Cryopreservation of farm animal gametes and embryos: recent updates and progress

Zhengyuan HUANG, Lei GAO, Yunpeng HOU, Shien ZHU, Xiangwei FU

PDF(695 KB)
PDF(695 KB)
Front. Agr. Sci. Eng. ›› 2019, Vol. 6 ›› Issue (1) : 42-53. DOI: 10.15302/J-FASE-2018231
REVIEW
REVIEW

Cryopreservation of farm animal gametes and embryos: recent updates and progress

Author information +
History +

Abstract

Cryopreservation has undergone tremendous advances and is widely used in animal production based on decades of study of cellular permeability, freezability and empirical generalization. Several improvement are particularly important: the cryopreservation protocol has been continuously refined over the years to achieve greater reproductive performance; cryoprotective agents are more effective and less toxic than previously; there has been significant innovation in advanced cryopreservation systems and carriers. Despite this, there are still problems that urgently require practical solutions, such as remedies for cryodamage and encouraging the use of frozen–thawed porcine sperm in pig production.

Keywords

vitrification / gametes / embryo / animal production / cryoprotective agent / freezability

Cite this article

Download citation ▾
Zhengyuan HUANG, Lei GAO, Yunpeng HOU, Shien ZHU, Xiangwei FU. Cryopreservation of farm animal gametes and embryos: recent updates and progress. Front. Agr. Sci. Eng., 2019, 6(1): 42‒53 https://doi.org/10.15302/J-FASE-2018231

