Journal home Browse Featured articles

Featured articles

  • Select all
  • LETTER
    Hongyu KUANG, Jian WANG, Ruilin LI, Chao FENG, YunFei SU, Xing ZHANG
    Frontiers of Computer Science, 2022, 16(2): 162201. https://doi.org/10.1007/s11704-020-0312-6
  • RESEARCH ARTICLE
    Changpeng ZHU, Bo HAN, Yinliang ZHAO
    Frontiers of Computer Science, 2022, 16(3): 163101. https://doi.org/10.1007/s11704-021-0118-1

    Container-based virtualization techniques are becoming an alternative to traditional virtual machines, due to less overhead and better scaling. As one of the most widely used open-source container orchestration systems, Kubernetes provides a built-in mechanism, that is, horizontal pod autoscaler (HPA), for dynamic resource provisioning. By default, scaling pods only based on CPU utilization, a single performance metric, HPA may create more pods than actually needed. Through extensive measurements of a containerized n-tier application benchmark, RUBBoS, we find that excessive pods consume more CPU and memory and even deteriorate response times of applications, due to interference. Furthermore, a Kubernetes service does not balance incoming requests among old pods and new pods created by HPA, due to stateful HTTP. In this paper, we propose a bi-metric approach to scaling pods by taking into account both CPU utilization and utilization of a thread pool, which is a kind of important soft resource in Httpd and Tomcat. Our approach collects the utilization of CPU and memory of pods. Meanwhile, it makes use of ELBA, a milli-bottleneck detector, to calculate queue lengths of Httpd and Tomcat pods and then evaluate the utilization of their thread pools. Based on the utilization of both CPU and thread pools, our approach could scale up less replicas of Httpd and Tomcat pods, contributing to a reduction of hardware resource utilization. At the same time, our approach leverages preStop hook along with liveness and readiness probes to relieve load imbalance among old Tomcat pods and new ones. Based on the containerized RUBBoS, our experimental results show that the proposed approach could not only reduce the usage of CPU and memory by as much as 14% and 24% when compared with HPA, but also relieve the load imbalance to reduce average response time of requests by as much as 80%. Our approach also demonstrates that it is better to scale pods by multiple metrics rather than a single one.

  • RESEARCH ARTICLE
    Guozhen ZHANG, Yi LIU, Hailong YANG, Jun XU, Depei QIAN
    Frontiers of Computer Science, 2021, 15(6): 156107. https://doi.org/10.1007/s11704-020-0190-y

    As the mean-time-between-failures (MTBF) continues to decline with the increasing number of components on large-scale high performance computing (HPC) systems, program failures might occur during the execution period with high probability. Ensuring successful execution of the HPC programs has become an issue that the unprivileged users should be concerned. From the user perspective, if the program failure cannot be detected and handled in time, it would waste resources and delay the progress of program execution. Unfortunately, the unprivileged users are unable to perform program state checking due to execution control by the job management system as well as the limited privilege. Currently, automated tools for supporting user-level failure detection and autorecovery of parallel programs in HPC systems are missing. This paper proposes an innovative method for the unprivileged user to achieve failure detection of job execution and automatic resubmission of failed jobs. The state checker in our method is encapsulated as an independent job to reduce interference with the user jobs. In addition, we propose a dual-checker mechanism to improve the robustness of our approach.We implement the proposed method as a tool named automatic re-launcher (ARL) and evaluate it on the Tianhe-2 system. Experiment results show that ARL can detect the execution failures effectively on Tianhe-2 system. In addition, the communication and performance overhead caused by ARL is negligible. The good scalability of ARL makes it applicable for large-scale HPC systems.

  • RESEARCH ARTICLE
    Yao QIN, Hua WANG, Shanwen YI, Xiaole LI, Linbo ZHAI
    Frontiers of Computer Science, 2021, 15(5): 155105. https://doi.org/10.1007/s11704-020-9273-z

    Recently, a growing number of scientific applications have been migrated into the cloud. To deal with the problems brought by clouds, more and more researchers start to consider multiple optimization goals in workflow scheduling. However, the previous works ignore some details, which are challenging but essential. Most existing multi-objective workflow scheduling algorithms overlook weight selection, which may result in the quality degradation of solutions. Besides, we find that the famous partial critical path (PCP) strategy, which has been widely used to meet the deadline constraint, can not accurately reflect the situation of each time step. Workflow scheduling is an NP-hard problem, so self-optimizing algorithms are more suitable to solve it.

