Plant-root microbiota interactions in nutrient utilization

Haoran XU, Weidong LIU, Yuhang HE, Di ZOU, Jinghang ZHOU, Jingying ZHANG, Yang BAI

PDF(1993 KB)
PDF(1993 KB)
Front. Agr. Sci. Eng. ›› 2025, Vol. 12 ›› Issue (1) : 16-26. DOI: 10.15302/J-FASE-2024595
REVIEW

Plant-root microbiota interactions in nutrient utilization

Author information +
History +

Highlights

● Soil nutrient conditions shape the root microbiota composition.

● Plant nutrient-utilizing genes drive the assembly of root microbiota.

● Root microbiota enhances nutrient availability for plants.

● Root microbiota modulates plant gene expression to promote nutrient utilization efficiency through phytohormone.

● Microbiome genome- and microbiome-wide association studies offer novel approaches to deeply explore the interactions between plants and their root microbiota.

● Utilizing root microbiota is a promising strategy to improve crop nutrient utilization in agriculture.

Abstract

Natural plant roots enrich a diverse array of soil microbes, collectively known as the root microbiota. This microbiota interacts synergistically with plants, modulating various physiological processes, including nutrient utilization, which influences plant growth and health. Environmental nutrient conditions and plant nutrient-related genes have been reported to regulate the composition of the root microbiota. Innovative analytical methods, such as microbiome genome- and microbiome-wide association studies, have advanced understanding of the relationships between plants and root microbiota. These methods systematically reveal the interactions between root microbiota and plant nutrient utilization, providing a theoretical foundation for applying root microbiota in agriculture.

Graphical abstract

Keywords

Root microbiota / plant gene / interaction / nutrient utilization

Cite this article

Download citation ▾
Haoran XU, Weidong LIU, Yuhang HE, Di ZOU, Jinghang ZHOU, Jingying ZHANG, Yang BAI. Plant-root microbiota interactions in nutrient utilization. Front. Agr. Sci. Eng., 2025, 12(1): 16‒26 https://doi.org/10.15302/J-FASE-2024595