References

[1]
Saragusty J, Arav A. Current progress in oocyte and embryo cryopreservation by slow freezing and vitrification. Reproduction, 2011, 141(1): 1–19
CrossRef Pubmed Google scholar
[2]
Roca J, Parrilla I, Gil M A, Cuello C, Martinez E A, Rodriguez-Martinez H. Non-viable sperm in the ejaculate: lethal escorts for contemporary viable sperm. Animal Reproduction Science, 2016, 169: 24–31
CrossRef Pubmed Google scholar
[3]
Gordon I. Reproductive technologies in farm Animals. In: Gordon I. In vitro embryo production. 2nd ed. Cambridge: CABI Pub, 2017, 100–101
[4]
George P. 2015 statistics of embryo collection and transfer in domestic farm animals. IETS Data Retrieval Committee, 2015
[5]
Thompson M, Nemits M, Ehrhardt R. Rate-controlled cryopreservation and thawing of mammalian cells. Protocol Exchange2011. doi: 10.1038/protex.2011.224
[6]
Day J G, Stacey G N, Gefriertrocknen. Cryopreservation and freeze-drying protocols. FEBS Letters, 2007, 377(2): 281–282
[7]
Arav A. Cryopreservation of oocytes and embryos. Theriogenology, 2014, 81(1): 96–102
CrossRef Pubmed Google scholar
[8]
Brambillasca F, Guglielmo M C, Coticchio G, Mignini Renzini M, Dal Canto M, Fadini R. The current challenges to efficient immature oocyte cryopreservation. Journal of Assisted Reproduction and Genetics, 2013, 30(12): 1531–1539
CrossRef Pubmed Google scholar
[9]
Moussa M, Shu J, Zhang X, Zeng F. Cryopreservation of mammalian oocytes and embryos: current problems and future perspectives. Science China Life Sciences, 2014, 57(9): 903–914
[10]
Shepherd V A. The cytomatrix as a cooperative system of macromolecular and water networks. Current Topics in Developmental Biology, 2006, 75: 171–223
CrossRef Pubmed Google scholar
[11]
Pessarakli M. Handbook of plant and crop stress. 3rd ed. Boca Raton: CRC Press, 2011, 1215
[12]
Yavin S, Arav A. Measurement of essential physical properties of vitrification solutions. Theriogenology, 2007, 67(1): 81–89
CrossRef Pubmed Google scholar
[13]
Vajta G, Holm P, Kuwayama M, Booth P J, Jacobsen H, Greve T, Callesen H. Open pulled straw (OPS) vitrification: a new way to reduce cryoinjuries of bovine ova and embryos. Molecular Reproduction and Development, 1998, 51(1): 53–58
CrossRef Pubmed Google scholar
[14]
Rall W F. Factors affecting the survival of mouse embryos cryopreserved by vitrification. Cryobiology, 1987, 24(5): 387–402
CrossRef Pubmed Google scholar
[15]
Varghese A C, Nagy Z P, Agarwal A. Current trends, biological foundations and future prospects of oocyte and embryo cryopreservation. Reproductive Biomedicine Online, 2009, 19(1): 126–140
CrossRef Pubmed Google scholar
[16]
Leibo S P. A one-step method for direct nonsurgical transfer of frozen-thawed bovine embryos. Theriogenology, 1984, 21(5): 767–790
CrossRef Pubmed Google scholar
[17]
Rexer-Huber K M J, Bishop P J, Wharton D A. Skin ice nucleators and glycerol in the freezing-tolerant frog Litoria ewingii. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2011, 181(6): 781–792
CrossRef Pubmed Google scholar
[18]
Saha S, Otoi T, Takagi M, Boediono A, Sumantri C, Suzuki T. Normal calves obtained after direct transfer of vitrified bovine embryos using ethylene glycol, trehalose, and polyvinylpyrrolidone. Cryobiology, 1996, 33(3): 291–299
CrossRef Pubmed Google scholar
[19]
Kasai M, Niwa K, Iritani A. Effects of various cryoprotective agents on the survival of unfrozen and frozen mouse embryos. Journal of Reproduction and Fertility, 1981, 63(1): 175–180
CrossRef Pubmed Google scholar
[20]
Whittingham D G, Leibo S P, Mazur P. Survival of mouse embryos frozen to –196 degrees and –269 degrees C. Science, 1972, 178(4059): 411–414
CrossRef Pubmed Google scholar
[21]
Arav A, Saragusty J. Directional freezing of spermatozoa and embryos. Reproduction, Fertility, and Development, 2013, 26(1): 83–90
CrossRef Pubmed Google scholar
[22]
Chen S U, Lien Y R, Cheng Y Y, Chen H F, Ho H N, Yang Y S. Vitrification of mouse oocytes using closed pulled straws (CPS) achieves a high survival and preserves good patterns of meiotic spindles, compared with conventional straws, open pulled straws (OPS) and grids. Human Reproduction, 2001, 16(11): 2350–2356
CrossRef Pubmed Google scholar
[23]
Puhlev I, Guo N, Brown D R, Levine F. Desiccation tolerance in human cells. Cryobiology, 2001, 42(3): 207–217
CrossRef Pubmed Google scholar
[24]
Guo N, Puhlev I, Brown D R, Mansbridge J, Levine F. Trehalose expression confers desiccation tolerance on human cells. Nature Biotechnology, 2000, 18(2): 168–171
CrossRef Pubmed Google scholar
[25]
Arav A, Yavin S, Zeron Y, Natan D, Dekel I, Gacitua H. New trends in gamete’s cryopreservation. Molecular and Cellular Endocrinology, 2002, 187(1–2): 77–81
CrossRef Pubmed Google scholar
[26]
Arav A, Zeron Y. Vitrification of bovine oocytes using modified minimum drop size technique (MDS) is effected by the composition and the concentration of the vitrification solution and by the cooling conditions. Theriogenology, 1997, 47(1): 341
CrossRef Google scholar
[27]
Yavin S, Aroyo A, Roth Z, Arav A. Embryo cryopreservation in the presence of low concentration of vitrification solution with sealed pulled straws in liquid nitrogen slush. Human Reproduction, 2009, 24(4): 797–804
CrossRef Pubmed Google scholar
[28]
Wilmut I, Rowson L E. Experiments on the low-temperature preservation of cow embryos. Veterinary Record, 1973, 92(26): 686–690
