Graph foundation model

Chuan SHI , Junze CHEN , Jiawei LIU , Cheng YANG

Front. Comput. Sci. ›› 2024, Vol. 18 ›› Issue (6) : 186355

PDF (664KB)
Front. Comput. Sci. ›› 2024, Vol. 18 ›› Issue (6) : 186355 DOI: 10.1007/s11704-024-40046-0
Excellent Young Computer Scientists Vision
LETTER

Graph foundation model

Author information +
History +
PDF (664KB)

Graphical abstract

Cite this article

Download citation ▾
Chuan SHI, Junze CHEN, Jiawei LIU, Cheng YANG. Graph foundation model. Front. Comput. Sci., 2024, 18(6): 186355 DOI:10.1007/s11704-024-40046-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Perozzi B, Al-Rfou R, Skiena S S. DeepWalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2014

[2]

Yan S, Xu D, Zhang B, Zhang H, Yang Q, Lin S . Graph embedding and extensions: a general framework for dimensionality reduction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29( 1): 40–51

[3]

Bommasani R, Hudson D A, Adeli E, Altman R, Arora S, , . On the opportunities and risks of foundation models. 2021, arXiv preprint arXiv: 2108.07258

[4]

Wei J, Tay Y, Bommasani R, Raffel C, Zoph B, Borgeaud S, Yogatama D, Bosma M, Zhou D, Metzler D, Chi E H, Hashimoto T, Vinyals O, Liang P, Dean J, Fedus W . Emergent abilities of large language models. Transactions on Machine Learning Research, 2022,

[5]

Liu J, Yang C, Lu Z, Chen J, Li Y, Zhang M, Bai T, Fang Y, Sun L, Yu P S, Shi C. Towards graph foundation models: a survey and beyond. 2023, arXiv preprint arXiv: 2310.11829

[6]

Zhu Y, Xu Y, Yu F, Liu Q, Wu S, Wang L. Deep graph contrastive representation learning. 2020, arXiv preprint arXiv: 2006.04131

[7]

Hou Z, Liu X, Cen Y, Dong Y, Yang H, Wang C, Tang J. GraphMAE: self-supervised masked graph autoencoders. In: Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. 2022

[8]

Gui A, Ye J, Xiao H. G-adapter: towards structure-aware parameter-efficient transfer learning for graph transformer networks. In: Proceedings of the 38th AAAI Conference on Artificial Intelligence. 2023

[9]

Sun M, Zhou K, He X, Wang Y, Wang X. GPPT: graph pre-training and prompt tuning to generalize graph neural networks. In: Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. 2022

[10]

Wang X, Wang D, Chen L, Wang F, Lin Y. Building transportation foundation model via generative graph transformer. In: Proceedings of the 26th IEEE International Conference on Intelligent Transportation Systems (ITSC). 2023

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (664KB)

Supplementary files

Highlights

2199

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/