References

[1]
Zhang J, Zhang N, Liu Y X, Zhang X, Hu B, Qin Y, Xu H, Wang H, Guo X, Qian J, Wang W, Zhang P, Jin T, Chu C, Bai Y. Root microbiota shift in rice correlates with resident time in the field and developmental stage. Science China. Life Sciences, 2018, 61(6): 613–621
CrossRef Google scholar
[2]
Berendsen R L, Pieterse C M, Bakker P A. The rhizosphere microbiome and plant health. Trends in Plant Science, 2012, 17(8): 478–486
CrossRef Google scholar
[3]
Bai B, Liu W, Qiu X, Zhang J, Zhang J, Bai Y. The root microbiome: community assembly and its contributions to plant fitness. Journal of Integrative Plant Biology, 2022, 64(2): 230–243
CrossRef Google scholar
[4]
Tang J, Wu D, Li X, Wang L, Xu L, Zhang Y, Xu F, Liu H, Xie Q, Dai S, Coleman-Derr D, Zhu S, Yu F. Plant immunity suppression via PHR1-RALF-FERONIA shapes the root microbiome to alleviate phosphate starvation. EMBO Journal, 2022, 41(6): e109102
CrossRef Google scholar
[5]
Hiruma K, Gerlach N, Sacristán S, Nakano R T, Hacquard S, Kracher B, Neumann U, Ramírez D, Bucher M, O’connell R J, Schulze-Lefert P. Root endophyte Colletotrichum tofieldiae confers plant fitness benefits that are phosphate status dependent. Cell, 2016, 165(2): 464–474
CrossRef Google scholar
[6]
Harbort C J, Hashimoto M, Inoue H, Niu Y, Guan R, Rombolà A D, Kopriva S, Voges M J, Sattely E S, Garrido-Oter R, Schulze-Lefert P. Root-secreted coumarins and the microbiota interact to improve iron nutrition in Arabidopsis. Cell Host & Microbe, 2020, 28(6): 825–837.E6
[7]
Salas-González I, Reyt G, Flis P, Custódio V, Gopaulchan D, Bakhoum N, Dew T P, Suresh K, Franke R B, Dangl J L, Salt D E, Castrillo G. Coordination between microbiota and root endodermis supports plant mineral nutrient homeostasis. Science, 2021, 371(6525): eabd0695
CrossRef Google scholar
[8]
Yan D, Tajima H, Cline L C, Fong R Y, Ottaviani J I, Shapiro H Y, Blumwald E. Genetic modification of flavone biosynthesis in rice enhances biofilm formation of soil diazotrophic bacteria and biological nitrogen fixation. Plant Biotechnology Journal, 2022, 20(11): 2135–2148
CrossRef Google scholar
[9]
Liu W, Xu H, Zhou J, He Y, Zou D, Bai Y, Zhang J. The plant microbiota: from theoretical advances to applications. Fundamental Research, 2024 [Published Online] doi:10.1016/j.fmre.2024.04.016
[10]
Vidal E A, Alvarez J M, Araus V, Riveras E, Brooks M D, Krouk G, Ruffel S, Lejay L, Crawford N M, Coruzzi G M, Gutiérrez R A. Nitrate in 2020: thirty years from transport to signaling networks. Plant Cell, 2020, 32(7): 2094–2119
CrossRef Google scholar
[11]
Zhang J, Liu Y X, Zhang N, Hu B, Jin T, Xu H, Qin Y, Yan P, Zhang X, Guo X, Hui J, Cao S, Wang X, Wang C, Wang H, Qu B, Fan G, Yuan L, Garrido-Oter R, Chu C, Bai Y. NRT1. 1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nature Biotechnology, 2019, 37(6): 676–684
CrossRef Google scholar
[12]
Naamala J, Smith D L. Relevance of plant growth promoting microorganisms and their derived compounds, in the face of climate change. Agronomy, 2020, 10(8): 1179–1205
CrossRef Google scholar
[13]
Timofeeva A M, Galyamova M R, Sedykh S E. Plant growth-promoting bacteria of soil: designing of consortia beneficial for crop production. Microorganisms, 2023, 11(12): 2864
CrossRef Google scholar
[14]
Gao X, Guo H, Zhang Q, Guo H, Zhang L, Zhang C, Gou Z, Liu Y, Wei J, Chen A, Chu Z, Zeng F. Arbuscular mycorrhizal fungi (AMF) enhanced the growth, yield, fiber quality and phosphorus regulation in upland cotton (Gossypium hirsutum L.). Scientific Reports, 2020, 10(1): 2084