CrossRef Pubmed Google scholar
[29]
Wilmut I, Rowson L E. The successful low-temperature preservation of mouse and cow embryos. Journal of Reproduction and Fertility, 1973, 33(2): 352–353
CrossRef Pubmed Google scholar
[30]
Rall W F, Fahy G M. Ice-free cryopreservation of mouse embryos at -196 degrees C by vitrification. Nature, 1985, 313(6003): 573–575
CrossRef Pubmed Google scholar
[31]
Massip A, Zwalmen P V D, Scheffen B, Ectors F. Pregnancies following transfer of cattle embryos preserved by vitrification. Cryo Letters, 1986, 7: 270–273
[32]
Yuswiati E, Holtz W. Work in progress: successful transfer of vitrified goat embryos. Theriogenology, 1990, 34(4): 629–632
CrossRef Pubmed Google scholar
[33]
Széll A, Zhang J, Hudson R. Rapid cryopreservation of sheep embryos by direct transfer into liquid nitrogen vapour at -180 degrees C. Reproduction, Fertility, and Development, 1990, 2(6): 613–618
CrossRef Pubmed Google scholar
[34]
Dobrinsky J R. Cellular approach to cryopreservation of embryos. Theriogenology, 1996, 45(45): 17–26
CrossRef Google scholar
[35]
Pedro P B, Yokoyama E, Zhu S E, Yoshida N, Valdez D M Jr, Tanaka M, Edashige K, Kasai M. Permeability of mouse oocytes and embryos at various developmental stages to five cryoprotectants. Journal of Reproduction and Development, 2005, 51(2): 235–246
CrossRef Pubmed Google scholar
[36]
Lonergan P, Rizos D, Gutiérrez-Adán A, Fair T, Boland M P. Effect of culture environment on embryo quality and gene expression- experience from animal studies. Reproductive Biomedicine Online, 2003, 7(6): 657–663
CrossRef Pubmed Google scholar
[37]
McEvoy T G, Robinson J J, Sinclair K D. Developmental consequences of embryo and cell manipulation in mice and farm animals. Reproduction, 2001, 122(4): 507–518
CrossRef Pubmed Google scholar
[38]
Abdalla H, Shimoda M, Hara H, Morita H, Kuwayama M, Hirabayashi M, Hochi S. Vitrification of ICSI- and IVF-derived bovine blastocysts by minimum volume cooling procedure: effect of developmental stage and age. Theriogenology, 2010, 74(6): 1028–1035
CrossRef Pubmed Google scholar
[39]
Dos Santos Neto P C, Vilariño M, Barrera N, Cuadro F, Crispo M, Menchaca A. Cryotolerance of Day 2 or Day 6 in vitro produced ovine embryos after vitrification by Cryotop or Spatula methods. Cryobiology, 2015, 70(1): 17–22
CrossRef Pubmed Google scholar
[40]
Shirazi A, Shams-Esfandabadi N, Ahmadi E, Heidari B. Effects of growth hormone on nuclear maturation of ovine oocytes and subsequent embryo development. Reproduction in Domestic Animals, 2010, 45(3): 530–536
CrossRef Pubmed Google scholar
[41]
Pereira R M, Baptista M C, Vasques M I, Horta A E, Portugal P V, Bessa R J, Silva J C, Pereira M S, Marques C C. Cryosurvival of bovine blastocysts is enhanced by culture with trans-10 cis-12 conjugated linoleic acid (10t,12c CLA). Animal Reproduction Science, 2007, 98(3–4): 293–301
CrossRef Pubmed Google scholar
[42]
Barceló-Fimbres M, Seidel G E Jr. Effects of either glucose or fructose and metabolic regulators on bovine embryo development and lipid accumulation in vitro. Molecular Reproduction and Development, 2007, 74(11): 1406–1418
CrossRef Pubmed Google scholar
[43]
Sudano M J, Paschoal D M, Rascado T S, Magalhães L C, Crocomo L F, de Lima-Neto J F, Landim-Alvarenga F C. Lipid content and apoptosis of in vitro-produced bovine embryos as determinants of susceptibility to vitrification. Theriogenology, 2011, 75(7): 1211–1220
CrossRef Pubmed Google scholar
[44]
Pryor J H, Looney C R, Romo S, Kraemer D C, Long C R. Cryopreservation of in vitro produced bovine embryos: effects of lipid segregation and post-thaw laser assisted hatching. Theriogenology, 2011, 75(1): 24–33
CrossRef Pubmed Google scholar
[45]
Pero M E, Zullo G, Esposito L, Iannuzzi A, Lombardi P, De Canditiis C, Neglia G, Gasparrini B. Inhibition of apoptosis by caspase inhibitor Z-VAD-FMK improves cryotolerance of in vitro derived bovine embryos. Theriogenology, 2018, 108: 127–135
CrossRef Pubmed Google scholar
[46]
Yacoub A N A, Gauly M, Holtz W. Open pulled straw vitrification of goat embryos at various stages of development. Theriogenology, 2010, 73(8): 1018–1023
CrossRef Pubmed Google scholar
[47]
Varago F C, Moutacas V S, Carvalho B C, Serapião R V, Vieira F, Chiarini-Garcia H, Brandão F Z, Camargo L S, Henry M, Lagares M A. Comparison of conventional freezing and vitrification with dimethylformamide and ethylene glycol for cryopreservation of ovine embryos. Reproduction in Domestic Animals, 2014, 49(5): 839–844
CrossRef Pubmed Google scholar
[48]
Mara L, Sanna D, Dattena M, Mayorga Muñoz I M. Different in vitro culture systems affect the birth weight of lambs from vitrified ovine embryos. Zygote, 2015, 23(1): 53–57
CrossRef Pubmed Google scholar
[49]
Succu S, Pasciu V, Manca M E, Chelucci S, Torres-Rovira L, Leoni G G, Zinellu A, Carru C, Naitana S, Berlinguer F. Dose-dependent effect of melatonin on postwarming development of vitrified ovine embryos. Theriogenology, 2014, 81(8): 1058–1066
CrossRef Pubmed Google scholar
[50]
Romão R, Marques C C, Baptista M C, Barbas J P, Horta A E M, Carolino N, Bettencourt E, Pereira R M. Cryopreservation of in vitro-produced sheep embryos: effects of different protocols of lipid reduction. Theriogenology, 2015, 84(1): 118–126
CrossRef Pubmed Google scholar
[51]
