Graph foundation model

Chuan SHI, Junze CHEN, Jiawei LIU, Cheng YANG

PDF(664 KB)
PDF(664 KB)
Front. Comput. Sci. ›› 2024, Vol. 18 ›› Issue (6) : 186355. DOI: 10.1007/s11704-024-40046-0
Artificial Intelligence
LETTER

Graph foundation model

Author information +
History +

Graphical abstract

Cite this article

Download citation ▾
Chuan SHI, Junze CHEN, Jiawei LIU, Cheng YANG. Graph foundation model. Front. Comput. Sci., 2024, 18(6): 186355 https://doi.org/10.1007/s11704-024-40046-0

References

[1]
Perozzi B, Al-Rfou R, Skiena S S. DeepWalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2014
[2]
Yan S, Xu D, Zhang B, Zhang H, Yang Q, Lin S . Graph embedding and extensions: a general framework for dimensionality reduction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29( 1): 40–51
[3]
Bommasani R, Hudson D A, Adeli E, Altman R, Arora S, , . On the opportunities and risks of foundation models. 2021, arXiv preprint arXiv: 2108.07258
[4]
Wei J, Tay Y, Bommasani R, Raffel C, Zoph B, Borgeaud S, Yogatama D, Bosma M, Zhou D, Metzler D, Chi E H, Hashimoto T, Vinyals O, Liang P, Dean J, Fedus W . Emergent abilities of large language models. Transactions on Machine Learning Research, 2022,
[5]
Liu J, Yang C, Lu Z, Chen J, Li Y, Zhang M, Bai T, Fang Y, Sun L, Yu P S, Shi C. Towards graph foundation models: a survey and beyond. 2023, arXiv preprint arXiv: 2310.11829
[6]
Zhu Y, Xu Y, Yu F, Liu Q, Wu S, Wang L. Deep graph contrastive representation learning. 2020, arXiv preprint arXiv: 2006.04131
[7]
Hou Z, Liu X, Cen Y, Dong Y, Yang H, Wang C, Tang J. GraphMAE: self-supervised masked graph autoencoders. In: Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. 2022
[8]
Gui A, Ye J, Xiao H. G-adapter: towards structure-aware parameter-efficient transfer learning for graph transformer networks. In: Proceedings of the 38th AAAI Conference on Artificial Intelligence. 2023
[9]
Sun M, Zhou K, He X, Wang Y, Wang X. GPPT: graph pre-training and prompt tuning to generalize graph neural networks. In: Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. 2022
[10]
Wang X, Wang D, Chen L, Wang F, Lin Y. Building transportation foundation model via generative graph transformer. In: Proceedings of the 26th IEEE International Conference on Intelligent Transportation Systems (ITSC). 2023

Competing interests

The authors declare that they have no competing interests or financial conflicts to disclose.

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(664 KB)

Accesses

Citations

Detail

Sections
Recommended

/