INTERCROPPING TEA PLANTATIONS WITH SOYBEAN AND RAPESEED ENHANCES NITROGEN FIXATION THROUGH SHIFTS IN SOIL MICROBIAL COMMUNITIES

Yongjia ZHONG, Lini LIANG, Ruineng XU, Hanyu XU, Lili SUN, Hong LIAO

PDF(5731 KB)
PDF(5731 KB)
Front. Agr. Sci. Eng. ›› 2022, Vol. 9 ›› Issue (3) : 344-355. DOI: 10.15302/J-FASE-2022451
RESEARCH ARTICLE
RESEARCH ARTICLE

INTERCROPPING TEA PLANTATIONS WITH SOYBEAN AND RAPESEED ENHANCES NITROGEN FIXATION THROUGH SHIFTS IN SOIL MICROBIAL COMMUNITIES

Author information +
History +

Highlights

● Intercropping change soil bacterial communities in tea plantations.

● Intercropping increasing nitrogen cycling in the soils of tea plantations.

Abstract

Intercropping with eco-friendly crops is a well-known strategy for improving agriculture sustainability with benefits throughout the soil community, though the range of crop impacts on soil microbiota and extent of feedbacks to crops remain largely unclear. This study evaluated the impacts of different intercropping systems on soil bacterial community composition, diversity, and potential functions in tea gardens. Intercropping systems were found to be significantly influenced soil microbiota. Within the three tested intercropping systems (tea-soybean, tea-rapeseed and tea-soybean-rapeseed), the tea-soybean-rapeseed intercropping system had the most dramatic influence on soil microbiota, with increases in richness accompanied by shifts in the structure of tea garden soil bacterial networks. Specifically, relative abundance of potentially beneficial bacteria associated with essential mineral nutrient cycling increased significantly in the tea-soybean-rapeseed intercropping system. In addition, soil microbial functions related to nutrient cycling functions were significantly enhanced. This was in accordance with increasing relative abundance of nitrogen cycling bacteria, including Burkholderia spp. and Rhodanobacter spp. Based on these results, it is proposed that intercropping tea plantation with soybean and rapeseed may benefit soil microbiota, and thereby promises to be an important strategy for improving soil health in ecologically sound tea production systems.

Graphical abstract

Keywords

intercropping / rapeseed / soil microbe / soybean / tea garden

Cite this article

Download citation ▾
Yongjia ZHONG, Lini LIANG, Ruineng XU, Hanyu XU, Lili SUN, Hong LIAO. INTERCROPPING TEA PLANTATIONS WITH SOYBEAN AND RAPESEED ENHANCES NITROGEN FIXATION THROUGH SHIFTS IN SOIL MICROBIAL COMMUNITIES. Front. Agr. Sci. Eng., 2022, 9(3): 344‒355 https://doi.org/10.15302/J-FASE-2022451

