Large language models make sample-efficient recommender systems

Jianghao LIN , Xinyi DAI , Rong SHAN , Bo CHEN , Ruiming TANG , Yong YU , Weinan ZHANG

Front. Comput. Sci. ›› 2025, Vol. 19 ›› Issue (4) : 194328

PDF (245KB)
Front. Comput. Sci. ›› 2025, Vol. 19 ›› Issue (4) : 194328 DOI: 10.1007/s11704-024-40039-z
Excellent Young Computer Scientists Vision
LETTER

Large language models make sample-efficient recommender systems

Author information +
History +
PDF (245KB)

Graphical abstract

Cite this article

Download citation ▾
Jianghao LIN, Xinyi DAI, Rong SHAN, Bo CHEN, Ruiming TANG, Yong YU, Weinan ZHANG. Large language models make sample-efficient recommender systems. Front. Comput. Sci., 2025, 19(4): 194328 DOI:10.1007/s11704-024-40039-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhang J, Bao K, Zhang Y, Wang W, Feng F, He X. Large language models for recommendation: progresses and future directions. In: Proceedings of the ACM on Web Conference 2024. 2024, 1268−1271

[2]

Pan X, Wu L, Long F, Ma A . Exploiting user behavior learning for personalized trajectory recommendations. Frontiers of Computer Science, 2022, 16( 3): 163610

[3]

MindSpore, 2020

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (245KB)

Supplementary files

Highlights

1670

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/