CrossRef Google scholar
[15]
Wang Y, Wang X, Sun S, Jin C, Su J, Wei J, Luo X, Wen J, Wei T, Sahu S K, Zou H, Chen H, Mu Z, Zhang G, Liu X, Xu X, Gram L, Yang H, Wang E, Liu H. GWAS, MWAS and mGWAS provide insights into precision agriculture based on genotype-dependent microbial effects in foxtail millet. Nature Communications, 2022, 13(1): 5913
CrossRef Google scholar
[16]
Bai Y, Müller D B, Srinivas G, Garrido-Oter R, Potthoff E, Rott M, Dombrowski N, Münch P C, Spaepen S, Remus-Emsermann M, Hüttel B, McHardy A C, Vorholt J A, Schulze-Lefert P. Functional overlap of the Arabidopsis leaf and root microbiota. Nature, 2015, 528(7582): 364–369
CrossRef Google scholar
[17]
Wang X, Wang M, Xie X, Guo S, Zhou Y, Zhang X, Yu N, Wang E. An amplification-selection model for quantified rhizosphere microbiota assembly. Science Bulletin, 2020, 65(12): 983–986
CrossRef Google scholar
[18]
Bergelson J, Brachi B, Roux F, Vailleau F. Assessing the potential to harness the microbiome through plant genetics. Current Opinion in Biotechnology, 2021, 70: 167–173
CrossRef Google scholar
[19]
Müller D B, Vogel C, Bai Y, Vorholt J A. The plant microbiota: systems-level insights and perspectives. Annual Review of Genetics, 2016, 50(1): 211–234
CrossRef Google scholar
[20]
Badri D V, Quintana N, El Kassis E G, Kim H K, Choi Y H, Sugiyama A, Verpoorte R, Martinoia E, Manter D K, Vivanco J M. An ABC transporter mutation alters root exudation of phytochemicals that provoke an overhaul of natural soil microbiota. Plant Physiology, 2009, 151(4): 2006–2017
CrossRef Google scholar
[21]
Cardinale M, Ratering S, Sadeghi A, Pokhrel S, Honermeier B, Schnell S. The response of the soil microbiota to long-term mineral and organic nitrogen fertilization is stronger in the bulk soil than in the rhizosphere. Genes, 2020, 11(4): 456
CrossRef Google scholar
[22]
Dong H, Fan S, Sun H, Chen C, Wang A, Jiang L, Ma D. Rhizosphere-associated microbiomes of rice (Oryza sativa L.) under the effect of increased nitrogen fertilization. Frontiers in Microbiology, 2021, 12: 730506
CrossRef Google scholar
[23]
Wang M, Ge A H, Ma X, Wang X, Xie Q, Wang L, Song X, Jiang M, Yang W, Murray J D, Wang Y, Liu H, Cao X, Wang E. Dynamic root microbiome sustains soybean productivity under unbalanced fertilization. Nature Communications, 2024, 15(1): 1668
CrossRef Google scholar
[24]
Campolino M L, De Paula Lana U G, Gomes E A, Coelho A M, De Sousa S M. Phosphate fertilization affects rhizosphere microbiome of maize and sorghum genotypes. Brazilian Journal of Microbiology, 2022, 53(3): 1371–1383
CrossRef Google scholar
[25]
Qiao Y, Hou D, Lin Z, Wei S, Chen J, Li J, Zhao J, Xu K, Lu L, Tian S. Sulfur fertilization and water management ensure phytoremediation coupled with argo-production by mediating rhizosphere microbiota in the Oryza sativa L.—Sedum alfredii Hance rotation system. Journal of Hazardous Materials, 2023, 457: 131686
CrossRef Google scholar
[26]
Wu D, Ma Y, Yang T, Gao G, Wang D, Guo X, Chu H. Phosphorus and zinc are strongly associated with belowground fungal communities in wheat field under long-term fertilization. Microbiology Spectrum, 2022, 10(2): e00110–22
CrossRef Google scholar
[27]