References

[1]
KimY H, WonY S, YangX, KumazoeM, YamashitaS, HaraA, TakagakiA, GotoK, NanjoF, TachibanaH. Green tea catechin metabolites exert immunoregulatory effects on CD4+ T cell and natural killer cell activities. Journal of Agricultural and Food Chemistry , 2016, 64( 18): 3591–3597
CrossRef Google scholar
[2]
XiongL G, HuangJ A, LiJ, Yu P H, XiongZ, ZhangJ W, GongY S, LiuZ H, ChenJ H. Black tea increased survival of Caenorhabditis elegans under stress. Journal of Agricultural and Food Chemistry , 2014, 62( 46): 11163–11169
CrossRef Google scholar
[3]
YangC S, HongJ. Prevention of chronic diseases by tea: possible mechanisms and human relevance. Annual Review of Nutrition , 2013, 33( 1): 161–181
CrossRef Google scholar
[4]
HodgsonA B, RandellR K, Mahabir-Jagessar-TK, LotitoS, MulderT, MelaD J, JeukendrupA E, JacobsD M. Acute effects of green tea extract intake on exogenous and endogenous metabolites in human plasma. Journal of Agricultural and Food Chemistry , 2014, 62( 5): 1198–1208
CrossRef Google scholar
[5]
LiuY, WangD, ZhangS, ZhaoH. Global expansion strategy of Chinese herbal tea beverage. Advance Journal of Food Science and Technology (AJFST) , 2015, 7( 9): 739–745
CrossRef Google scholar
[6]
HuX F, WuA Q, WangF C, ChenF S. The effects of simulated acid rain on internal nutrient cycling and the ratios of Mg, Al, Ca, N, and P in tea plants of a subtropical plantation. Environmental Monitoring and Assessment , 2019, 191( 2): 99
CrossRef Google scholar
[7]
BornøM L, Müller-StöverD S, LiuF. Contrasting effects of biochar on phosphorus dynamics and bioavailability in different soil types. Science of the Total Environment , 2018, 627 : 963–974
CrossRef Google scholar
[8]
SilvaL S, SeabraA R, LeitãoJ N, CarvalhoH G. Possible role of glutamine synthetase of the prokaryotic type (GSI-like) in nitrogen signaling in Medicago truncatula . Plant Science , 2015, 240: 98−108
[9]
MaL, Chen H, ShanY, JiangM, ZhangG, WuL, Ruan J, LvJ, ShiY, PanL, HuangC, LiuL, LiangB, WangM, PanJ. Status and suggestions of tea garden fertilization on main green tea-producing counties in Zhengjiang Province. Journal of Tea Science , 2013, 33(1): 74−84 ( in Chinese)
[10]
WuY, Li Y, FuX, LiuX, ShenJ, WangY, WuJ. Three-dimensional spatial variability in soil microorganisms of nitrification and denitrification at row-transect scale in a tea field. Soil Biology & Biochemistry , 2016, 103 : 452–463
CrossRef Google scholar
[11]
LiY, Li Z, ArafatY, LinW, JiangY, WengB, LinW. Characterizing rhizosphere microbial communities in long-term monoculture tea orchards by fatty acid profiles and substrate utilization. European Journal of Soil Biology , 2017, 81 : 48–54
CrossRef Google scholar
[12]
YangX, NiK, Shi Y, YiX, ZhangQ, FangL, MaL, Ruan L. Effects of long-term nitrogen application on soil acidification and solution chemistry of a tea plantation in China. Agriculture, Ecosystems & Environment , 2018, 252 : 74–82
CrossRef Google scholar
[13]
WangZ, GengY, LiangT. Optimization of reduced chemical fertilizer use in tea gardens based on the assessment of related environmental and economic benefits. Science of the Total Environment , 2020, 713 : 136439
CrossRef Google scholar
[14]
SunL, LiuY, WuL, Liao H. Comprehensive analysis revealed the close relationship between N/P/K status and secondary metabolites in tea leaves. ACS Omega , 2019, 4( 1): 176–184
CrossRef Google scholar
[15]