    In this paper, the aim is to solve a workflow scheduling problem with a deadline constraint. We design a deadline constrained scientific workflow scheduling algorithm based on multi-objective reinforcement learning (RL) called DCMORL. DCMORL uses the Chebyshev scalarization function to scalarize its Q-values. This method is good at choosing weights for objectives. We propose an improved version of the PCP strategy calledMPCP. The sub-deadlines in MPCP regularly update during the scheduling phase, so they can accurately reflect the situation of each time step. The optimization objectives in this paper include minimizing the execution cost and energy consumption within a given deadline. Finally, we use four scientific workflows to compare DCMORL and several representative scheduling algorithms. The results indicate that DCMORL outperforms the above algorithms. As far as we know, it is the first time to apply RL to a deadline constrained workflow scheduling problem.

  • RESEARCH ARTICLE
    Dongjie CHEN, Yanyan JIANG, Chang XU, Xiaoxing MA
    Frontiers of Computer Science, 2021, 15(4): 154206. https://doi.org/10.1007/s11704-020-9501-6

    Exploring the interleaving space of a multithreaded program to efficiently detect concurrency bugs is important but also difficult because of the astronomically many thread schedules. This paper presents a novel framework to decompose a thread schedule generator that explores the interleaving space into the composition of a basic generator and its extension under the “small interleaving hypothesis”. Under this framework, we in-depth analyzed research work on interleaving space exploration, illustrated how to design an effective schedule generator, and shed light on future research opportunities.

  • RESEARCH ARTICLE
    Bing WEI, Limin XIAO, Bingyu ZHOU, Guangjun QIN, Baicheng YAN, Zhisheng HUO
    Frontiers of Computer Science, 2021, 15(3): 153102. https://doi.org/10.1007/s11704-020-9344-1

    With the advent of new computing paradigms, parallel file systems serve not only traditional scientific computing applications but also non-scientific computing applications, such as financial computing, business, and public administration. Parallel file systems provide storage services for multiple applications. As a result, various requirements need to be met. However, parallel file systems usually provide a unified storage solution, which cannot meet specific application needs. In this paper, an extended file handle scheme is proposed to deal with this problem. The original file handle is extended to record I/O optimization information, which allows file systems to specify optimizations for a file or directory based on workload characteristics. Therefore, fine-grained management of I/O optimizations can be achieved. On the basis of the extended file handle scheme, data prefetching and small file optimization mechanisms are proposed for parallel file systems. The experimental results show that the proposed approach improves the aggregate throughput of the overall system by up to 189.75%.

  • REVIEW ARTICLE
    Ibrahim ALSEADOON, Aakash AHMAD, Adel ALKHALIL, Khalid SULTAN
    Frontiers of Computer Science, 2021, 15(2): 152204. https://doi.org/10.1007/s11704-019-8166-5

    Mobile computing has fast emerged as a pervasive technology to replace the old computing paradigms with portable computation and context-aware communication. Existing software systems can be migrated (while preserving their data and logic) to mobile computing platforms that support portability, context-sensitivity, and enhanced usability. In recent years, some research and development efforts have focused on a systematic migration of existing software systems to mobile computing platforms.

    To investigate the research state-of-the-art on the migration of existing software systems to mobile computing platforms. We aim to analyze the progression and impacts of existing research, highlight challenges and solutions that reflect dimensions of emerging and futuristic research.

    We followed evidence-based software engineering (EBSE) method to conduct a systematic mapping study (SMS) of the existing research that has progressed over more than a decade (25 studies published from 1996–2017).We have derived a taxonomical classification and a holistic mapping of the existing research to investigate its progress, impacts, and potential areas of futuristic research and development.

    The SMS has identified three types of migration namely Static, Dynamic, and State-based Migration of existing software systems to mobile computing platforms.Migration to mobile computing platforms enables existing software systems to achieve portability, context-sensitivity, and high connectivity. However, mobile systems may face some challenges such as resource poverty, data security, and privacy. The emerging and futuristic research aims to support patterns and tool support to automate the migration process. The results of this SMS can benefit researchers and practitioners–by highlighting challenges, solutions, and tools, etc., –to conceptualize the state-ofthe- art and futuristic trends that support migration of existing software to mobile computing.

