinguish it from the generated adversaries.

    trained with auxiliary adversaries may handle this limitation and propose an adaptable method of Multi-Agent Auxiliary Adversaries Generation for robust Communication, dubbed MA3C, to obtain a robust communication-based policy. In specific, we introduce a novel message-attacking approach that models the learning of the auxiliary attacker as a cooperative problem under a shared goal to minimize the coordination ability of the ego system, with which every information channel may suffer from distinct message attacks. Furthermore, as naive adversarial training may impede the generalization ability of the ego system, we design an attacker population generation approach based on evolutionary learning. Finally, the ego system is paired with an attacker population and then alternatively trained against the continuously evolving attackers to improve its robustness, meaning that both the ego system and the attackers are adaptable. Extensive experiments on multiple benchmarks indicate that our proposed MA3C provides comparable or better robustness and generalization ability than other baselines.

  • Networks and Communication
  • RESEARCH ARTICLE
    Fan ZHANG, Meijuan YIN, Fenlin LIU, Xiangyang LUO, Shuodi ZU

    IP geolocation is essential for the territorial analysis of sensitive network entities, location-based services (LBS) and network fraud detection. It has important theoretical significance and application value. Measurement-based IP geolocation is a hot research topic. However, the existing IP geolocation algorithms cannot effectively utilize the distance characteristics of the delay, and the nodes’ connection relation, resulting in high geolocation error. It is challenging to obtain the mapping between delay, nodes’ connection relation, and geographical location. Based on the idea of network representation learning, we propose a representation learning model for IP nodes (IP2vec for short) and apply it to street-level IP geolocation. IP2vec model vectorizes nodes according to the connection relation and delay between nodes so that the IP vectors can reflect the distance and topological proximity between IP nodes. The steps of the street-level IP geolocation algorithm based on IP2vec model are as follows: Firstly, we measure landmarks and target IP to obtain delay and path information to construct the network topology. Secondly, we use the IP2vec model to obtain the IP vectors from the network topology. Thirdly, we train a neural network to fit the mapping relation between vectors and locations of landmarks. Finally, the vector of target IP is fed into the neural network to obtain the geographical location of target IP. The algorithm can accurately infer geographical locations of target IPs based on delay and topological proximity embedded in the IP vectors. The cross-validation experimental results on 10023 target IPs in New York, Beijing, Hong Kong, and Zhengzhou demonstrate that the proposed algorithm can achieve street-level geolocation. Compared with the existing algorithms such as Hop-Hot, IP-geolocater and SLG, the mean geolocation error of the proposed algorithm is reduced by 33%, 39%, and 51%, respectively.

  • RESEARCH ARTICLE
    Jiantong HUO, Zhisheng HUO, Limin XIAO, Zhenxue HE

    For the high-performance computing in a WAN environment, the geographical locations of national supercomputing centers are scattered and the network topology is complex, so it is difficult to form a unified view of resources. To aggregate the widely dispersed storage resources of national supercomputing centers in China, we have previously proposed a global virtual data space named GVDS in the project of “High Performance Computing Virtual Data Space”, a part of the National Key Research and Development Program of China. The GVDS enables large-scale applications of the high-performance computing to run efficiently across WAN. However, the applications running on the GVDS are often data-intensive, requiring large amounts of data from multiple supercomputing centers across WANs. In this regard, the GVDS suffers from performance bottlenecks in data migration and access across WANs. To solve the above-mentioned problem, this paper proposes a performance optimization framework of GVDS including the multitask-oriented data migration method and the request access-aware IO proxy resource allocation strategy. In a WAN environment, the framework proposed in this paper can make an efficient migration decision based on the amount of migrated data and the number of multiple data sources, guaranteeing lower average migration latency when multiple data migration tasks are running in parallel. In addition, it can ensure that the thread resource of the IO proxy node is fairly allocated among different types of requests (the IO proxy is a module of GVDS), so as to improve the application’s performance across WANs. The experimental results show that the framework can effectively reduce the average data access delay of GVDS while improving the performance of the application greatly.