GomezA A, GomezK A. Multiple Cropping in the Humid Tropics of Asia. Ottawa: International Development Research Centre ( IDRC ), 1983
[16]
TilmanD. Benefits of intensive agricultural intercropping. Nature Plants , 2020, 6( 6): 604–605
CrossRef Google scholar
[17]
LiB, Li Y Y, WuH M, ZhangF F, LiC J, LiX X, LambersH, LiL. Root exudates drive interspecific facilitation by enhancing nodulation and N2 fixation. Proceedings of the National Academy of Sciences of the United States of America , 2016, 113( 23): 6496–6501
CrossRef Google scholar
[18]
ZhuY, ChenH, FanJ, WangY, LiY, Chen J, FanJ, YangS, HuL, Leung H, MewT W, TengP S, WangZ, MundtC C. Genetic diversity and disease control in rice. Nature , 2000, 406( 6797): 718–722
CrossRef Google scholar
[19]
LiJ, Zhou Y, ZhouB, TangH, ChenY, QiaoX, TangJ. Habitat management as a safe and effective approach for improving yield and quality of tea (Camellia sinensis) leaves. Scientific Reports , 2019, 9( 1): 433
CrossRef Google scholar
[20]
LiX F, WangZ G, BaoX G, SunJ H, YangS C, WangP, WangC B, WuJ P, LiuX R, TianX L, WangY, LiJ P, WangY, XiaH Y, MeiP P, WangX F, ZhaoJ H, YuR P, ZhangW P, CheZ X, GuiL G, CallawayR M, TilmanD, LiL. Long-term increased grain yield and soil fertility from intercropping. Nature Sustainability , 2021, 4( 11): 943–950
CrossRef Google scholar
[21]
LiJ L, TuP F, ChenN, TangJ C, WangX R, NianH, LiaoH, YanX L. Effects of tea intercropping with soybean. Scientia Agricultura Sinica , 2008, 41(7): 2040−2047 ( in Chinese)
[22]
FarooqT H, KumarU, MoJ, Shakoor A, WangJ, RashidM H U, TufailM A, ChenX, YanW. Intercropping of peanut-tea enhances soil enzymatic activity and soil nutrient status at different soil profiles in subtropical southern China. Plants , 2021, 10( 5): 881
CrossRef Google scholar
[23]
XuZ, Li C, ZhangC, YuY, van der Werf W, Zhang F. Intercropping maize and soybean increases efficiency of land and fertilizer nitrogen use; a meta-analysis. Field Crops Research , 2020, 246 : 107661
CrossRef Google scholar
[24]
DuanY, ShenJ, ZhangX, WenB, MaY, Wang Y, FangW, ZhuX. Effects of soybean-tea intercropping on soil-available nutrients and tea quality. Acta Physiologiae Plantarum , 2019, 41( 8): 140
CrossRef Google scholar
[25]
ZhouZ, LiuY, ZhangL M, XuR N, SunL L, LiaoH. Soil nutrient status in Wuyi tea region and its effects on tea quality-related constituents. Scientia Agricultura Sinica , 2019, 52(8): 1425−1434 ( in Chinese)
[26]
LiuY, SunL L, LiaoH. Effects of nutrient management on soil fertility and tea quality in anxi tea plantation. Acta Pedologica Sinica , 2020, 57(4): 917−927 ( in Chinese)
[27]
LiangL N, GuoX G, LiaoX, QinL, LiaoH. Screening and preliminary application of rapeseed materials as green manure intercropped in tea plantations. Chinese Journal of Oil Crop Sciences , 2019, 41(6): 825−834 ( in Chinese)
[28]
LuM, Shi C, XuR, WangM. Investigation of Picromerus lewisi Scott as the natural enemy of tea looper in Wuyishan rock tea production area . Tea in Fujian , 2020, 42(11): 8−9 ( in Chinese)
[29]
ZhongY, YangY, LiuP, XuR, Rensing C, FuX, LiaoH. Genotype and rhizobium inoculation modulate the assembly of soybean rhizobacterial communities. Plant, Cell & Environment , 2019, 42( 6): 2028–2044
CrossRef Google scholar
[30]
WangW, ZhaiS, XiaY, WangH, RuanD, ZhouT, ZhuY, ZhangH, ZhangM, YeH, Ren W, YangL. Ochratoxin A induces liver inflammation: involvement of intestinal microbiota. Microbiome , 2019, 7( 1): 151
CrossRef Google scholar