Paul Chowdhury S, Babin D, Sandmann M, Jacquiod S, Sommermann L, Sørensen S J, Fliessbach A, Mäder P, Geistlinger J, Smalla K, Rothballer M, Grosch R. Effect of long-term organic and mineral fertilization strategies on rhizosphere microbiota assemblage and performance of lettuce. Environmental Microbiology, 2019, 21(7): 2426–2439
CrossRef Google scholar
[28]
Hu B, Wang W, Ou S, Tang J, Li H, Che R, Zhang Z, Chai X, Wang H, Wang Y, Liang C, Liu L, Piao Z, Deng Q, Deng K, Xu C, Liang Y, Zhang L, Li L, Chu C. Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies. Nature Genetics, 2015, 47(7): 834–838
CrossRef Google scholar
[29]
Chen M, Feng S, Lv H, Wang Z, Zeng Y, Shao C, Lin W, Zhang Z. OsCIPK2 mediated rice root microorganisms and metabolites to improve plant nitrogen uptake. BMC Plant Biology, 2024, 24(1): 285
CrossRef Google scholar
[30]
Chai X, Wang X, Pi Y, Wu T, Zhang X, Xu X, Han Z, Wang Y. Nitrate transporter MdNRT2.4 interacts with rhizosphere bacteria to enhance nitrate uptake in apple rootstocks. Journal of Experimental Botany, 2022, 73(18): 6490–6504
CrossRef Google scholar
[31]
Bustos R, Castrillo G, Linhares F, Puga M I, Rubio V, Pérez-Pérez J, Solano R, Leyva A, Paz-Ares J. A central regulatory system largely controls transcriptional activation and repression responses to phosphate starvation in Arabidopsis. PLOS Genetics, 2010, 6(9): e1001102
CrossRef Google scholar
[32]
Castrillo G, Teixeira P J P L, Paredes S H, Law T F, De Lorenzo L, Feltcher M E, Finkel O M, Breakfield N W, Mieczkowski P, Jones C D, Paz-Ares J, Dangl J L. Root microbiota drive direct integration of phosphate stress and immunity. Nature, 2017, 543(7646): 513–518
CrossRef Google scholar
[33]
Shi J, Zhao B, Zheng S, Zhang X, Wang X, Dong W, Xie Q, Wang G, Xiao Y, Chen F, Yu N, Wang E. A phosphate starvation response-centered network regulates mycorrhizal symbiosis. Cell, 2021, 184(22): 5527–5540.E18
CrossRef Google scholar
[34]
Loo E P I, Durán P, Pang T Y, Westhoff P, Deng C, Durán C, Lercher M, Garrido-Oter R, Frommer W B. Sugar transporters spatially organize microbiota colonization along the longitudinal root axis of Arabidopsis. Cell Host & Microbe, 2024, 32(4): 543–556.E6
[35]
Yue H, Yue W, Jiao S, Kim H, Lee Y H, Wei G, Song W, Shu D. Plant domestication shapes rhizosphere microbiome assembly and metabolic functions. Microbiome, 2023, 11(1): 70
CrossRef Google scholar
[36]
Kuypers M M, Marchant H K, Kartal B. The microbial nitrogen-cycling network. Nature Reviews. Microbiology, 2018, 16(5): 263–276
CrossRef Google scholar
[37]
Priya H, Dhar D W, Singh R, Kumar S, Dhandapani R, Pandey R, Govindasamy V, Kumar A. Co-cultivation approach to decipher the influence of nitrogen-fixing Cyanobacterium on growth and N uptake in rice crop. Current Microbiology, 2022, 79(2): 53
CrossRef Google scholar
[38]
Hurek T, Reinhold-Hurek B. Azoarcus sp. strain BH72 as a model for nitrogen-fixing grass endophytes. Journal of Biotechnology, 2003, 106(2−3): 169–178
CrossRef Google scholar
[39]
Waller S, Wilder S L, Schueller M J, Housh A B, Scott S, Benoit M, Powell A, Powell G, Ferrieri R A. Examining the effects of the nitrogen environment on growth and N2-fixation of endophytic Herbaspirillum seropedicae in maize seedlings by applying 11C radiotracing. Microorganisms, 2021, 9(8): 1582
CrossRef Google scholar
[40]
Steenhoudt O, Vanderleyden J. Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiology Reviews, 2000, 24(4): 487–506
CrossRef Google scholar
[41]
