A temporal framework for building up of healthy soils

Junling ZHANG, Jiangzhou ZHANG, Yunlong ZHANG, Guangzhou WANG

Front. Agr. Sci. Eng. ›› 2024, Vol. 11 ›› Issue (2) : 292-296.

PDF(2163 KB)
PDF(2163 KB)
Front. Agr. Sci. Eng. ›› 2024, Vol. 11 ›› Issue (2) : 292-296. DOI: 10.15302/J-FASE-2024561
PERSPECTIVE

A temporal framework for building up of healthy soils

Author information +
History +

Graphical abstract

Cite this article

Download citation ▾
Junling ZHANG, Jiangzhou ZHANG, Yunlong ZHANG, Guangzhou WANG. A temporal framework for building up of healthy soils. Front. Agr. Sci. Eng., 2024, 11(2): 292‒296 https://doi.org/10.15302/J-FASE-2024561

References

[1]
Millennium ecosystem assessment (MEA). Current State & Trends Assessment. Washington, DC: Island Press, 2005
[2]
Guo J H, Liu X J, Zhang Y, Shen J L, Han W X, Zhang W F, Christie P, Goulding K W T, Vitousek P M, Zhang F S. Significant acidification in major Chinese croplands. Science, 2010, 327(5968): 1008–1010
CrossRef Google scholar
[3]
Liu X J, Xu W, Duan L, Du E Z, Pan Y P, Lu X K, Zhang L, Wu Z Y, Wang X M, Zhang Y, Shen J L, Song L, Feng Z Z, Liu X Y, Song W, Tang A H, Zhang Y Y, Zhang X Y, Collett J L Jr. Atmospheric nitrogen emission, deposition, and air quality impacts in China: an overview. Current Pollution Reports, 2017, 3(2): 65–77
CrossRef Google scholar
[4]
Doran J W, Zeiss M R. Soil health and sustainability: managing the biotic component of soil quality. Applied Soil Ecology, 2000, 15(1): 3–11
CrossRef Google scholar
[5]
Lehmann J, Bossio D A, Kögel-Knabner I, Rillig M C. The concept and future prospects of soil health. Nature Reviews. Earth & Environment, 2020, 1(10): 544–553
CrossRef Google scholar
[6]
Pankhurst C E, Doube B M, Gupta V V S R. Biological indicators of soil health: synthesis. In: Pankhurst C E, Doube B M, Gupta V V S R, eds. Biological Indicators of Soil Health. Wallingford, Oxon: CAB International, 1997, 419–435
[7]
Zhang J Z, Li Y Z, Jia J Y, Liao W Q, Amsili J P, Schneider R L, van Es H M, Li Y, Zhang J L. Applicability of soil health assessment for wheat-maize cropping systems in smallholders’ farmlands. Agriculture, Ecosystems & Environment, 2023, 353: 108558
CrossRef Google scholar
[8]
de Graaff M A, Hornslein N, Throop H L, Kardol P, van Diepen L T A. Effects of agricultural intensification on soil biodiversity and implications for ecosystem functioning: a meta-analysis. Advances in Agronomy, 2019, 155: 1–44
CrossRef Google scholar
[9]
Yang T, Lupwayi N, Marc S A, Siddique K H, Bainard L D. Anthropogenic drivers of soil microbial communities and impacts on soil biological functions in agroecosystems. Global Ecology and Conservation, 2021, 27: e01521
CrossRef Google scholar
[10]
van Bruggen A H C, Semenov A M. In search of biological indicators for soil health and disease suppression. Applied Soil Ecology, 2000, 15(1): 13–24
CrossRef Google scholar
[11]
Hartmann M, Six J. Soil structure and microbiome functions in agroecosystems. Nature Reviews. Earth & Environment, 2023, 4(1): 4–18
CrossRef Google scholar
[12]
van der Heijden M G A, Wagg C. Soil microbial diversity and agro-ecosystem functioning. Plant and Soil, 2013, 363(1−2): 1–5
CrossRef Google scholar
[13]
Xiong C, Lu Y. Microbiomes in agroecosystem: diversity, function and assembly mechanisms. Environmental Microbiology Reports, 2022, 14(6): 833–849
CrossRef Google scholar
[14]
Romero F, Labouyrie M, Orgiazzi A, Ballabio C, Panagos P, Jones A, Tedersoo L, Bahram M, Guerra C A, Eisenhauer N, Tao D, Delgado-Baquerizo M, García-Palacios P, van der Heijden M G A. Soil health is linked to primary productivity across Europe. bioRxiv, 2023: 564603
[15]
Toda M, Walder F, van der Heijden M G A. Organic management and soil health promote nutrient use efficiency. Journal of Sustainable Agriculture and Environment, 2023, 2(3): 215–224
CrossRef Google scholar
[16]