[31]
BolyenE, RideoutJ R, DillonM R, BokulichN A, AbnetC C, Al-GhalithG A, AlexanderH, AlmE J, ArumugamM, AsnicarF, BaiY, BisanzJ E, BittingerK, BrejnrodA, BrislawnC J, BrownC T, CallahanB J, Caraballo-RodríguezA M, ChaseJ, CopeE K, DaSilva R, DienerC, DorresteinP C, DouglasG M, DurallD M, DuvalletC, EdwardsonC F, ErnstM, EstakiM, FouquierJ, GauglitzJ M, GibbonsS M, GibsonD L, GonzalezA, GorlickK, GuoJ, HillmannB, HolmesS, HolsteH, HuttenhowerC, HuttleyG A, JanssenS, JarmuschA K, JiangL, KaehlerB D, KangK B, KeefeC R, KeimP, KelleyS T, KnightsD, KoesterI, KosciolekT, KrepsJ, LangilleM G I, LeeJ, LeyR, LiuY X, LoftfieldE, LozuponeC, MaherM, MarotzC, MartinB D, McDonaldD, McIverL J, MelnikA V, MetcalfJ L, MorganS C, MortonJ T, NaimeyA T, Navas-MolinaJ A, NothiasL F, OrchanianS B, PearsonT, PeoplesS L, PetrasD, PreussM L, PruesseE, RasmussenL B, RiversA, RobesonM S II, RosenthalP, SegataN, ShafferM, ShifferA, SinhaR, SongS J, SpearJ R, SwaffordA D, ThompsonL R, TorresP J, TrinhP, TripathiA, TurnbaughP J, Ul-HasanS, vander Hooft J J J, VargasF, Vázquez-BaezaY, VogtmannE, vonHippel M, WaltersW, WanY, WangM, WarrenJ, WeberK C, WilliamsonC H D, WillisA D, XuZ Z, ZaneveldJ R, ZhangY, ZhuQ, KnightR, CaporasoJ G. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology , 2019, 37( 8): 852–857
CrossRef Google scholar
[32]
MartinM. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.Journal , 2011, 17( 1): 10–12
CrossRef Google scholar
[33]
RognesT, FlouriT, NicholsB, QuinceC, MahéF. VSEARCH: a versatile open source tool for metagenomics. PeerJ , 2016, 4 : e2584
CrossRef Google scholar
[34]
AmirA, McdonaldD, Navas-MolinaJ A, KopylovaE, MortonJ T, ZechXu Z, KightleyE P, ThompsonL R, HydeE R, GonzalezA, KnightR. Deblur rapidly resolves single-nucleotide community sequence patterns. mSystems , 2017, 2( 2): e00191–16
CrossRef Google scholar
[35]
YilmazP, ParfreyL W, YarzaP, GerkenJ, PruesseE, QuastC, SchweerT, PepliesJ, LudwigW, GlöcknerF O. The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks. Nucleic Acids Research , 2014, 42( D1): D643–D648
CrossRef Google scholar
[36]
LiM, Liu R, LiY, WangC, MaW, Zheng L, ZhangK, FuX, Li X, SuY, HuangG, ZhongY, LiaoH. Functional investigation of plant growth promoting rhizobacterial communities in sugarcane. Frontiers in Microbiology , 2022, 12 : 783925
CrossRef Google scholar
[37]
LoucaS, ParfreyL W, DoebeliM. Decoupling function and taxonomy in the global ocean microbiome. Science , 2016, 353( 6305): 1272–1277
CrossRef Google scholar
[38]
FieldA. Discovering statistics using SPSS. SAGE , 2013
[39]
HerridgeD F, PeoplesM B, BoddeyR M. Global inputs of biological nitrogen fixation in agricultural systems. Plant and Soil , 2008, 311( 1−2): 1–18
CrossRef Google scholar
[40]
GaoX, WuM, Xu R, WangX, PanR, KimH J, LiaoH. Root interactions in a maize/soybean intercropping system control soybean soil-borne disease, red crown rot. PLoS One , 2014, 9( 5): e95031
CrossRef Google scholar
[41]
ChenL, LiaoH. Engineering crop nutrient efficiency for sustainable agriculture. Journal of Integrative Plant Biology , 2017, 59( 10): 710–735
CrossRef Google scholar
[42]
Gutiérrez-AlanísD, Ojeda-RiveraJ O, Yong-VillalobosL, Cárdenas-Torres L, Herrera-EstrellaL. Adaptation to phosphate scarcity: tips from Arabidopsis roots. Trends in Plant Science , 2018, 23( 8): 721–730
CrossRef Google scholar
[43]