Pezhman M, Hosseini S M, Ostadhosseini S, Rouhollahi Varnosfaderani S, Sefid F, Nasr-Esfahani M H. Cathepsin B inhibitor improves developmental competency and cryo-tolerance of in vitro ovine embryos. BMC Developmental Biology, 2017, 17(1): 10
CrossRef Pubmed Google scholar
[52]
Sefid F, Ostadhosseini S, Hosseini S M, Ghazvini Zadegan F, Pezhman M, Nasr Esfahani M H. Vitamin K2 improves developmental competency and cryo-tolerance of in vitro derived ovine blastocyst. Cryobiology, 2017, 77: 34–40
CrossRef Pubmed Google scholar
[53]
Polge C, Willadsen S M. Freezing eggs and embryos of farm animals. Cryobiology, 1978, 15(3): 370–373
CrossRef Pubmed Google scholar
[54]
Dobrinsky J R, Nagashima H, Pursel V G, Long C R, Johnson L A. Cryopreservation of swine embryos with reduced lipid content. Theriogenology, 1999, 51(1): 164–164
CrossRef Google scholar
[55]
Nagashima H, Kashiwazaki N, Ashman R, Grupen C, Seamark R F, Nottle M. Recent advances in cryopreservation of porcine embryos. Theriogenology, 1994, 41(1): 113–118
CrossRef Google scholar
[56]
Men H, Agca Y, Riley L K, Critser J K. Improved survival of vitrified porcine embryos after partial delipation through chemically stimulated lipolysis and inhibition of apoptosis. Theriogenology, 2006, 66(8): 2008–2016
CrossRef Pubmed Google scholar
[57]
Mullen S F, Fahy G M. A chronologic review of mature oocyte vitrification research in cattle, pigs, and sheep. Theriogenology, 2012, 78(8): 1709–1719
CrossRef Pubmed Google scholar
[58]
Men H, Zhao C, Si W, Murphy C N, Spate L, Liu Y, Walters E M, Samuel M S, Prather R S, Critser J K. Birth of piglets from in vitro-produced, zona-intact porcine embryos vitrified in a closed system. Theriogenology, 2011, 76(2): 280–289
CrossRef Pubmed Google scholar
[59]
Kamoshita M, Kato T, Fujiwara K, Namiki T, Matsumura K, Hyon S H, Ito J, Kashiwazaki N. Successful vitrification of pronuclear-stage pig embryos with a novel cryoprotective agent, carboxylated ε-poly-L-lysine. PLoS One, 2017, 12(4): e0176711
CrossRef Pubmed Google scholar
[60]
Mito T, Yoshioka K, Noguchi M, Yamashita S, Misumi K, Hoshi T, Hoshi H. Birth of piglets from in vitro-produced porcine blastocysts vitrified and warmed in a chemically defined medium. Theriogenology, 2015, 84(8): 1314–1320
CrossRef Pubmed Google scholar
[61]
Toner M, Cravalho E G, Karel M. Thermodynamics and kinetics of intracellular ice formation during freezing of biological cells. Journal of Applied Physics, 1990, 67(3): 1582–1593
CrossRef Google scholar
[62]
Gook D A, Osborn S M, Johnston W I H. Cryopreservation of mouse and human oocytes using 1,2-propanediol and the configuration of the meiotic spindle. Human Reproduction, 1993, 8(7): 1101–1109
CrossRef Pubmed Google scholar
[63]
Larman M G, Sheehan C B, Gardner D K. Calcium-free vitrification reduces cryoprotectant-induced zona pellucida hardening and increases fertilization rates in mouse oocytes. Reproduction, 2006, 131(1): 53–61
CrossRef Pubmed Google scholar
[64]
Ruffing N A, Steponkus P L, Pitt R E, Parks J E. Osmometric behavior, hydraulic conductivity, and incidence of intracellular ice formation in bovine oocytes at different developmental stages. Cryobiology, 1993, 30(6): 562–580
CrossRef Pubmed Google scholar
[65]
Genicot G, Leroy J L, Soom A V, Donnay I. The use of a fluorescent dye, Nile red, to evaluate the lipid content of single mammalian oocytes. Theriogenology, 2005, 63(4): 1181–1194
CrossRef Pubmed Google scholar
[66]
Wu G, Jia B, Mo X, Liu C, Fu X, Zhu S, Hou Y. Nuclear maturation and embryo development of porcine oocytes vitrified by cryotop: effect of different stages of in vitro maturation. Cryobiology, 2013, 67(1): 95–101
CrossRef Pubmed Google scholar
[67]
Khosravi-Farsani S, Sobhani A, Amidi F, Mahmoudi R. Mouse oocyte vitrification: the effects of two methods on maturing germinal vesicle breakdown oocytes. Journal of Assisted Reproduction and Genetics, 2010, 27(5): 233–238
CrossRef Pubmed Google scholar
[68]
Isachenko E F, Ostashko F I, Isachenko V V. Culture of bull semen in heat-inactivated and non-inactivated bovine estrual serum. Theriogenology, 1992, 37(1): 226–226
CrossRef Google scholar
[69]
Fuku E, Kojima T, Shioya Y, Marcus G J, Downey B R. In vitro fertilization and development of frozen-thawed bovine oocytes. Cryobiology, 1992, 29(4): 485–492
CrossRef Pubmed Google scholar
[71]
Hou Y P, Dai Y P, Zhu S E, Zhu H B, Wu T Y, Gong G C, Wang H P, Wang L L, Liu Y, Li R, Wan R, Li N. Bovine oocytes vitrified by the open pulled straw method and used for somatic cell cloning supported development to term. Theriogenology, 2005, 64(6): 1381–1391
CrossRef Pubmed Google scholar
[72]
Checura C M, Seidel G E Jr. Effect of macromolecules in solutions for vitrification of mature bovine oocytes. Theriogenology, 2007, 67(5): 919–930
CrossRef Pubmed Google scholar
[73]
Prentice J R, Singh J, Dochi O, Anzar M. Factors affecting nuclear maturation, cleavage and embryo development of vitrified bovine cumulus-oocyte complexes. Theriogenology, 2011, 75(4): 602–609
CrossRef Pubmed Google scholar
[74]
Boonkusol D, Faisaikarm T, Dinnyes A, Kitiyanant Y. Effects of vitrification procedures on subsequent development and ultrastructure of in vitro-matured swamp buffalo (Bubalus bubalis) oocytes. Reproduction, Fertility, and Development, 2007, 19(2): 383–391
CrossRef Pubmed Google scholar
[75]
Chasombat J, Nagai T, Parnpai R, Vongpralub T. Pretreatment of in vitro matured bovine oocytes with docetaxel before vitrification: effects on cytoskeleton integrity and developmental ability after warming. Cryobiology, 2015, 71(2): 216–223