  • Information Systems
  • RESEARCH ARTICLE
    Xiaochuan LIN, Kaimin WEI, Zhetao LI, Jinpeng CHEN, Tingrui PEI

    Spatial crowdsourcing (SC) is a popular data collection paradigm for numerous applications. With the increment of tasks and workers in SC, heterogeneity becomes an unavoidable difficulty in task allocation. Existing researches only focus on the single-heterogeneous task allocation. However, a variety of heterogeneous objects coexist in real-world SC systems. This dramatically expands the space for searching the optimal task allocation solution, affecting the quality and efficiency of data collection. In this paper, an aggregation-based dual heterogeneous task allocation algorithm is put forth. It investigates the impact of dual heterogeneous on the task allocation problem and seeks to maximize the quality of task completion and minimize the average travel distance. This problem is first proved to be NP-hard. Then, a task aggregation method based on locations and requirements is built to reduce task failures. Meanwhile, a time-constrained shortest path planning is also developed to shorten the travel distance in a community. After that, two evolutionary task allocation schemes are presented. Finally, extensive experiments are conducted based on real-world datasets in various contexts. Compared with baseline algorithms, our proposed schemes enhance the quality of task completion by up to 25% and utilize 34% less average travel distance.

  • RESEARCH ARTICLE
    Yupei ZHANG, Yuxin LI, Yifei WANG, Shuangshuang WEI, Yunan XU, Xuequn SHANG

    Learning-outcome prediction (LOP) is a long-standing and critical problem in educational routes. Many studies have contributed to developing effective models while often suffering from data shortage and low generalization to various institutions due to the privacy-protection issue. To this end, this study proposes a distributed grade prediction model, dubbed FecMap, by exploiting the federated learning (FL) framework that preserves the private data of local clients and communicates with others through a global generalized model. FecMap considers local subspace learning (LSL), which explicitly learns the local features against the global features, and multi-layer privacy protection (MPP), which hierarchically protects the private features, including model-shareable features and not-allowably shared features, to achieve client-specific classifiers of high performance on LOP per institution. FecMap is then achieved in an iteration manner with all datasets distributed on clients by training a local neural network composed of a global part, a local part, and a classification head in clients and averaging the global parts from clients on the server. To evaluate the FecMap model, we collected three higher-educational datasets of student academic records from engineering majors. Experiment results manifest that FecMap benefits from the proposed LSL and MPP and achieves steady performance on the task of LOP, compared with the state-of-the-art models. This study makes a fresh attempt at the use of federated learning in the learning-analytical task, potentially paving the way to facilitating personalized education with privacy protection.

  • Interdisciplinary
  • RESEARCH ARTICLE
    Mojtaba NOORALLAHZADEH, Mohammad MOSLEH, Kamalika DATTA

    With the recent demonstration of quantum computers, interests in the field of reversible logic synthesis and optimization have taken a different turn. As every quantum operation is inherently reversible, there is an immense motivation for exploring reversible circuit design and optimization. When it comes to faults in circuits, the parity-preserving feature donates to the detection of permanent and temporary faults. In the context of reversible circuits, the parity-preserving property ensures that the input and output parities are equal. In this paper we suggest six parity-preserving reversible blocks (Z, F, A, T, S, and L) with improved quantum cost. The reversible blocks are synthesized using an existing synthesis method that generates a netlist of multiple-control Toffoli (MCT) gates. Various optimization rules are applied at the reversible circuit level, followed by transformation into a netlist of elementary quantum gates from the NCV library. The designs of full-adder and unsigned and signed multipliers are proposed using the functional blocks that possess parity-preserving properties. The proposed designs are compared with state-of-the-art methods and found to be better in terms of cost of realization. Average savings of 25.04%, 20.89%, 21.17%, and 51.03%, and 18.59%, 13.82%, 13.82%, and 27.65% respectively, are observed for 4-bit unsigned and 5-bit signed multipliers in terms of quantum cost, garbage output, constant input, and gate count as compared to recent works.