A temporal framework for building up of healthy soils

Junling ZHANG, Jiangzhou ZHANG, Yunlong ZHANG, Guangzhou WANG

PDF(2163 KB)
PDF(2163 KB)
Front. Agr. Sci. Eng. ›› 2024, Vol. 11 ›› Issue (2) : 292-296. DOI: 10.15302/J-FASE-2024561
PERSPECTIVE

A temporal framework for building up of healthy soils

Author information +
History +

Graphical abstract

Cite this article

Download citation ▾
Junling ZHANG, Jiangzhou ZHANG, Yunlong ZHANG, Guangzhou WANG. A temporal framework for building up of healthy soils. Front. Agr. Sci. Eng., 2024, 11(2): 292‒296 https://doi.org/10.15302/J-FASE-2024561

References

[1]
Millennium ecosystem assessment (MEA). Current State & Trends Assessment. Washington, DC: Island Press, 2005
[2]
Guo J H, Liu X J, Zhang Y, Shen J L, Han W X, Zhang W F, Christie P, Goulding K W T, Vitousek P M, Zhang F S. Significant acidification in major Chinese croplands. Science, 2010, 327(5968): 1008–1010
CrossRef Google scholar
[3]
Liu X J, Xu W, Duan L, Du E Z, Pan Y P, Lu X K, Zhang L, Wu Z Y, Wang X M, Zhang Y, Shen J L, Song L, Feng Z Z, Liu X Y, Song W, Tang A H, Zhang Y Y, Zhang X Y, Collett J L Jr. Atmospheric nitrogen emission, deposition, and air quality impacts in China: an overview. Current Pollution Reports, 2017, 3(2): 65–77
CrossRef Google scholar
[4]
Doran J W, Zeiss M R. Soil health and sustainability: managing the biotic component of soil quality. Applied Soil Ecology, 2000, 15(1): 3–11
CrossRef Google scholar
[5]
Lehmann J, Bossio D A, Kögel-Knabner I, Rillig M C. The concept and future prospects of soil health. Nature Reviews. Earth & Environment, 2020, 1(10): 544–553
CrossRef Google scholar
[6]
Pankhurst C E, Doube B M, Gupta V V S R. Biological indicators of soil health: synthesis. In: Pankhurst C E, Doube B M, Gupta V V S R, eds. Biological Indicators of Soil Health. Wallingford, Oxon: CAB International, 1997, 419–435
[7]
Zhang J Z, Li Y Z, Jia J Y, Liao W Q, Amsili J P, Schneider R L, van Es H M, Li Y, Zhang J L. Applicability of soil health assessment for wheat-maize cropping systems in smallholders’ farmlands. Agriculture, Ecosystems & Environment, 2023, 353: 108558
CrossRef Google scholar
[8]
de Graaff M A, Hornslein N, Throop H L, Kardol P, van Diepen L T A. Effects of agricultural intensification on soil biodiversity and implications for ecosystem functioning: a meta-analysis. Advances in Agronomy, 2019, 155: 1–44
CrossRef Google scholar
[9]
Yang T, Lupwayi N, Marc S A, Siddique K H, Bainard L D. Anthropogenic drivers of soil microbial communities and impacts on soil biological functions in agroecosystems. Global Ecology and Conservation, 2021, 27: e01521
CrossRef Google scholar
[10]
van Bruggen A H C, Semenov A M. In search of biological indicators for soil health and disease suppression. Applied Soil Ecology, 2000, 15(1): 13–24
CrossRef Google scholar
[11]
Hartmann M, Six J. Soil structure and microbiome functions in agroecosystems. Nature Reviews. Earth & Environment, 2023, 4(1): 4–18
CrossRef Google scholar
[12]
van der Heijden M G A, Wagg C. Soil microbial diversity and agro-ecosystem functioning. Plant and Soil, 2013, 363(1−2): 1–5
CrossRef Google scholar
[13]
Xiong C, Lu Y. Microbiomes in agroecosystem: diversity, function and assembly mechanisms. Environmental Microbiology Reports, 2022, 14(6): 833–849
CrossRef Google scholar
[14]
Romero F, Labouyrie M, Orgiazzi A, Ballabio C, Panagos P, Jones A, Tedersoo L, Bahram M, Guerra C A, Eisenhauer N, Tao D, Delgado-Baquerizo M, García-Palacios P, van der Heijden M G A. Soil health is linked to primary productivity across Europe. bioRxiv, 2023: 564603
[15]
Toda M, Walder F, van der Heijden M G A. Organic management and soil health promote nutrient use efficiency. Journal of Sustainable Agriculture and Environment, 2023, 2(3): 215–224
CrossRef Google scholar
[16]