CrossRef Pubmed Google scholar
[76]
Matos J E, Marques C C, Moura T F, Baptista M C, Horta A E, Soveral G, Pereira R M. Conjugated linoleic acid improves oocyte cryosurvival through modulation of the cryoprotectants influx rate. Reproductive Biology and Endocrinology, 2015, 13(1): 60
CrossRef Pubmed Google scholar
[77]
Chankitisakul V, Somfai T, Inaba Y, Techakumphu M, Nagai T. Supplementation of maturation medium with L-carnitine improves cryo-tolerance of bovine in vitro matured oocytes. Theriogenology, 2013, 79(4): 590–598
CrossRef Pubmed Google scholar
[78]
Hara H, Yamane I, Noto I, Kagawa N, Kuwayama M, Hirabayashi M, Hochi S. Microtubule assembly and in vitro development of bovine oocytes with increased intracellular glutathione level prior to vitrification and in vitro fertilization. Zygote, 2014, 22(4): 476–482
CrossRef Pubmed Google scholar
[79]
Ezoe K, Yabuuchi A, Tani T, Mori C, Miki T, Takayama Y, Beyhan Z, Kato Y, Okuno T, Kobayashi T, Kato K. Developmental competence of vitrified-warmed bovine oocytes at the germinal-vesicle stage is improved by cyclic adenosine monophosphate modulators during in vitro maturation. PLoS One, 2015, 10(5): e0126801
CrossRef Pubmed Google scholar
[80]
Arcarons N, Morató R, Vendrell M, Yeste M, López-Bejar M, Rajapaksha K, Anzar M, Mogas T. Cholesterol added prior to vitrification on the cryotolerance of immature and in vitro matured bovine oocytes. PLoS One, 2017, 12(9): e0184714
CrossRef Pubmed Google scholar
[81]
Ruiz-Conca M, Vendrell M, Sabés-Alsina M, Mogas T, Lopez-Bejar M. Coenzyme Q10 supplementation during in vitro maturation of bovine oocytes (Bos taurus) helps to preserve oocyte integrity after vitrification. Reproduction in Domestic Animals, 2017, 52(S4): 52–54
CrossRef Pubmed Google scholar
[82]
Wang N, Hao H S, Li C Y, Zhao Y H, Wang H Y, Yan C L, Du W H, Wang D, Liu Y, Pang Y W, Zhu H B, Zhao X M. Calcium ion regulation by BAPTA-AM and ruthenium red improved the fertilisation capacity and developmental ability of vitrified bovine oocytes. Scientific Reports, 2017, 7(1): 10652
CrossRef Pubmed Google scholar
[83]
Guo X F, Yu X L, Zhang F, Wu H, Pei X Z, Li X X, Li Y H. Effect of liquid helium vitrification on cytoskeleton of immature cattle oocytes. Animal Reproduction Science, 2017, 187: 91–99
CrossRef Pubmed Google scholar
[84]
Moawad A R, Zhu J, Choi I, Amarnath D, Chen W, Campbell K H. Production of good-quality blastocyst embryos following IVF of ovine oocytes vitrified at the germinal vesicle stage using a cryoloop. Reproduction, Fertility, and Development, 2013, 25(8): 1204–1215
CrossRef Pubmed Google scholar
[85]
Rao B S, Mahesh Y U, Charan K V, Suman K, Sekhar N, Shivaji S. Effect of vitrification on meiotic maturation and expression of genes in immature goat cumulus oocyte complexes. Cryobiology, 2012, 64(3): 176–184
CrossRef Pubmed Google scholar
[86]
Begin I, Bhatia B, Baldassarre H, Dinnyes A, Keefer C L. Cryopreservation of goat oocytes and in vivo derived 2- to 4-cell embryos using the cryoloop (CLV) and solid-surface vitrification (SSV) methods. Theriogenology, 2003, 59(8): 1839–1850
CrossRef Pubmed Google scholar
[87]
Succu S, Leoni G G, Bebbere D, Berlinguer F, Mossa F, Bogliolo L, Madeddu M, Ledda S, Naitana S. Vitrification devices affect structural and molecular status of in vitro matured ovine oocytes. Molecular Reproduction and Development, 2007, 74(10): 1337–1344
CrossRef Pubmed Google scholar
[88]
Ebrahimi B, Valojerdi M R, Eftekhari-Yazdi P, Baharvand H. In vitro maturation, apoptotic gene expression and incidence of numerical chromosomal abnormalities following cryotop vitrification of sheep cumulus-oocyte complexes. Journal of Assisted Reproduction and Genetics, 2010, 27(5): 239–246
CrossRef Pubmed Google scholar
[89]
Quan G B, Wu G Q, Wang Y J, Ma Y, Lv C R, Hong Q H. Meiotic maturation and developmental capability of ovine oocytes at germinal vesicle stage following vitrification using different cryodevices. Cryobiology, 2016, 72(1): 33–40
CrossRef Pubmed Google scholar
[90]
Naderi M M, Borjian Boroujeni S, Sarvari A, Heidari B, Akhondi M M, Zarnani A H, Shirazi A. The effect of media supplementation with angiotensin on developmental competence of ovine embryos derived from vitrified-warmed oocytes. Avicenna Journal of Medical Biotechnology, 2016, 8(3): 139–144
Pubmed
[91]
Zhang X, Trokoudes K M, Pavlides C. Vitrification of biopsied embryos at cleavage, morula and blastocyst stage. Reproductive Biomedicine Online, 2009, 19(4): 526–531
CrossRef Pubmed Google scholar
[92]
Silvestre M A, Yániz J, Salvador I, Santolaria P, López-Gatius F. Vitrification of pre-pubertal ovine cumulus-oocyte complexes: effect of cytochalasin B pre-treatment. Animal Reproduction Science, 2006, 93(1–2): 176–182
CrossRef Pubmed Google scholar
[93]
Asgari V, Hosseini S M, Ostadhosseini S, Hajian M, Azhdari Z T, Mosaie M, Nasr-Esfahani M H. Specific activation requirements of in vitro-matured sheep oocytes following vitrification-warming. Molecular Reproduction and Development, 2012, 79(7): 434–444
CrossRef Pubmed Google scholar
[94]
Somfai T, Yoshioka K, Tanihara F, Kaneko H, Noguchi J, Kashiwazaki N, Nagai T, Kikuchi K. Generation of live piglets from cryopreserved oocytes for the first time using a defined system for in vitro embryo production. PLoS One, 2014, 9(5): e97731