Zhang L, Zhang M, Huang S, Li L, Gao Q, Wang Y, Zhang S, Huang S, Yuan L, Wen Y, Liu K, Yu X, Li D, Zhang L, Xu X, Wei H, He P, Zhou W, Philippot L, Ai C. A highly conserved core bacterial microbiota with nitrogen-fixation capacity inhabits the xylem sap in maize plants. Nature Communications, 2022, 13(1): 3361
CrossRef Google scholar
[42]
Yu P, He X, Baer M, Beirinckx S, Tian T, Moya Y A, Zhang X, Deichmann M, Frey F P, Bresgen V, Li C, Razavi B S, Schaaf G, von Wirén N, Su Z, Bucher M, Tsuda K, Goormachtig S, Chen X, Hochholdinger F. Plant flavones enrich rhizosphere Oxalobacteraceae to improve maize performance under nitrogen deprivation. Nature Plants, 2021, 7(4): 481–499
CrossRef Google scholar
[43]
Schimel J P, Bennett J. Nitrogen mineralization: challenges of a changing paradigm. Ecology, 2004, 85(3): 591–602
CrossRef Google scholar
[44]
Daims H, Lebedeva E V, Pjevac P, Han P, Herbold C, Albertsen M, Jehmlich N, Palatinszky M, Vierheilig J, Bulaev A, Kirkegaard R H, von Bergen M, Rattei T, Bendinger B, Nielsen P H, Wagner M. Complete nitrification by Nitrospira bacteria. Nature, 2015, 528(7583): 504–509
CrossRef Google scholar
[45]
Geisseler D, Horwath W R, Joergensen R G, Ludwig B. Pathways of nitrogen utilization by soil microorganisms—A review. Soil Biology & Biochemistry, 2010, 42(12): 2058–2067
CrossRef Google scholar
[46]
Allison S D, Vitousek P M. Responses of extracellular enzymes to simple and complex nutrient inputs. Soil Biology & Biochemistry, 2005, 37(5): 937–944
CrossRef Google scholar
[47]
McGrath J W, Chin J P, Quinn J P. Organophosphonates revealed: new insights into the microbial metabolism of ancient molecules. Nature Reviews. Microbiology, 2013, 11(6): 412–419
CrossRef Google scholar
[48]
Richardson A E, Barea J M, Mcneill A M, Prigent-Combaret C. Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant and Soil, 2009, 321(1−2): 305–339
CrossRef Google scholar
[49]
Ghosh R, Barman S, Mukherjee R, Mandal N C. Role of phosphate solubilizing Burkholderia spp. for successful colonization and growth promotion of Lycopodium cernuum L.(Lycopodiaceae) in lateritic belt of Birbhum district of West Bengal, India. Microbiological Research, 2016, 183: 80–91
CrossRef Google scholar
[50]
Tang A, Haruna A O, Majid N M A, Jalloh M B. Potential PGPR properties of cellulolytic, nitrogen-fixing, phosphate-solubilizing bacteria in rehabilitated tropical forest soil. Microorganisms, 2020, 8(3): 442–464
CrossRef Google scholar
[51]
Hayat R, Ali S, Amara U, Khalid R, Ahmed I. Soil beneficial bacteria and their role in plant growth promotion: a review. Annals of Microbiology, 2010, 60(4): 579–598
CrossRef Google scholar
[52]
Lidbury I D, Murphy A R, Fraser T D, Bending G D, Jones A M, Moore J D, Goodall A, Tibbett M, Hammond J P, Scanlan D J, Wellington E M H. Identification of extracellular glycerophosphodiesterases in Pseudomonas and their role in soil organic phosphorus remineralisation. Scientific Reports, 2017, 7(1): 2179
CrossRef Google scholar
[53]
Saeid A, Prochownik E, Dobrowolska-Iwanek J. Phosphorus solubilization by Bacillus species. Molecules (Basel, Switzerland), 2018, 23(11): 2897
CrossRef Google scholar
[54]
Zhang F, Hou Y, Zed R, Mauchline T H, Shen J, Zhang F, Jin K. Root exudation of organic acid anions and recruitment of beneficial actinobacteria facilitate phosphorus uptake by maize in compacted silt loam soil. Soil Biology & Biochemistry, 2023, 184: 109074
CrossRef Google scholar