Brussaard L, Kuyper T W, Didden W A M, de Goede R G M, Bloem J. Biological soil quality from biomass to biodiversity - importance and resilience to management stress and disturbance. In: Schjønning P, Emholt S, Christensen B T, eds. Managing Soil Quality-Challenges in Modern Agriculture. Wallingford, UK: CAB International, 2004, 139–161
[17]
Wittwer R A, Bender S F, Hartman K, Hydbom S, Lima R A A, Loaiza V, Nemecek T, Oehl F, Olsson P A, Petchey O, Prechsl U E, Schlaeppi K, Scholten T, Seitz S, Six J, van der Heijden M G A. Organic and conservation agriculture promote ecosystem multifunctionality. Science Advances, 2021, 7(34): eabg6995
CrossRef Google scholar
[18]
Tamburini G, Bommarco R, Wanger T C, Kremen C, van der Heijden M G A, Liebman M, Hallin S. Agricultural diversification promotes multiple ecosystem services without compromising yield. Science Advances, 2020, 6(45): eaba1715
[19]
Zhang J L, van der Heijden M G A, Zhang F S, Bender S F. Soil biodiversity and crop diversification are vital components of healthy soils and agricultural sustainability. Frontiers of Agricultural Science and Engineering, 2020, 7(3): 236–242
CrossRef Google scholar
[20]
Rasse D P, Rumpel C, Dignac M F. Is soil carbon mostly root carbon? Mechanisms for a specific stabilization. Plant and Soil, 2005, 269(1−2): 341–356
CrossRef Google scholar
[21]
Kögel-Knabner I. The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter: fourteen years on. Soil Biology & Biochemistry, 2017, 105: A3–A8
CrossRef Google scholar
[22]
Camenzind T, Mason-Jones K, Mansour I, Rillig M C, Lehmann J. Formation of necromass derived soil organic carbon determined by microbial death pathways. Nature Geoscience, 2023, 16(2): 115–122
CrossRef Google scholar
[23]
Liang C, Schimel J P, Jastrow J D. The importance of anabolism in microbial control over soil carbon storage. Nature Microbiology, 2017, 2(8): 17105
CrossRef Google scholar
[24]
Liang C, Amelung W, Lehmann J, Kästner M. Quantitative assessment of microbial necromass contribution to soil organic matter. Global Change Biology, 2019, 25(11): 3578–3590
CrossRef Google scholar
[25]
Jin S, Zhang B, Wu B, Han D, Hu Y, Ren C, Zhang C, Wei X, Wu Y, Mol A P J, Reis S, Gu B, Chen J. Decoupling livestock and crop production at the household level in China. Nature Sustainability, 2021, 4(1): 48–55
CrossRef Google scholar
[26]
Ghirardini A, Grillini V, Verlicchi P. A review of the occurrence of selected micropollutants and microorganisms in different raw and treated manure—Environmental risk due to antibiotics after application to soil. Science of the Total Environment, 2020, 707: 136118
CrossRef Google scholar
[27]
Yu C, Huang X, Chen H, Godfray H C J, Wright J S, Hall J W, Gong P, Ni S, Qiao S, Huang G, Xiao Y, Zhang J, Feng Z, Ju X, Ciais P, Stenseth N C, Hessen D O, Sun Z, Yu L, Cai W, Fu H, Huang X, Zhang C, Liu H, Taylor J. Managing nitrogen to restore water quality in China. Nature, 2019, 567(7749): 516–520
CrossRef Google scholar
[28]
Cheng K, Zheng J, Nayak D, Smith P, Pan G. Re‐evaluating the biophysical and technologically attainable potential of topsoil carbon sequestration in China’s cropland. Soil Use and Management, 2013, 29(4): 501–509
CrossRef Google scholar
[29]
Sanderman J, Hengl T, Fiske G J. Soil carbon debt of 12,000 years of human land use. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(36): 9575–9580
CrossRef Google scholar
[30]
Vazquez C, de Goede R G M, Rutgers M, de Koeijer T J, Creamer R E. Assessing multifunctionality of agricultural soils: reducing the biodiversity trade‐off. European Journal of Soil Science, 2021, 72(4): 1624–1639
CrossRef Google scholar

Acknowledgements

This work was financially supported by the National Key R&D Program of China (2022YFD1901300, 2023YFD1901500).

RIGHTS & PERMISSIONS

The Author(s) 2024. Published by Higher Education Press. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0)
AI Summary AI Mindmap
PDF(2163 KB)

Accesses

Citations

Detail

Sections
Recommended

/