A PLATFORM TO AID SELECT THE OPTIMAL TOOL TO DESIGN GUIDE RNAS
Qianqian YANG, Lei MA
A PLATFORM TO AID SELECT THE OPTIMAL TOOL TO DESIGN GUIDE RNAS
● Summaries on sgRNAs design.
● Overview of the features of 43 web sgRNA designers.
● A platform to select optimal sgRNA design tool.
CRISPR-mediated gene-editing technology has arguably driven an unprecedented revolution in biological sciences for its role in elucidating gene functions. A multitude of software has been developed for the design and analysis of CRISPR/Cas experiments, including predictive tools to design optimally guide RNA for various experimental operations. Different in silico sgRNA design tools have various application scenarios and identifying the optimal design tools can often be a challenge. This paper describes the sgRNA design workflow in experiments, the classification of sgRNA designers, previously published benchmarking work of in silico designers, and the criteria involved how to select an sgRNA web server. Through basic testing, this paper comprehensively overviews and compares the features of 43 web server designers to provide a reference for the readers. Ultimately, the project developed an integrated platform, called Aid-TG, which helps users find appropriate tools quickly.
CRISPR/Cas / Aid-TG / gene editing / sgRNA design / web server
[1] |
Knott G J, Doudna J A . CRISPR-Cas guides the future of genetic engineering. Science, 2018, 361(6405): 866–869
CrossRef
Pubmed
Google scholar
|
[2] |
Gilbert L A, Larson M H, Morsut L, Liu Z, Brar G A, Torres S E, Stern-Ginossar N, Brandman O, Whitehead E H, Doudna J A, Lim W A, Weissman J S, Qi L S . CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell, 2013, 154(2): 442–451
CrossRef
Pubmed
Google scholar
|
[3] |
Jiang F, Doudna J A . CRISPR-Cas9 structures and mechanisms. Annual Review of Biophysics, 2017, 46(1): 505–529
CrossRef
Pubmed
Google scholar
|
[4] |
Hanna R E, Doench J G . Design and analysis of CRISPR-Cas experiments. Nature Biotechnology, 2020, 38(7): 813–823
CrossRef
Pubmed
Google scholar
|
[5] |
Zhang C, Quan R, Wang J . Development and application of CRISPR/Cas9 technologies in genomic editing. Human Molecular Genetics, 2018, 27(R2): R79–R88
CrossRef
Pubmed
Google scholar
|
[6] |
Trevino A E, Zhang F . Genome editing using Cas9 nickases. Methods in Enzymology, 2014, 546: 161–174
CrossRef
Pubmed
Google scholar
|
[7] |
Kazi T A, Biswas S R . CRISPR/dCas system as the modulator of gene expression. Progress in Molecular Biology and Translational Science, 2021, 178: 99–122
CrossRef
Pubmed
Google scholar
|
[8] |
Nuñez J K, Chen J, Pommier G C, Cogan J Z, Replogle J M, Adriaens C, Ramadoss G N, Shi Q, Hung K L, Samelson A J, Pogson A N, Kim J Y S, Chung A, Leonetti M D, Chang H Y, Kampmann M, Bernstein B E, Hovestadt V, Gilbert L A, Weissman J S . Genome-wide programmable transcriptional memory by CRISPR-based epigenome editing. Cell, 2021, 184(9): 2503–2519.e17
CrossRef
Pubmed
Google scholar
|
[9] |
Paul B, Montoya G . CRISPR-Cas12a: functional overview and applications. Biomedical Journal, 2020, 43(1): 8–17
CrossRef
Pubmed
Google scholar
|
[10] |
Cox D B T, Gootenberg J S, Abudayyeh O O, Franklin B, Kellner M J, Joung J, Zhang F . RNA editing with CRISPR-Cas13. Science, 2017, 358(6366): 1019–1027
CrossRef
Pubmed
Google scholar
|
[11] |