Brussaard L, Kuyper T W, Didden W A M, de Goede R G M, Bloem J. Biological soil quality from biomass to biodiversity - importance and resilience to management stress and disturbance. In: Schjønning P, Emholt S, Christensen B T, eds. Managing Soil Quality-Challenges in Modern Agriculture. Wallingford, UK: CAB International, 2004, 139–161
[17]
Wittwer R A, Bender S F, Hartman K, Hydbom S, Lima R A A, Loaiza V, Nemecek T, Oehl F, Olsson P A, Petchey O, Prechsl U E, Schlaeppi K, Scholten T, Seitz S, Six J, van der Heijden M G A. Organic and conservation agriculture promote ecosystem multifunctionality. Science Advances, 2021, 7(34): eabg6995
CrossRef Google scholar
[18]
Tamburini G, Bommarco R, Wanger T C, Kremen C, van der Heijden M G A, Liebman M, Hallin S. Agricultural diversification promotes multiple ecosystem services without compromising yield. Science Advances, 2020, 6(45): eaba1715
[19]
Zhang J L, van der Heijden M G A, Zhang F S, Bender S F. Soil biodiversity and crop diversification are vital components of healthy soils and agricultural sustainability. Frontiers of Agricultural Science and Engineering, 2020, 7(3): 236–242
CrossRef Google scholar
[20]
Rasse D P, Rumpel C, Dignac M F. Is soil carbon mostly root carbon? Mechanisms for a specific stabilization. Plant and Soil, 2005, 269(1−2): 341–356
CrossRef Google scholar
[21]
Kögel-Knabner I. The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter: fourteen years on. Soil Biology & Biochemistry, 2017, 105: A3–A8
CrossRef Google scholar
[22]
Camenzind T, Mason-Jones K, Mansour I, Rillig M C, Lehmann J. Formation of necromass derived soil organic carbon determined by microbial death pathways. Nature Geoscience, 2023, 16(2): 115–122
CrossRef Google scholar
[23]
Liang C, Schimel J P, Jastrow J D. The importance of anabolism in microbial control over soil carbon storage. Nature Microbiology, 2017, 2(8): 17105
CrossRef Google scholar
[24]
Liang C, Amelung W, Lehmann J, Kästner M. Quantitative assessment of microbial necromass contribution to soil organic matter. Global Change Biology, 2019, 25(11): 3578–3590
CrossRef Google scholar
[25]
Jin S, Zhang B, Wu B, Han D, Hu Y, Ren C, Zhang C, Wei X, Wu Y, Mol A P J, Reis S, Gu B, Chen J. Decoupling livestock and crop production at the household level in China. Nature Sustainability, 2021, 4(1): 48–55
CrossRef Google scholar
[26]
Ghirardini A, Grillini V, Verlicchi P. A review of the occurrence of selected micropollutants and microorganisms in different raw and treated manure—Environmental risk due to antibiotics after application to soil. Science of the Total Environment, 2020, 707: 136118
CrossRef Google scholar
[27]
Yu C, Huang X, Chen H, Godfray H C J, Wright J S, Hall J W, Gong P, Ni S, Qiao S, Huang G, Xiao Y, Zhang J, Feng Z, Ju X, Ciais P, Stenseth N C, Hessen D O, Sun Z, Yu L, Cai W, Fu H, Huang X, Zhang C, Liu H, Taylor J. Managing nitrogen to restore water quality in China. Nature, 2019, 567(7749): 516–520
CrossRef Google scholar
[28]
Cheng K, Zheng J, Nayak D, Smith P, Pan G. Re‐evaluating the biophysical and technologically attainable potential of topsoil carbon sequestration in China’s cropland. Soil Use and Management, 2013, 29(4): 501–509
CrossRef Google scholar
[29]
Sanderman J, Hengl T, Fiske G J. Soil carbon debt of 12,000 years of human land use. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(36): 9575–9580
CrossRef Google scholar
[30]
Vazquez C, de Goede R G M, Rutgers M, de Koeijer T J, Creamer R E. Assessing multifunctionality of agricultural soils: reducing the biodiversity trade‐off. European Journal of Soil Science, 2021, 72(4): 1624–1639
CrossRef Google scholar

Acknowledgements

This work was financially supported by the National Key R&D Program of China (2022YFD1901300, 2023YFD1901500).

RIGHTS & PERMISSIONS

The Author(s) 2024. Published by Higher Education Press. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0)
AI Summary AI Mindmap
PDF(2163 KB)

Accesses

Citations

Detail

Sections
Recommended

/