CavalettiL, MonciardiniP, BamonteR, SchumannP, RohdeM, SosioM, DonadioS. New lineage of filamentous, spore-forming, gram-positive bacteria from soil. Applied and Environmental Microbiology , 2006, 72( 6): 4360–4369
CrossRef Google scholar
[44]
YabeS, AibaY, SakaiY, HazakaM, YokotaA. 2007 and emended description of the class Ktedonobacteria . International Journal of Systematic and Evolutionary Microbiology , 2010, 60(8): 1794−1801
[45]
YabeS, SakaiY, AbeK, YokotaA, TakéA, MatsumotoA, SugihartoA, SusilowatiD, HamadaM, NaraK, MadeSudiana I, OtsukaS. Dictyobacter aurantiacus gen. nov., sp. nov., a member of the family Ktedonobacteraceae, isolated from soil, and emended description of the genus Thermosporothrix . International Journal of Systematic and Evolutionary Microbiology , 2017, 67(8): 2615−2621
[46]
Astorga-ElóM, ZhangQ, LaramaG, StollA, SadowskyM J, JorqueraM A. Composition, predicted functions and co-occurrence networks of Rhizobacterial communities impacting flowering desert events in the Atacama Desert, Chile. Frontiers in Microbiology , 2020, 11 : 571
CrossRef Google scholar
[47]
CanforaL, BacciG, PinzariF, LoPapa G, DazziC, BenedettiA. Salinity and bacterial diversity: to what extent does the concentration of salt affect the bacterial community in a saline soil. PLoS One , 2014, 9( 9): e106662
CrossRef Google scholar
[48]
NackeH, ThürmerA, WollherrA, WillC, HodacL, HeroldN, SchoningI, SchrumpfM, DanielR. Pyrosequencing-based assessment of bacterial community structure along different management types in German forest and grassland soils. PLoS One , 2011, 6( 2): e17000
CrossRef Google scholar
[49]
TarlachkovS V, StarodumovaI P, DorofeevaL V, PrisyazhnayaN V, LeynS A, ZlamalJ E, AlbuS, NadlerS A, SubbotinS A, EvtushenkoL I. Draft genome sequences of 13 plant-associated Actinobacteria of the family Microbacteriaceae . Microbiology Resource Announcements , 2020, 9(38): e00795-20
[50]
VasilenkoO V, StarodumovaI P, DorofeevaL V, TarlachkovS V, PrisyazhnayaN V, ChizhovV N, SubbotinS A, HuntemannM, ClumA, DuffyK, PillayM, PalaniappanK, VargheseN, ChenI A, StamatisD, ReddyT B K, O’MalleyR, DaumC, ShapiroN, IvanovaN, KyrpidesN C, WoykeT, WhitmanW B, EvtushenkoL I. Draft genome sequences of new isolates and the known species of the family Microbacteriaceae associated with plants. Microbiology Resource Announcements , 2018, 7( 11): e01051-18
CrossRef Google scholar
[51]
TarlachkovS V, StarodumovaI P, DorofeevaL V, PrisyazhnayaN V, RoubtsovaT V, ChizhovV N, NadlerS A, SubbotinS A, EvtushenkoL I. Draft genome sequences of 28 Actinobacteria of the family Microbacteriaceae Associated with Nematode-Infected Plants. Microbiology Resource Announcements , 2021, 10( 9): e01400-20
CrossRef Google scholar
[52]
DahalR H, ChaudharyD K, KimJ. Rhodanobacter hydrolyticus sp. nov., a novel DNA- and tyrosine-hydrolysing gammaproteobacterium isolated from forest soil. International Journal of Systematic and Evolutionary Microbiology , 2018, 68( 8): 2580–2586
CrossRef Google scholar
[53]
HuoY, KangJ P, ParkJ K, LiJ, Chen L, YangD C. Rhodanobacter ginsengiterrae sp. nov., an antagonistic bacterium against root rot fungal pathogen Fusarium solani, isolated from ginseng rhizospheric soil. Archives of Microbiology , 2018, 200( 10): 1457–1463
CrossRef Google scholar
[54]
WonK, SinghH, NgoH T T, SonH, KookM, KimK Y, YiT H. Rhodanobacter koreensis sp. nov., a bacterium isolated from tomato rhizosphere. International Journal of Systematic and Evolutionary Microbiology , 2015, 65( Pt_4): 1180–1185