[55]
Almario J, Jeena G, Wunder J, Langen G, Zuccaro A, Coupland G, Bucher M. Root-associated fungal microbiota of nonmycorrhizal Arabis alpina and its contribution to plant phosphorus nutrition. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(44): E9403–E9412
CrossRef Google scholar
[56]
Wang N, Wang T, Chen Y, Wang M, Lu Q, Wang K, Dou Z, Chi Z, Qiu W, Dai J, Niu L, Cui J, Wei Z, Zhang F, Kümmerli R, Zuo Y. Microbiome convergence enables siderophore-secreting-rhizobacteria to improve iron nutrition and yield of peanut intercropped with maize. Nature Communications, 2024, 15(1): 839
CrossRef Google scholar
[57]
Lozano-González J M, Valverde S, Montoya M, Martín M, Rivilla R, Lucena J J, López-Rayo S. Evaluation of siderophores generated by Pseudomonas bacteria and their possible application as Fe biofertilizers. Plants, 2023, 12(23): 4054
CrossRef Google scholar
[58]
Núñez-Cano J, Romera F J, Prieto P, García M J, Sevillano-Caño J, Agustí-Brisach C, Pérez-Vicente R, Ramos J, Lucena C. Effect of the nonpathogenic strain Fusarium oxysporum FO12 on Fe acquisition in rice (Oryza sativa L.) plants. Plants, 2023, 12(17): 3145
CrossRef Google scholar
[59]
Wang C, Li Y, Li M, Zhang K, Ma W, Zheng L, Xu H, Cui B, Liu R, Yang Y, Zhong Y, Liao H. Functional assembly of root-associated microbial consortia improves nutrient efficiency and yield in soybean. Journal of Integrative Plant Biology, 2021, 63(6): 1021–1035
CrossRef Google scholar
[60]
Atzorn R, Crozier A, Wheeler C, Sandberg G. Production of gibberellins and indole-3-acetic acid by Rhizobium phaseoli in relation to nodulation of Phaseolus vulgaris roots. Planta, 1988, 175(4): 532–538
CrossRef Google scholar
[61]
Joo G J, Kim Y M, Kim J T, Rhee I K, Kim J H, Lee I J. Gibberellins-producing rhizobacteria increase endogenous gibberellins content and promote growth of red peppers. Journal of Microbiology, 2005, 43: 510–515
[62]
Lorteau M A, Ferguson B J, Guinel F C. Effects of cytokinin on ethylene production and nodulation in pea (Pisumsativum) cv. Sparkle. Physiologia Plantarum, 2001, 112(3): 421–428
CrossRef Google scholar
[63]
Pantoja-Guerra M, Burkett-Cadena M, Cadena J, Dunlap C A, Ramírez C A. Lysinibacillus spp.: an IAA-producing endospore forming-bacteria that promotes plant growth. Antonie van Leeuwenhoek, 2023, 116(7): 615–630
CrossRef Google scholar
[64]
Dobbelaere S, Vanderleyden J, Okon Y. Plant growth-promoting effects of diazotrophs in the rhizosphere. Critical Reviews in Plant Sciences, 2003, 22(2): 107–149
CrossRef Google scholar
[65]
Zhang P, Jin T, Kumar Sahu S, Xu J, Shi Q, Liu H, Wang Y. The distribution of tryptophan-dependent indole-3-acetic acid synthesis pathways in bacteria unraveled by large-scale genomic analysis. Molecules, 2019, 24(7): 1411
CrossRef Google scholar
[66]
Nett R S, Montanares M, Marcassa A, Lu X, Nagel R, Charles T C, Hedden P, Rojas M C, Peters R J. Elucidation of gibberellin biosynthesis in bacteria reveals convergent evolution. Nature Chemical Biology, 2017, 13(1): 69–74
CrossRef Google scholar
[67]
Salazar-Cerezo S, Martínez-Montiel N, García-Sánchez J, Pérez-Y-Terrón R, Martínez-Contreras R D. Gibberellin biosynthesis and metabolism: a convergent route for plants, fungi and bacteria. Microbiological Research, 2018, 208: 85–98
CrossRef Google scholar
[68]
Hayashi S, Gresshoff P M, Ferguson B J. Mechanistic action of gibberellins in legume nodulation. Journal of Integrative Plant Biology, 2014, 56(10): 971–978