Doench J G, Hartenian E, Graham D B, Tothova Z, Hegde M, Smith I, Sullender M, Ebert B L, Xavier R J, Root D E . Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nature Biotechnology, 2014, 32(12): 1262–1267
CrossRef
Pubmed
Google scholar
|
[12] |
Zhang Y, Zhao G, Ahmed F Y H, Yi T, Hu S, Cai T, Liao Q . In silico method in CRISPR/Cas system: an expedite and powerful booster. Frontiers in Oncology, 2020, 10: 584404
CrossRef
Pubmed
Google scholar
|
[13] |
Doench J G, Fusi N, Sullender M, Hegde M, Vaimberg E W, Donovan K F, Smith I, Tothova Z, Wilen C, Orchard R, Virgin H W, Listgarten J, Root D E . Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nature Biotechnology, 2016, 34(2): 184–191
CrossRef
Pubmed
Google scholar
|
[14] |
Chuai G, Ma H, Yan J, Chen M, Hong N, Xue D, Zhou C, Zhu C, Chen K, Duan B, Gu F, Qu S, Huang D, Wei J, Liu Q . DeepCRISPR: optimized CRISPR guide RNA design by deep learning. Genome Biology, 2018, 19(1): 80
CrossRef
Pubmed
Google scholar
|
[15] |
Kim H K, Min S, Song M, Jung S, Choi J W, Kim Y, Lee S, Yoon S, Kim H H . Deep learning improves prediction of CRISPR-Cpf1 guide RNA activity. Nature Biotechnology, 2018, 36(3): 239–241
CrossRef
Pubmed
Google scholar
|
[16] |
Liu Q, Cheng X, Liu G, Li B, Liu X . Deep learning improves the ability of sgRNA off-target propensity prediction. BMC Bioinformatics, 2020, 21(1): 51
CrossRef
Pubmed
Google scholar
|
[17] |
Wong N, Liu W, Wang X . WU-CRISPR: characteristics of functional guide RNAs for the CRISPR/Cas9 system. Genome Biology, 2015, 16(1): 218
CrossRef
Pubmed
Google scholar
|
[18] |
Labun K, Montague T G, Krause M, Torres Cleuren Y N, Tjeldnes H, Valen E . CHOPCHOP v3: expanding the CRISPR web toolbox beyond genome editing. Nucleic Acids Research, 2019, 47(W1): W171–W174
CrossRef
Pubmed
Google scholar
|
[19] |
Stemmer M, Thumberger T, Del Sol Keyer M, Wittbrodt J, Mateo J L . CCTop: an intuitive, flexible and reliable CRISPR/Cas9 target prediction tool. PLoS One, 2015, 10(4): e0124633
CrossRef
Pubmed
Google scholar
|
[20] |
Xu H, Xiao T, Chen C H, Li W, Meyer C A, Wu Q, Wu D, Cong L, Zhang F, Liu J S, Brown M, Liu X S . Sequence determinants of improved CRISPR sgRNA design. Genome Research, 2015, 25(8): 1147–1157
CrossRef
Pubmed
Google scholar
|
[21] |
Qianqian Y, Lei M. A platform to aid select the optimal tool to design guide RNAs. Available at Aid-TG website on April 20, 2022
|
[22] |
Yan J, Xue D, Chuai G, Gao Y, Zhang G, Liu Q . Benchmarking and integrating genome-wide CRISPR off-target detection and prediction. Nucleic Acids Research, 2020, 48(20): 11370–11379
CrossRef
Pubmed
Google scholar
|
[23] |
O’Brien A, Bailey T L . GT-Scan: identifying unique genomic targets. Bioinformatics, 2014, 30(18): 2673–2675
CrossRef
Pubmed
Google scholar
|
[24] |
Park J, Bae S, Kim J S . Cas-Designer: a web-based tool for choice of CRISPR-Cas9 target sites. Bioinformatics, 2015, 31(24): 4014–4016
Pubmed
|
[25] |
Hwang G H, Park J, Lim K, Kim S, Yu J, Yu E, Kim S T, Eils R, Kim J S, Bae S . Web-based design and analysis tools for CRISPR base editing. BMC Bioinformatics, 2018, 19(1): 542
CrossRef
Pubmed
Google scholar
|
[26] |
Bae S, Park J, Kim J S . Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics, 2014, 30(10): 1473–1475
CrossRef
Pubmed
Google scholar
|
[27] |
Hwang G H, Jeong Y K, Habib O, Hong S A, Lim K, Kim J S, Bae S . PE-Designer and PE-Analyzer: web-based design and analysis tools for CRISPR prime editing. Nucleic Acids Research, 2021, 49(W1): W499–W504