CrossRef Google scholar
[55]
DahalR H, KimJ. Rhodanobacter humi sp. nov., an acid-tolerant and alkalitolerant gammaproteobacterium isolated from forest soil. International Journal of Systematic and Evolutionary Microbiology , 2017, 67( 5): 1185–1190
CrossRef Google scholar
[56]
LeeC S, KimK K, AslamZ, LeeS T. Rhodanobacter thiooxydans sp. nov., isolated from a biofilm on sulfur particles used in an autotrophic denitrification process. International Journal of Systematic and Evolutionary Microbiology , 2007, 57( 8): 1775–1779
CrossRef Google scholar
[57]
PrakashO, GreenS J, JasrotiaP, OverholtW A, CanionA, WatsonD B, BrooksS C, KostkaJ E. Rhodanobacter denitrificans sp. nov., isolated from nitrate-rich zones of a contaminated aquifer. International Journal of Systematic and Evolutionary Microbiology , 2012, 62( Pt_10): 2457–2462
CrossRef Google scholar
[58]
HuangY M, StraubD, BlackwellN, KapplerA, KleindienstS. Meta-omics Reveal Gallionellaceae and Rhodanobacter species as interdependent key players for Fe(II) oxidation and nitrate reduction in the autotrophic enrichment culture KS. Applied and Environmental Microbiology , 2021, 87( 15): e00496-21
CrossRef Google scholar
[59]
BarcytėD, PilátováJ, MojzešP, NedbalováL. The Arctic Cylindrocystis (Zygnematophyceae, Streptophyta) green algae are genetically and morphologically diverse and exhibit effective accumulation of polyphosphate. Journal of Phycology , 2020, 56( 1): 217–232
CrossRef Google scholar
[60]
OrenA. Life at high salt concentrations, intracellular KCl concentrations, and acidic proteomes. Frontiers in Microbiology , 2013, 4 : 315
CrossRef Google scholar
[61]
FukunagaY, KurahashiM, YanagiK, YokotaA, HarayamaS. Acanthopleuribacter pedis gen. nov., sp. nov., a marine bacterium isolated from a chiton, and description of Acanthopleuribacteraceae fam. nov., Acanthopleuribacterales ord. nov., Holophagaceae fam. nov., Holophagales ord. nov. and Holophagae classis nov. in the phylum ‘Acidobacteria’. International Journal of Systematic and Evolutionary Microbiology , 2008, 58( 11): 2597–2601
CrossRef Google scholar
[62]
Nunesda Rocha U, PluggeC M, GeorgeI, vanElsas J D, vanOverbeek L S. The rhizosphere selects for particular groups of Acidobacteria and Verrucomicrobia. PLoS One , 2013, 8( 12): e82443
CrossRef Google scholar
[63]
RosenzweigN, BradeenJ M, TuZ J, McKayS J, KinkelL L. Rhizosphere bacterial communities associated with long-lived perennial prairie plants vary in diversity, composition, and structure. Canadian Journal of Microbiology , 2013, 59( 7): 494–502
CrossRef Google scholar
[64]
FiererN. Embracing the unknown: disentangling the complexities of the soil microbiome. Nature Reviews: Microbiology , 2017, 15( 10): 579–590
CrossRef Google scholar
[65]
SchmalenbergerA, HodgeS, BryantA, HawkesfordM J, SinghB K, KerteszM A. The role of Variovorax and other Comamonadaceae in sulfur transformations by microbial wheat rhizosphere communities exposed to different sulfur fertilization regimes. Environmental Microbiology , 2008, 10( 6): 1486–1500
CrossRef Google scholar
[66]
CarriónV J, Perez-JaramilloJ, CordovezV, TracannaV, deHollander M, Ruiz-BuckD, MendesL W, vanIjcken W F J, Gomez-ExpositoR, ElsayedS S, MohanrajuP, ArifahA, vander Oost J, PaulsonJ N, MendesR, vanWezel G P, MedemaM H, RaaijmakersJ M. Pathogen-induced activation of disease-suppressive functions in the endophytic root microbiome. Science , 2019, 366( 6465): 606–612