CrossRef Google scholar
[69]
Großkinsky D K, Tafner R, Moreno M V, Stenglein S A, García De Salamone I E, Nelson L M, Novák O, Strnad M, Van Der Graaff E, Roitsch T. Cytokinin production by Pseudomonas fluorescens G20–18 determines biocontrol activity against Pseudomonas syringae in Arabidopsis. Scientific Reports, 2016, 6(1): 23310
[70]
Numan M, Bashir S, Khan Y, Mumtaz R, Shinwari Z K, Khan A L, Khan A, AL-Harrasi A. Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: a review. Microbiological Research, 2018, 209: 21–32
CrossRef Google scholar
[71]
Conway J M, Walton W G, Salas-González I, Law T F, Lindberg C A, Crook L E, Kosina S M, Fitzpatrick C R, Lietzan A D, Northen T R, Jones C D, Finkel O M, Redinbo M R, Dangl J L. Diverse MarR bacterial regulators of auxin catabolism in the plant microbiome. Nature Microbiology, 2022, 7(11): 1817–1833
CrossRef Google scholar
[72]
Tian D, Wang P, Tang B, Teng X, Li C, Liu X, Zou D, Song S, Zhang Z. GWAS Atlas: a curated resource of genome-wide variant-trait associations in plants and animals. Nucleic Acids Research, 2020, 48(D1): D927–D932
CrossRef Google scholar
[73]
Beilsmith K, Thoen M P, Brachi B, Gloss A D, Khan M H, Bergelson J. Genome-wide association studies on the phyllosphere microbiome: embracing complexity in host-microbe interactions. Plant Journal, 2019, 97(1): 164–181
CrossRef Google scholar
[74]
Wallace J G, Kremling K A, Kovar L L, Buckler E S. Quantitative genetics of the maize leaf microbiome. Phytobiomes Journal, 2018, 2(4): 208–224
CrossRef Google scholar
[75]
Edwards J A, Saran U B, Bonnette J, Macqueen A, Yin J, Nguyen T, Schmutz J, Grimwood J, Pennacchio L A, Daum C, Glavina del Rio T, Fritschi F B, Lowry D B, Juenger T E. Genetic determinants of switchgrass-root-associated microbiota in field sites spanning its natural range. Current Biology, 2023, 33(10): 1926–1938.E6
CrossRef Google scholar
[76]
He X, Zhang Q, Li B, Jin Y, Jiang L, Wu R. Network mapping of root-microbe interactions in Arabidopsis thaliana. npj Biofilms and Microbiomes, 2021, 7(1): 72
[77]
He X, Wang D, Jiang Y, Li M, Delgado-Baquerizo M, Mclaughlin C, Marcon C, Guo L, Baer M, Moya Y A, von Wirén N, Deichmann M, Schaaf G, Piepho H P, Yang Z, Yang J, Yim B, Smalla K, Goormachtig S, de Vries F T, Hüging H, Baer M, Sawers R J H, Reif J C, Hochholdinger F, Chen X, Yu P. Heritable microbiome variation is correlated with source environment in locally adapted maize varieties. Nature Plants, 2024, 10(4): 598–617
CrossRef Google scholar
[78]
Meier M A, Xu G, Lopez-Guerrero M G, Li G, Smith C, Sigmon B, Herr J R, Alfano J R, Ge Y, Schnable J C, Yang J. Association analyses of host genetics, root-colonizing microbes, and plant phenotypes under different nitrogen conditions in maize. eLife, 2022, 11: e75790
CrossRef Google scholar
[79]
Gilbert J A, Quinn R A, Debelius J, Xu Z Z, Morton J, Garg N, Jansson J K, Dorrestein P C, Knight R. Microbiome-wide association studies link dynamic microbial consortia to disease. Nature, 2016, 535(7610): 94–103
CrossRef Google scholar
[80]
Zeng H, Hu W, Liu G, Xu H, Wei Y, Zhang J, Shi H. Microbiome-wide association studies between phyllosphere microbiota and ionome highlight the beneficial symbiosis of Lactococcus lactis in alleviating aluminium in cassava. Plant Physiology and Biochemistry, 2022, 171: 66–74
CrossRef Google scholar
[81]