CrossRef
Pubmed
Google scholar
|
[28] |
He C, Liu H, Chen D, Xie W Z, Wang M, Li Y, Gong X, Yan W, Chen L L . CRISPR-Cereal: a guide RNA design tool integrating regulome and genomic variation for wheat, maize and rice. Plant Biotechnology Journal, 2021, 19(11): 2141–2143
CrossRef
Pubmed
Google scholar
|
[29] |
Oliveros J C, Franch M, Tabas-Madrid D, San-León D, Montoliu L, Cubas P, Pazos F . Breaking-Cas-interactive design of guide RNAs for CRISPR-Cas experiments for ENSEMBL genomes. Nucleic Acids Research, 2016, 44(W1): W267–W271
CrossRef
Pubmed
Google scholar
|
[30] |
Chow R D, Chen J S, Shen J, Chen S . A web tool for the design of prime-editing guide RNAs. Nature Biomedical Engineering, 2021, 5(2): 190–194
CrossRef
Pubmed
Google scholar
|
[31] |
Minkenberg B, Zhang J, Xie K, Yang Y . CRISPR-PLANT v2: an online resource for highly specific guide RNA spacers based on improved off-target analysis. Plant Biotechnology Journal, 2019, 17(1): 5–8
CrossRef
Pubmed
Google scholar
|
[32] |
Gratz S J, Ukken F P, Rubinstein C D, Thiede G, Donohue L K, Cummings A M, O’Connor-Giles K M . Highly specific and efficient CRISPR/Cas9-catalyzed homology-directed repair in Drosophila. Genetics, 2014, 196(4): 961–971
CrossRef
Pubmed
Google scholar
|
[33] |
Blin K, Shaw S, Tong Y, Weber T . Designing sgRNAs for CRISPR-BEST base editing applications with CRISPy-web 2.0. Synthetic and Systems Biotechnology, 2020, 5(2): 99–102
CrossRef
Pubmed
Google scholar
|
[34] |
Heigwer F, Kerr G, Boutros M . E-CRISP: fast CRISPR target site identification. Nature Methods, 2014, 11(2): 122–123
CrossRef
Pubmed
Google scholar
|
[35] |
Pliatsika V, Rigoutsos I . “Off-Spotter”: very fast and exhaustive enumeration of genomic lookalikes for designing CRISPR/Cas guide RNAs. Biology Direct, 2015, 10(1): 4
CrossRef
Pubmed
Google scholar
|
[36] |
Moreno-Mateos M A, Vejnar C E, Beaudoin J D, Fernandez J P, Mis E K, Khokha M K, Giraldez A J . CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo. Nature Methods, 2015, 12(10): 982–988
CrossRef
Pubmed
Google scholar
|
[37] |
Prykhozhij S V, Rajan V, Gaston D, Berman J N . CRISPR multitargeter: a web tool to find common and unique CRISPR single guide RNA targets in a set of similar sequences. PLoS One, 2015, 10(3): e0119372
CrossRef
Pubmed
Google scholar
|
[38] |
Sander J D, Joung J K . CRISPR-Cas systems for editing, regulating and targeting genomes. Nature Biotechnology, 2014, 32(4): 347–355
CrossRef
Pubmed
Google scholar
|
[39] |
Zhang T, Gao Y, Wang R, Zhao Y . Production of guide RNAs in vitro and in vivo for CRISPR using ribozymes and RNA polymerase II promoters. Bio-Protocol, 2017, 7(4): e2148
CrossRef
Pubmed
Google scholar
|
[40] |
Hodgkins A, Farne A, Perera S, Grego T, Parry-Smith D J, Skarnes W C, Iyer V . WGE: a CRISPR database for genome engineering. Bioinformatics, 2015, 31(18): 3078–3080
CrossRef
Pubmed
Google scholar
|
[41] |
Liu H, Wei Z, Dominguez A, Li Y, Wang X, Qi L S . CRISPR-ERA: a comprehensive design tool for CRISPR-mediated gene editing, repression and activation. Bioinformatics, 2015, 31(22): 3676–3678
CrossRef
Pubmed
Google scholar
|
[42] |
Zhu H, Richmond E, Liang C . CRISPR-RT: a web application for designing CRISPR-C2c2 crRNA with improved target specificity. Bioinformatics, 2018, 34(1): 117–119
CrossRef
Pubmed
Google scholar
|