  • RESEARCH ARTICLE
    Han Yao HUANG, Kyung Tae KIM, Hee Yong YOUN
    Frontiers of Computer Science, 2021, 15(1): 151101. https://doi.org/10.1007/s11704-020-9153-6

    Wireless sensor network (WSN) is effective for monitoring the target environment,which consists of a large number of sensor nodes of limited energy. An efficient medium access control (MAC) protocol is thus imperative to maximize the energy efficiency and performance of WSN. The most existing MAC protocols are based on the scheduling of sleep and active period of the nodes, and do not consider the relationship between the load condition and performance. In this paper a novel scheme is proposed to properly determine the duty cycle of the WSN nodes according to the load,which employs the Q-learning technique and function approximation with linear regression. This allows low-latency energy-efficient scheduling for a wide range of traffic conditions, and effectively overcomes the limitation of Q-learning with the problem of continuous state-action space. NS3 simulation reveals that the proposed scheme significantly improves the throughput, latency, and energy efficiency compared to the existing fully active scheme and S-MAC.

  • RESEARCH ARTICLE
    Zhenghui HU, Wenjun WU, Jie LUO, Xin WANG, Boshu LI
    Frontiers of Computer Science, 2020, 14(6): 146207. https://doi.org/10.1007/s11704-019-8418-4

    Quality assessment is a critical component in crowdsourcing-based software engineering (CBSE) as software products are developed by the crowd with unknown or varied skills and motivations. In this paper, we propose a novel metric called the project score to measure the performance of projects and the quality of products for competitionbased software crowdsourcing development (CBSCD) activities. To the best of our knowledge, this is the first work to deal with the quality issue of CBSE in the perspective of projects instead of contests. In particular, we develop a hierarchical quality evaluation framework for CBSCD projects and come up with two metric aggregation models for project scores. The first model is a modified squale model that can locate the software modules of poor quality, and the second one is a clustering-based aggregationmodel, which takes different impacts of phases into account. To test the effectiveness of the proposed metrics, we conduct an empirical study on TopCoder, which is a famous CBSCD platform. Results show that the proposed project score is a strong indicator of the performance and product quality of CBSCD projects.We also find that the clustering-based aggregation model outperforms the Squale one by increasing the percentage of the performance evaluation criterion of aggregation models by an additional 29%. Our approach to quality assessment for CBSCD projects could potentially facilitate software managers to assess the overall quality of a crowdsourced project consisting of programming contests.

  • RESEARCH ARTICLE
    Shiqing ZHANG, Zheng QIN, Yaohua YANG, Li SHEN, Zhiying WANG
    Frontiers of Computer Science, 2020, 14(3): 143101. https://doi.org/10.1007/s11704-018-7386-4

    Despite the increasing investment in integrated GPU and next-generation interconnect research, discrete GPU connected by PCIe still account for the dominant position of the market, the management of data communication between CPU and GPU continues to evolve. Initially, the programmer explicitly controls the data transfer between CPU and GPU. To simplify programming and enable systemwide atomic memory operations, GPU vendors have developed a programming model that provides a single, virtual address space for accessing all CPU and GPU memories in the system. The page migration engine in this model automatically migrates pages between CPU and GPU on demand. To meet the needs of high-performanceworkloads, the page size tends to be larger. Limited by low bandwidth and high latency interconnects compared to GDDR, larger page migration has longer delay, which may reduce the overlap of computation and transmission, waste time to migrate unrequested data, block subsequent requests, and cause serious performance decline. In this paper, we propose partial page migration that only migrates the requested part of a page to reduce the migration unit, shorten the migration latency, and avoid the performance degradation of the full page migration when the page becomes larger. We show that partial page migration is possible to largely hide the performance overheads of full page migration. Compared with programmer controlled data transmission, when the page size is 2MB and the PCIe bandwidth is 16GB/sec, full page migration is 72.72× slower, while our partial page migration achieves 1.29× speedup. When the PCIe bandwidth is changed to 96GB/sec, full page migration is 18.85× slower, while our partial page migration provides 1.37× speedup. Additionally, we examine the performance impact that PCIe bandwidth and migration unit size have on execution time, enabling designers to make informed decisions.