Haskett T L, Tkacz A, Poole P S. Engineering rhizobacteria for sustainable agriculture. ISME Journal, 2021, 15(4): 949–964
CrossRef Google scholar
[82]
Ofek M, Voronov-Goldman M, Hadar Y, Minz D. Host signature effect on plant root-associated microbiomes revealed through analyses of resident vs. active communities. Environmental Microbiology, 2014, 16(7): 2157–2167
CrossRef Google scholar
[83]
Li Y, Lei S, Cheng Z, Jin L, Zhang T, Liang L M, Cheng L, Zhang Q, Xu X, Lan C, Lu C, Mo M, Zhang K Q, Xu J, Tian B. Microbiota and functional analyses of nitrogen-fixing bacteria in root-knot nematode parasitism of plants. Microbiome, 2023, 11(1): 48
CrossRef Google scholar
[84]
Garrido-Sanz D, Čaušević S, Vacheron J, Heiman C M, Sentchilo V, Van Der Meer J R, Keel C. Changes in structure and assembly of a species-rich soil natural community with contrasting nutrient availability upon establishment of a plant-beneficial Pseudomonas in the wheat rhizosphere. Microbiome, 2023, 11(1): 214
CrossRef Google scholar
[85]
Bais H P, Weir T L, Perry L G, Gilroy S, Vivanco J M. The role of root exudates in rhizosphere interactions with plants and other organisms. Annual Review of Plant Biology, 2006, 57(1): 233–266
CrossRef Google scholar
[86]
Levy A, Salas Gonzalez I, Mittelviefhaus M, Clingenpeel S, Herrera Paredes S, Miao J, Wang K, Devescovi G, Stillman K, Monteiro F, Rangel Alvarez B, Lundberg D S, Lu T Y, Lebeis S, Jin Z, McDonald M, Klein A P, Feltcher M E, Rio T G, Grant S R, Doty S L, Ley R E, Zhao B, Venturi V, Pelletier D A, Vorholt J A, Tringe S G, Woyke T, Dangl J L. Genomic features of bacterial adaptation to plants. Nature Genetics, 2018, 50(1): 138–150
CrossRef Google scholar
[87]
Shepherd E S, Deloache W C, Pruss K M, Whitaker W R, Sonnenburg J L. An exclusive metabolic niche enables strain engraftment in the gut microbiota. Nature, 2018, 557(7705): 434–438
CrossRef Google scholar
[88]
Mueller U G, Linksvayer T A. Microbiome breeding: conceptual and practical issues. Trends in Microbiology, 2022, 30(10): 997–1011
CrossRef Google scholar
[89]
Arnault G, Marais C, Préveaux A, Briand M, Poisson A S, Sarniguet A, Barret M, Simonin M. Seedling microbiota engineering using bacterial synthetic community inoculation on seeds. FEMS Microbiology Ecology, 2024, 100(4): fiae027
CrossRef Google scholar

Acknowledgements

This work was supported by grants from the National Key Research and Development Program of China (2022YFF1001800); the National Natural Science Foundation of China (32430003 and 32322002); the National Key Research and Development Program of China (2023YFF1000301); the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA28030202 and XDA0450000); the CAS Project for Young Scientists in Basic Research (YSBR-078); the Hainan Excellent Talent Team, Start-up funds from Peking University; and the New Cornerstone Science Foundation through the XPLORER PRIZE .

Compliance with ethics guidelines

Haoran Xu, Weidong Liu, Yuhang He, Di Zou, Jinghang Zhou, Jingying Zhang, and Yang Bai declare that they have no conflicts of interest or financial conflicts to disclose. This article does not contain any studies with human or animal subjects performed by any of the authors.

RIGHTS & PERMISSIONS

The Author(s) 2024. Published by Higher Education Press. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0)
AI Summary AI Mindmap
PDF(1993 KB)

Accesses

Citations

Detail

Sections
Recommended

/