A complete genome for a commercial duck
Jim KAUFMAN
A complete genome for a commercial duck
[1] |
Wolf S M, Green R C. Return of results in genomic research using large-scale or whole genome sequencing: toward a new normal. Annual Review of Genomics and Human Genetics, 2023, 24(1): 393–414
CrossRef
Google scholar
|
[2] |
Damas J, Corbo M, Lewin H A. Vertebrate chromosome evolution. Annual Review of Animal Biosciences, 2021, 9(1): 1–27
CrossRef
Google scholar
|
[3] |
Deng Y, Finck A, Fan R. Single-cell omics analyses enabled by microchip technologies. Annual Review of Biomedical Engineering, 2019, 21(1): 365–393
CrossRef
Google scholar
|
[4] |
Fischer H P. Towards quantitative biology: integration of biological information to elucidate disease pathways and to guide drug discovery. Biotechnology Annual Review, 2005, 11: 1–68
CrossRef
Google scholar
|
[5] |
Nelson C E, Gersbach C A. Engineering delivery vehicles for genome editing. Annual Review of Chemical and Biomolecular Engineering, 2016, 7(1): 637–662
CrossRef
Google scholar
|
[6] |
Holtzman L, Gersbach C A. Editing the epigenome: reshaping the genomic landscape. Annual Review of Genomics and Human Genetics, 2018, 19(1): 43–71
CrossRef
Google scholar
|
[7] |
Berry D P, Spangler M L. Animal board invited review: practical applications of genomic information in livestock. Animal, 2023, 17(11): 100996
CrossRef
Google scholar
|
[8] |
Goddard M E, Hayes B J. Mapping genes for complex traits in domestic animals and their use in breeding programmes. Nature Reviews. Genetics, 2009, 10(6): 381–391
CrossRef
Google scholar
|
[9] |
Bekele R, Taye M, Abebe G, Meseret S. Genomic regions and candidate genes associated with milk production traits in holstein and its crossbred cattle: a review. International Journal of Genomics, 2023, 2023: 8497453
CrossRef
Google scholar
|
[10] |
Narayana S G, de Jong E, Schenkel F S, Fonseca P A S, Chud T C S, Powell D, Wachoski-Dark G, Ronksley P E, Miglior F, Orsel K, Barkema H W. Underlying genetic architecture of resistance to mastitis in dairy cattle: a systematic review and gene prioritization analysis of genome-wide association studies. Journal of Dairy Science, 2023, 106(1): 323–351
CrossRef
Google scholar
|
[11] |
Smith J, Alfieri J M, Anthony N, Arensburger P, Athrey G N, Balacco J, Balic A, Bardou P, Barela P, Bigot Y, Blackmon H, Borodin P M, Carroll R, Casono M C, Charles M, Cheng H, Chiodi M, Cigan L, Coghill L M, Crooijmans R, Das N, Davey S, Davidian A, Degalez F, Dekkers J M, Derks M, Diack A B, Djikeng A, Drechsler Y, Dyomin A, Fedrigo O, Fiddaman S R, Formenti G, Frantz L A F, Fulton J E, Gaginskaya E, Galkina S, Gallardo R A, Geibel J, Gheyas A A, Godinez C J P, Goodell A, Graves J A M, Griffin D K, Haase B, Han J L, Hanotte O, Henderson L J, Hou Z C, Howe K, Huynh L, Ilatsia E, Jarvis E D, Johnson S M, Kaufman J, Kelly T, Kemp S, Kern C, Keroack J H, Klopp C, Lagarrigue S, Lamont S J, Lange M, Lanke A, Larkin D M, Larson G, Layos J K N, Lebrasseur O, Malinovskaya L P, Martin R J, Martin Cerezo M L, Mason A S, McCarthy F M, McGrew M J, Mountcastle J, Muhonja C K, Muir W, Muret K, Murphy T D, Ng’ang’a I, Nishibori M, O’Connor R E, Ogugo M, Okimoto R, Ouko O, Patel H R, Perini F, Pigozzi M I, Potter K C, Price P D, Reimer C, Rice E S, Rocos N, Rogers T F, Saelao P, Schauer J, Schnabel R D, Schneider V A, Simianer H, Smith A, Stevens M P, Stiers K, Tiambo C K, Tixier-Boichard M, Torgasheva A A, Tracey A, Tregaskes C A, Vervelde L, Wang Y, Warren W C, Waters P D, Webb D, Weigend S, Wolc A, Wright A E, Wright D, Wu Z, Yamagata M, Yang C, Yin Z T, Young M C, Zhang G, Zhao B, Zhou H. Fourth report on chicken genes and chromosomes. Cytogenetic and Genome Research, 2022, 162(8–9): 405–528
