ISM: intra-class similarity mixing for time series augmentation

Pin LIU , Rui WANG , Yongqiang HE , Yuzhu WANG

Front. Comput. Sci. ›› 2024, Vol. 18 ›› Issue (6) : 186352

PDF (1264KB)
Front. Comput. Sci. ›› 2024, Vol. 18 ›› Issue (6) : 186352 DOI: 10.1007/s11704-024-40110-9
Artificial Intelligence
LETTER

ISM: intra-class similarity mixing for time series augmentation

Author information +
History +
PDF (1264KB)

Graphical abstract

Cite this article

Download citation ▾
Pin LIU, Rui WANG, Yongqiang HE, Yuzhu WANG. ISM: intra-class similarity mixing for time series augmentation. Front. Comput. Sci., 2024, 18(6): 186352 DOI:10.1007/s11704-024-40110-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Buntine W . Machine learning after the deep learning revolution. Frontiers of Computer Science, 2020, 14( 6): 146320

[2]

Zhang F, Ngo K H, Yang S, Nosratinia A . Transmit correlation diversity: Generalization, new techniques, and improved bounds. IEEE Transactions on Information Theory, 2022, 68( 6): 3841–3869

[3]

Wei K, Li T, Huang F, Chen J, He Z . Cancer classification with data augmentation based on generative adversarial networks. Frontiers of Computer Science, 2022, 16( 2): 162601

[4]

Ragab M, Eldele E, Tan W L, Foo C S, Chen Z, Wu M, Kwoh C K, Li X . ADATIME: a benchmarking suite for domain adaptation on time series data. ACM Transactions on Knowledge Discovery from Data, 2023, 17( 8): 106

[5]

Kim B, Alawami M A, Kim E, Oh S, Park J, Kim H . A comparative study of time series anomaly detection models for industrial control systems. Sensors, 2023, 23( 3): 1310

[6]

Li G, Jung J J . Deep learning for anomaly detection in multivariate time series: approaches, applications, and challenges. Information Fusion, 2023, 91: 93–102

[7]

Yun S, Han D, Chun S, Oh S J, Yoo Y, Choe J. CutMix: regularization strategy to train strong classifiers with localizable features. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019, 6022−6031

[8]

Bellos D, Basham M, Pridmore T, French A P . A convolutional neural network for fast upsampling of undersampled tomograms in X-ray CT time-series using a representative highly sampled tomogram. Journal of Synchrotron Radiation, 2019, 26( 3): 839–853

[9]

Iwana B K, Uchida S. Time series data augmentation for neural networks by time warping with a discriminative teacher. In: Proceedings of the 25th International Conference on Pattern Recognition (ICPR). 2021, 3558−3565

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (1264KB)

Supplementary files

Highlights

784

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/