CrossRef Pubmed Google scholar
[95]
Gajda B, Skrzypczak-Zielińska M, Gawrońska B, Słomski R, Smorąg Z. Successful production of piglets derived from mature oocytes vitrified using OPS method. Cryo Letters, 2015, 36(1): 8–18
Pubmed
[96]
Fujihira T, Nagai H, Fukui Y. Relationship between equilibration times and the presence of cumulus cells, and effect of taxol treatment for vitrification of in vitro matured porcine oocytes. Cryobiology, 2005, 51(3): 339–343
CrossRef Pubmed Google scholar
[97]
Liu Y, Du Y, Lin L, Li J, Kragh P M, Kuwayama M, Bolund L, Yang H, Vajta G. Comparison of efficiency of open pulled straw (OPS) and Cryotop vitrification for cryopreservation of in vitro matured pig oocytes. Cryo Letters, 2008, 29(4): 315–320
Pubmed
[98]
Somfai T, Nakai M, Tanihara F, Noguchi J, Kaneko H, Kashiwazaki N, Egerszegi I, Nagai T, Kikuchi K. Comparison of ethylene glycol and propylene glycol for the vitrification of immature porcine oocytes. Journal of Reproduction and Development, 2013, 59(4): 378–384
CrossRef Pubmed Google scholar
[99]
Nohalez A, Martinez C A, Gil M A, Almiñana C, Roca J, Martinez E A, Cuello C. Effects of two combinations of cryoprotectants on the in vitro developmental capacity of vitrified immature porcine oocytes. Theriogenology, 2015, 84(4): 545–552
CrossRef Pubmed Google scholar
[100]
Huang J, Li Q, Zhao R, Li W, Han Z, Chen X, Xiao B, Wu S, Jiang Z, Hu J, Liu L. Effect of sugars on maturation rate of vitrified-thawed immature porcine oocytes. Animal Reproduction Science, 2008, 106(1–2): 25–35
CrossRef Pubmed Google scholar
[101]
Shi W Q, Zhu S E, Zhang D, Wang W H, Tang G L, Hou Y P, Tian S J. Improved development by Taxol pretreatment after vitrification of in vitro matured porcine oocytes. Reproduction, 2006, 131(4): 795–804
CrossRef Pubmed Google scholar
[102]
Fu X W, Shi W Q, Zhang Q J, Zhao X M, Yan C L, Hou Y P, Zhou G B, Fan Z Q, Suo L, Wusiman A, Wang Y P, Zhu S E. Positive effects of Taxol pretreatment on morphology, distribution and ultrastructure of mitochondria and lipid droplets in vitrification of in vitro matured porcine oocytes. Animal Reproduction Science, 2009, 115(1–4): 158–168
CrossRef Pubmed Google scholar
[103]
Ogawa B, Ueno S, Nakayama N, Matsunari H, Nakano K, Fujiwara T, Ikezawa Y, Nagashima H. Developmental ability of porcine in vitro matured oocytes at the meiosis II stage after vitrification. Journal of Reproduction and Development, 2010, 56(3): 356–361
CrossRef Pubmed Google scholar
[104]
Fu X W, Wu G Q, Li J J, Hou Y P, Zhou G B, Lun-Suo , Wang Y P, Zhu S E. Positive effects of Forskolin (stimulator of lipolysis) treatment on cryosurvival of in vitro matured porcine oocytes. Theriogenology, 2011, 75(2): 268–275
CrossRef Pubmed Google scholar
[105]
de Matos D G, Gasparrini B, Pasqualini S R, Thompson J G. Effect of glutathione synthesis stimulation during in vitro maturation of ovine oocytes on embryo development and intracellular peroxide content. Theriogenology, 2002, 57(5): 1443–1451
CrossRef Pubmed Google scholar
[106]
Reis A, Rooke J A, McCallum G J, Staines M E, Ewen M, Lomax M A, McEvoy T G. Consequences of exposure to serum, with or without vitamin E supplementation, in terms of the fatty acid content and viability of bovine blastocysts produced in vitro. Reproduction, Fertility, and Development, 2003, 15(5): 275–284
CrossRef Pubmed Google scholar
[107]
Feugang J M, de Roover R, Moens A, Léonard S, Dessy F, Donnay I. Addition of beta-mercaptoethanol or Trolox at the morula/blastocyst stage improves the quality of bovine blastocysts and prevents induction of apoptosis and degeneration by prooxidant agents. Theriogenology, 2004, 61(1): 71–90
CrossRef Pubmed Google scholar
[108]
Giaretta E, Spinaci M, Bucci D, Tamanini C, Galeati G. Effects of resveratrol on vitrified porcine oocytes. Oxidative Medicine and Cellular Longevity, 2013, 2013(7): 920257
Pubmed
[109]
Santos E, Appeltant R, Dang-Nguyen T Q, Noguchi J, Kaneko H, Kikuchi K, Somfai T. The effect of resveratrol on the developmental competence of porcine oocytes vitrified at germinal vesicle stage. Reproduction in Domestic Animals, 2018,53(2): 304–312
Pubmed
[110]
Gupta M K, Uhm S J, Lee H T. Effect of vitrification and beta-mercaptoethanol on reactive oxygen species activity and in vitro development of oocytes vitrified before or after in vitro fertilization. Fertility and Sterility, 2010, 93(8): 2602–2607
CrossRef Pubmed Google scholar
[111]
Nakagawa S, Yoneda A, Hayakawa K, Watanabe T. Improvement in the in vitro maturation rate of porcine oocytes vitrified at the germinal vesicle stage by treatment with a mitochondrial permeability transition inhibitor. Cryobiology, 2008, 57(3): 269–275
CrossRef Pubmed Google scholar
[112]
Kopeika J, Thornhill A, Khalaf Y. The effect of cryopreservation on the genome of gametes and embryos: principles of cryobiology and critical appraisal of the evidence. Human Reproduction Update, 2015, 21(2): 209–227
CrossRef Pubmed Google scholar
[113]
Ishijima S, Iwamoto T, Nozawa S, Matsushita K. Motor apparatus in human spermatozoa that lack central pair microtubules. Molecular Reproduction and Development, 2002, 63(4): 459–463
CrossRef Pubmed Google scholar
[114]
Johnson L A, Weitze K F, Fiser P, Maxwell W M. Storage of boar semen. Animal Reproduction Science, 2000, 62(1–3): 143–172
CrossRef Pubmed Google scholar
[115]
