Graph foundation model
Chuan SHI, Junze CHEN, Jiawei LIU, Cheng YANG
Graph foundation model
[1] |
Perozzi B, Al-Rfou R, Skiena S S. DeepWalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2014
|
[2] |
Yan S, Xu D, Zhang B, Zhang H, Yang Q, Lin S . Graph embedding and extensions: a general framework for dimensionality reduction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29( 1): 40–51
|
[3] |
Bommasani R, Hudson D A, Adeli E, Altman R, Arora S, ,
|
[4] |
Wei J, Tay Y, Bommasani R, Raffel C, Zoph B, Borgeaud S, Yogatama D, Bosma M, Zhou D, Metzler D, Chi E H, Hashimoto T, Vinyals O, Liang P, Dean J, Fedus W . Emergent abilities of large language models. Transactions on Machine Learning Research, 2022,
|
[5] |
Liu J, Yang C, Lu Z, Chen J, Li Y, Zhang M, Bai T, Fang Y, Sun L, Yu P S, Shi C. Towards graph foundation models: a survey and beyond. 2023, arXiv preprint arXiv: 2310.11829
|
[6] |
Zhu Y, Xu Y, Yu F, Liu Q, Wu S, Wang L. Deep graph contrastive representation learning. 2020, arXiv preprint arXiv: 2006.04131
|
[7] |
Hou Z, Liu X, Cen Y, Dong Y, Yang H, Wang C, Tang J. GraphMAE: self-supervised masked graph autoencoders. In: Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. 2022
|
[8] |
Gui A, Ye J, Xiao H. G-adapter: towards structure-aware parameter-efficient transfer learning for graph transformer networks. In: Proceedings of the 38th AAAI Conference on Artificial Intelligence. 2023
|
[9] |
Sun M, Zhou K, He X, Wang Y, Wang X. GPPT: graph pre-training and prompt tuning to generalize graph neural networks. In: Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. 2022
|
[10] |
Wang X, Wang D, Chen L, Wang F, Lin Y. Building transportation foundation model via generative graph transformer. In: Proceedings of the 26th IEEE International Conference on Intelligent Transportation Systems (ITSC). 2023
|
/
〈 | 〉 |