CrossRef Google scholar
[67]
SharmaS, KumarS, KhajuriaA, OhriP, KaurR, KaurR. Biocontrol potential of chitinases produced by newly isolated Chitinophaga sp. S167. World Journal of Microbiology & Biotechnology , 2020, 36( 6): 90
CrossRef Google scholar
[68]
HuJ, Jin V L, KonkelJ Y M, SchaefferS M, SchneiderL G, DeBruynJ M. Soil health management enhances microbial nitrogen cycling capacity and activity. MSphere , 2021, 6( 1): e01237-20
CrossRef Google scholar
[69]
DongM, YangZ, ChengG, PengL, XuQ, Xu J. Diversity of the bacterial microbiome in the roots of four Saccharum species: S. spontaneum, S. robustum, S. barberi, and S. officinarum . Frontiers in Microbiology , 2018, 9: 267
[70]
LinL, LiZ, Hu C, ZhangX, ChangS, YangL, LiY, An Q. Plant growth-promoting nitrogen-fixing enterobacteria are in association with sugarcane plants growing in Guangxi, China. Microbes and Environments , 2012, 27( 4): 391–398
CrossRef Google scholar
[71]
daSilva P R A, Simões-AraújoJ L, VidalM S, CruzL M, deSouza E M, BaldaniJ I. Draft genome sequence of Paraburkholderia tropica Ppe8 strain, a sugarcane endophytic diazotrophic bacterium. Brazilian Journal of Microbiology , 2018, 49( 2): 210–211
CrossRef Google scholar
[72]
BernabeuP R, GarcíaS S, LópezA C, VioS A, CarrascoN, BoiardiJ L, LunaM F. Assessment of bacterial inoculant formulated with Paraburkholderia tropica to enhance wheat productivity. World Journal of Microbiology & Biotechnology , 2018, 34( 6): 81
CrossRef Google scholar
[73]
LiuY, WuL, Wu X, LiH, LiaoQ, ZhangX, SunZ, LiW. Analysis of microbial diversity in soil under ginger cultivation. Scientifica , 2017, 2017 : 8256865
CrossRef Google scholar
[74]
LiuC, LinH, LiB, Dong Y, YinT. Responses of microbial communities and metabolic activities in the rhizosphere during phytoremediation of Cd-contaminated soil. Ecotoxicology and Environmental Safety , 2020, 202 : 110958
CrossRef Google scholar
[75]
LinH, LiuC, LiB, Dong Y. Trifolium repens L. regulated phytoremediation of heavy metal contaminated soil by promoting soil enzyme activities and beneficial rhizosphere associated microorganisms. Journal of Hazardous Materials , 2021, 402 : 123829
CrossRef Google scholar
[76]
RebelloS, NathanV K, SindhuR, BinodP, AwasthiM K, PandeyA. Bioengineered microbes for soil health restoration: present status and future. Bioengineered , 2021, 12( 2): 12839–12853
CrossRef Google scholar

Acknowledgements

This work was funded by the Science and Technology Commissioner’s On-site Teaching Renovation and Promotion Project of Nanping City (NP2021KTS05), and the Modern Agricultural Talents Support Project of Ministry of Agriculture and Rural Affairs of China. We thank Peng Liu for the help in the soil sampling in tea garden in 2019, and Tom Walk for editing the manuscript.

Compliance with ethics guidelines

Yongjia Zhong, Lini Liang, Ruineng Xu, Hanyu Xu, Lili Sun, and Hong Liao declare that they have no conflicts of interest or financial conflicts to disclose. Sequencing raw data was deposited in the NCBI database under the accession number PRJNA788975. This article does not contain any studies with human or animal subjects performed by any of the authors.

RIGHTS & PERMISSIONS

The Author(s) 2022. Published by Higher Education Press. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0)
AI Summary AI Mindmap
PDF(5731 KB)

Accesses

Citations

Detail

Sections
Recommended

/