Bailey J L, Bilodeau J F, Cormier N. Semen cryopreservation in domestic animals: a damaging and capacitating phenomenon. Journal of Andrology, 2000, 21(1): 1–7
Pubmed
[116]
Huang S Y, Kuo Y H, Lee W C, Tsou H L, Lee Y P, Chang H L, Wu J J, Yang P C. Substantial decrease of heat-shock protein 90 precedes the decline of sperm motility during cooling of boar spermatozoa. Theriogenology, 1999, 51(5): 1007–1016
CrossRef Pubmed Google scholar
[117]
Zeng W X, Terada T. Protection of boar spermatozoa from cold shock damage by 2-hydroxypropyl-beta-cyclodextrin. Theriogenology, 2001, 55(2): 615–627
CrossRef Pubmed Google scholar
[118]
Mazur P, Leibo S P, Seidel G E Jr. Cryopreservation of the germplasm of animals used in biological and medical research: importance, impact, status, and future directions. Biology of Reproduction, 2008, 78(1): 2–12
CrossRef Pubmed Google scholar
[119]
Salisbury G W, Fuller H K, Willett E L. Preservation of bovine spermatozoa in yolk-citrate diluent and field results from its use. Journal of Dairy Science, 1941, 24(11): 905–910
CrossRef Google scholar
[120]
Davis I S, Bratton R W, Foote R H. Livability of bovine spermatozoa at 5 C in tris-buffered and citrate-buffered yolk-glycerol extenders. Journal of Dairy Science, 1963, 46(1): 57–60
CrossRef Google scholar
[121]
Steinbach J, Foote R H. Effect of catalase and anaerobic conditions upon the post-thawing survival of bovine spermatozoa frozen in citrate- and tris-buffered yolk extenders 1. Journal of Dairy Science, 1964, 47(7): 812–815
CrossRef Google scholar
[122]
Polge C, Smith A U, Parkes A S. Revival of spermatozoa after vitrification and dehydration at low temperatures. Nature, 1949, 164(4172): 666
CrossRef Pubmed Google scholar
[123]
Zeng C, Tang K, He L, Peng W, Ding L, Fang D, Zhang Y. Effects of glycerol on apoptotic signaling pathways during boar spermatozoa cryopreservation. Cryobiology, 2014, 68(3): 395–404
CrossRef Pubmed Google scholar
[124]
De Leeuw F E, De Leeuw A M, Den Daas J H, Colenbrander B, Verkleij A J. Effects of various cryoprotective agents and membrane-stabilizing compounds on bull sperm membrane integrity after cooling and freezing. Cryobiology, 1993, 30(1): 32–44
CrossRef Pubmed Google scholar
[125]
Woelders H. Fundamentals and recent development in cryopreservation of bull and boar semen. Veterinary Quarterly, 1997, 19(3): 135–138
CrossRef Pubmed Google scholar
[126]
Moussa M, Marinet V, Trimeche A, Tainturier D, Anton M. Low density lipoproteins extracted from hen egg yolk by an easy method: cryoprotective effect on frozen-thawed bull semen. Theriogenology, 2002, 57(6): 1695–1706
CrossRef Pubmed Google scholar
[127]
Amirat L, Tainturier D, Jeanneau L, Thorin C, Gérard O, Courtens J L, Anton M. Bull semen in vitro fertility after cryopreservation using egg yolk LDL: a comparison with Optidyl, a commercial egg yolk extender. Theriogenology, 2004, 61(5): 895–907
CrossRef Pubmed Google scholar
[128]
Zhao X L, Li Y K, Cao S J, Hu J H, Wang W H, Hao R J, Gui L S, Zan L S. Protective effects of ascorbic acid and vitamin E on antioxidant enzyme activity of freeze-thawed semen of Qinchuan bulls. Genetics & Molecular Research, 2015, 14(1): 2572–2581
CrossRef Pubmed Google scholar
[129]
Ashrafi I, Kohram H, Ardabili F F. Antioxidative effects of melatonin on kinetics, microscopic and oxidative parameters of cryopreserved bull spermatozoa. Animal Reproduction Science, 2013, 139(1–4): 25–30
CrossRef Pubmed Google scholar
[130]
Martín-Hidalgo D, Barón F J, Bragado M J, Carmona P, Robina A, García-Marín L J, Gil M C. The effect of melatonin on the quality of extended boar semen after long-term storage at 17 °C. Theriogenology, 2011, 75(8): 1550–1560
CrossRef Pubmed Google scholar
[131]
Bernstein A D, Petropavlovsky V V. Effect of non-electrolytes on viability of spermatozoa. Biulleten’ Eksperimental’Noi Biologii i Meditsiny, 2013, 3: 41–43 (in Russian)
[132]
Smirnov I V. Preservation of domestic animals’ semen by deep cooling. Sov Zootech, 1949, 4: 63–65
[133]
Smirnov I V. Deep freezing of semen of farm animals. Journal Obtsej Biologii, 1950, 11(3): 185
[134]
Youngquist R S, Threlfall W R. Current therapy in large animal theriogenology. 2nd ed. St. Louis, Mo.: Saunders Elsevier, 2007, 1061
[135]
Purdy P H. The post-thaw quality of ram sperm held for 0 to 48 h at 5 degrees C prior to cryopreservation. Animal Reproduction Science, 2006, 93(1–2): 114–123
CrossRef Pubmed Google scholar
[136]
Mackepladze I B, Gugusvili K F, Bregadze M A, Haratisvili G. Storage and use of frozen bull and ram semen. Zhivotnovodstvo, 1960: 77–78
[137]
Feredean T, Bragaru F L. Studies on conservation of ram semen by freezing to -79 °C. Lucr Stiint Inst Cercet Zooteh, 1964, 21: 357–368 (in Rumanian)
[138]
Aboagla E M, Terada T. Trehalose-enhanced fluidity of the goat sperm membrane and its protection during freezing. Biology of Reproduction, 2003, 69(4): 1245–1250
CrossRef Pubmed Google scholar
[139]
Arando A, Gonzalez A, Delgado J V, Arrebola F A, Perez-Marín C C. Storage temperature and sucrose concentrations affect ram sperm quality after vitrification. Animal Reproduction Science, 2017, 181: 175–185
CrossRef Pubmed Google scholar
[140]
John Morris G, Acton E, Murray B J, Fonseca F. Freezing injury: the special case of the sperm cell. Cryobiology, 2012, 64(2): 71–80
CrossRef Pubmed Google scholar
[141]