CrossRef
Google scholar
|
[12] |
Suminda G G D, Ghosh M, Son Y O. The innovative informatics approaches of high-throughput technologies in livestock: spearheading the sustainability and resiliency of agrigenomics research. Life, 2022, 12(11): 1893
CrossRef
Google scholar
|
[13] |
Dehau T, Ducatelle R, van Immerseel F, Goossens E. Omics technologies in poultry health and productivity—Part 1: current use in poultry research. Avian Pathology, 2022, 51(5): 407–417
CrossRef
Google scholar
|
[14] |
Rieblinger B, Sid H, Duda D, Bozoglu T, Klinger R, Schlickenrieder A, Lengyel K, Flisikowski K, Flisikowska T, Simm N, Grodziecki A, Perleberg C, Bähr A, Carrier L, Kurome M, Zakhartchenko V, Kessler B, Wolf E, Kettler L, Luksch H, Hagag I T, Wise D, Kaufman J, Kaufer B B, Kupatt C, Schnieke A, Schusser B. Cas9-expressing chickens and pigs as resources for genome editing in livestock. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(10): e2022562118
CrossRef
Google scholar
|
[15] |
Kim J K, Negovetich N J, Forrest H L, Webster R G. Ducks: the “Trojan horses” of H5N1 influenza. Influenza and Other Respiratory Viruses, 2009, 3(4): 121–128
CrossRef
Google scholar
|
[16] |
Chmielewski R, Swayne D E. Avian influenza: public health and food safety concerns. Annual Review of Food Science and Technology, 2011, 2(1): 37–57
CrossRef
Google scholar
|
[17] |
Funk A, Mhamdi M, Will H, Sirma H. Avian hepatitis B viruses: molecular and cellular biology, phylogenesis, and host tropism. World Journal of Gastroenterology, 2007, 13(1): 91–103
CrossRef
Google scholar
|
[18] |
Dhama K, Kumar N, Saminathan M, Tiwari R, Karthik K, Kumar M A, Palanivelu M, Shabbir M Z, Malik Y S, Singh R K. Duck virus enteritis (duck plague)—A comprehensive update. Veterinary Quarterly, 2017, 37(1): 57–80
CrossRef
Google scholar
|
[19] |
Cui Y, Pan Y, Guo J, Wang D, Tong X, Wang Y, Li J, Zhao J, Ji Y, Wu Z, Zeng P, Zhou J, Feng X, Hou L, Liu J. The evolution, genomic epidemiology, and transmission dynamics of Tembusu virus. Viruses, 2022, 14(6): 1236
CrossRef
Google scholar
|
[20] |
Jafari S, Ebrahimi M, Luangtongkum T. The worldwide trend of Campylobacter spp., infection from duck-related isolates and associated phenotypic and genotypic antibiotic resistance, since 1985: identifying opportunities and challenges for prevention and control. Poultry Science, 2021, 100(8): 101213
CrossRef
Google scholar
|
[21] |
Cai Q, Li Y, Chang Y F, Tang Z, Zhang H, Xie Q. Pasteurella multocida causes liver injury in ducks by mediating inflammatory, apoptotic and autophagic pathways. Microbial Pathogenesis, 2023, 184: 106336
CrossRef
Google scholar
|
[22] |
Hu J, Song L, Ning M, Niu X, Han M, Gao C, Feng X, Cai H, Li T, Li F, Li H, Gong D, Song W, Liu L, Pu J, Liu J, Smith J, Sun H, Huang Y. A new chromosome-scale duck genome shows a major histocompatibility complex with several expanded multigene families. BMC Biology, 2024, 22(1): 31
CrossRef
Google scholar
|
[23] |
Trowsdale J, Knight J C. Major histocompatibility complex genomics and human disease. Annual Review of Genomics and Human Genetics, 2013, 14(1): 301–323
CrossRef
Google scholar
|
[24] |
Kaufman J. Unfinished business: evolution of the MHC and the adaptive immune system of jawed vertebrates. Annual Review of Immunology, 2018, 36(1): 383–409
CrossRef
Google scholar
|
[25] |
Kaufman J. Generalists and specialists: a new view of how MHC class I molecules fight infectious pathogens. Trends in Immunology, 2018, 39(5): 367–379
CrossRef
Google scholar
|
[26] |
He K, Liang C H, Zhu Y, Dunn P, Zhao A, Minias P. Reconstructing macroevolutionary patterns in avian MHC architecture with genomic data. Frontiers in Genetics, 2022, 13: 823686
CrossRef
Google scholar
|
/
〈 | 〉 |