Ritar A J, Salamon S. Effects of seminal plasma and of its removal and of egg yolk in the diluent on the survival of fresh and frozen-thawed spermatozoa of the Angora goat. Australian Journal of Biological Sciences, 1982, 35(3): 305–312
Pubmed
[142]
Yang J. The research to protecting effect of frozen semen in sheep semen diluent with supplement of PUFA. Dissertation for the Doctoral Degree. Hohhot: Inner Mongolia Agricultural University, 2006 (in Chinese)
[143]
Pursel V G, Johnson L A. Freezing of boar spermatozoa: fertilizing capacity with concentrated semen and a new thawing procedure. Journal of Animal Science, 1975, 40(1): 99–102
CrossRef Pubmed Google scholar
[144]
Westendorf P, Richter L, Treu H. Zur Tiefgefrierung von Ebersperma. Labor- und Besamungsergebnisse mit dem Hulsenberger Pailletten-Verfahren. Dtw Dtsch Tierarztl Wochenschr, 1975, 82(7): 261–267 (in German)
[145]
Didion B A, Braun G D, Duggan M V. Field fertility of frozen boar semen: a retrospective report comprising over 2600 AI services spanning a four year period. Animal Reproduction Science, 2013, 137(3-4): 189–196
CrossRef Pubmed Google scholar
[146]
Baishya S K, Biswas R K, Kadirvel G, Deka B C, Kumar S, Sinha S, Dutta D J, Saikia G K. Effect of conventional and controlled freezing method on the post thaw characteristics of boar spermatozoa. Animal Reproduction Science, 2014, 149(3-4): 231–237
CrossRef Pubmed Google scholar
[147]
Polge C, Salamon S, Wilmut I. Fertilizing capacity of frozen boar semen following surgical insemination. Veterinary Record, 1970, 87(15): 424–429
CrossRef Pubmed Google scholar
[148]
Milovanov V K, Baranov F A, Qhil’Tsova L S, Oivadis R N. Developing methods for freezing boar semen. Zhivotnovodstvo, 1974
[149]
Richter L, Romeny E, Weitze K F, Zimmermann F. Zur Tiefgefrierung von Ebersperma. VII. Weitere Labor- und Besamungsversuche mit dem Verdunner Hulsenberg VIII. Dtw Dtsch Tierarztl Wochenschr, 1975, 82(4): 155–162 (in German)
[150]
Shapiev I S, Moroz L G, Korban N V. Problem of technology of freezing boar semen. Zhivotnovodstvo, 1976
[151]
Park H K, Kim S H, Kim K J, Choi K M. Studies on the frozen boar semen. I. Studies on the development of diluents for freezing of boar semen. Han'guk Ch'uksan Hakhoe chi (Korean journal of animal sciences), 1977
[152]
Wang P, Wang Y F, Wang C W, Bu S H, Hu J H, Li Q W, Pang W J, Yang G S. Effects of low-density lipoproteins extracted from different avian yolks on boar spermatozoa quality following freezing-thawing. Zygote, 2014, 22(2): 175–181
CrossRef Pubmed Google scholar
[153]
Pinho R O, Lima D M, Shiomi H H, Siqueira J B, Silva H T, Lopes P S, Guimarães S E, Guimarães J D. Effect of different cryo-protectants on the viability of frozen/thawed semen from boars of the Piau breed. Animal Reproduction Science, 2014, 146(3–4): 187–192
CrossRef Pubmed Google scholar
[154]
Peña F J, Johannisson A, Wallgren M, Rodriguez-Martinez H. Effect of hyaluronan supplementation on boar sperm motility and membrane lipid architecture status after cryopreservation. Theriogenology, 2004, 61(1): 63–70
CrossRef Pubmed Google scholar
[155]
Lee Y S, Lee S, Lee S H, Yang B K, Park C K. Effect of cholesterol-loaded-cyclodextrin on sperm viability and acrosome reaction in boar semen cryopreservation. Animal Reproduction Science, 2015, 159: 124–130
CrossRef Pubmed Google scholar
[156]
Trzcińska M, Bryła M, Gajda B, Gogol P. Fertility of boar semen cryopreserved in extender supplemented with butylated hydroxytoluene. Theriogenology, 2015, 83(3): 307–313
CrossRef Pubmed Google scholar
[157]
Tomas C, Gómez-Fernandez J, Gómez-Izquierdo E, Gómez-Fidalgo E, Sánchez-Sánchez R, González-Bulnes A, de Mecado E. Effect of the pH pre-adjustment in the freezing extender on post-thaw boar sperm quality. Cryo Letters, 2015, 36(2): 97–103
Pubmed
[160]
Tian S J, Yan C L, Yang H X, Zhou G B, Yang Z Q, Zhu S E. Vitrification solution containing DMSO and EG can induce parthenogenetic activation of in vitro matured ovine oocytes and decrease sperm penetration. Animal Reproduction Science, 2007, 101(3–4): 365–371
CrossRef Pubmed Google scholar
[161]
Succu S, Bebbere D, Bogliolo L, Ariu F, Fois S, Leoni G G, Berlinguer F, Naitana S, Ledda S. Vitrification of in vitro matured ovine oocytes affects in vitro pre-implantation development and mRNA abundance. Molecular Reproduction and Development, 2008, 75(3): 538–546
CrossRef Pubmed Google scholar
[163]
Grossfeld R, Sieg B, Struckmann C, Frenzel A, Maxwell W M, Rath D. New aspects of boar semen freezing strategies. Theriogenology, 2008, 70(8): 1225–1233
CrossRef Pubmed Google scholar
[164]
Yeste M. Sperm cryopreservation update: cryodamage, markers, and factors affecting the sperm freezability in pigs. Theriogenology, 2016, 85(1): 47–64
CrossRef Pubmed Google scholar

Acknowledgements

This study was supported by National Natural Science Foundation of China (31101714) and National Transgenic Creature Breeding Grand Project (2016ZX08008-003) .

Compliance with ethics guidelines

Zhengyuan Huang, Lei Gao, Yunpeng Hou, Shien Zhu, and Xiangwei Fu declare that they have no conflicts of interest or financial conflicts to disclose.
This article is a review and does not contain any studies with human or animal subjects performed by any of the authors.

RIGHTS & PERMISSIONS

The Author(s) 2018. Published by Higher Education Press. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0)
AI Summary AI Mindmap
PDF(695 KB)

Accesses

Citations

Detail

Sections
Recommended

/