[43] |
Xie X, Ma X, Zhu Q, Zeng D, Li G, Liu Y G . CRISPR-GE: a convenient software toolkit for CRISPR-based genome editing. Molecular Plant, 2017, 10(9): 1246–1249
CrossRef
Pubmed
Google scholar
|
[44] |
Perez A R, Pritykin Y, Vidigal J A, Chhangawala S, Zamparo L, Leslie C S, Ventura A . GuideScan software for improved single and paired CRISPR guide RNA design. Nature Biotechnology, 2017, 35(4): 347–349
CrossRef
Pubmed
Google scholar
|
[45] |
Lei Y, Lu L, Liu H Y, Li S, Xing F, Chen L L . CRISPR-P: a web tool for synthetic single-guide RNA design of CRISPR-system in plants. Molecular Plant, 2014, 7(9): 1494–1496
CrossRef
Pubmed
Google scholar
|
[46] |
Concordet J P, Haeussler M . CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids Research, 2018, 46(W1): W242–W245
CrossRef
Pubmed
Google scholar
|
[47] |
Allen F, Crepaldi L, Alsinet C, Strong A J, Kleshchevnikov V, De Angeli P, Páleníková P, Khodak A, Kiselev V, Kosicki M, Bassett A R, Harding H, Galanty Y, Muñoz-Martínez F, Metzakopian E, Jackson S P, Parts L . Predicting the mutations generated by repair of Cas9-induced double-strand breaks. Nature Biotechnology, 2019, 37(1): 64–72
CrossRef
Pubmed
Google scholar
|
[48] |
Chari R, Mali P, Moosburner M, Church G M . Unraveling CRISPR-Cas9 genome engineering parameters via a library-on-library approach. Nature Methods, 2015, 12(9): 823–826
CrossRef
Pubmed
Google scholar
|
[49] |
Wilms D, Adler Y, Schröer F, Bunnemann L, Schmidt S . Elastic modulus distribution in poly(N-isopopylacrylamide) and oligo(ethylene glycol methacrylate)-based microgels studied by AFM. Soft Matter, 2021, 17(23): 5711–5717
CrossRef
Pubmed
Google scholar
|
[50] |
Billon P, Bryant E E, Joseph S A, Nambiar T S, Hayward S B, Rothstein R, Ciccia A . CRISPR-mediated base editing enables efficient disruption of eukaryotic genes through induction of STOP codons. Molecular Cell, 2017, 67(6): 1068–1079.e4
CrossRef
Pubmed
Google scholar
|
[51] |
Cornean A, Gierten J, Welz B, Mateo J L, Thumberger T, Wittbrodt J . Precise in vivo functional analysis of DNA variants with base editing using ACEofBASEs target prediction. eLife, 2022, 11: e72124
CrossRef
Pubmed
Google scholar
|
[52] |
Wang D, Zhang C, Wang B, Li B, Wang Q, Liu D, Wang H, Zhou Y, Shi L, Lan F, Wang Y . Optimized CRISPR guide RNA design for two high-fidelity Cas9 variants by deep learning. Nature Communications, 2019, 10(1): 4284
CrossRef
Pubmed
Google scholar
|
[53] |
Shen M W, Arbab M, Hsu J Y, Worstell D, Culbertson S J, Krabbe O, Cassa C A, Liu D R, Gifford D K, Sherwood R I . Predictable and precise template-free CRISPR editing of pathogenic variants. Nature, 2018, 563(7733): 646–651
CrossRef
Pubmed
Google scholar
|
[54] |
Arbab M, Shen M W, Mok B, Wilson C, Matuszek Ż, Cassa C A, Liu D R . Determinants of base editing outcomes from target library analysis and machine learning. Cell, 2020, 182(2): 463–480.e30
CrossRef
Pubmed
Google scholar
|
[55] |
Chari R, Yeo N C, Chavez A, Church G M . sgRNA Scorer 2.0: a species-independent model to predict CRISPR/Cas9 activity. ACS Synthetic Biology, 2017, 6(5): 902–904
CrossRef
Pubmed
Google scholar
|
[56] |
Kim H K, Kim Y, Lee S, Min S, Bae J Y, Choi J W, Park J, Jung D, Yoon S, Kim H H . SpCas9 activity prediction by DeepSpCas9, a deep learning-based model with high generalization performance. Science Advance, 2019, 5(11): eaax9249
|
[57] |
Yuan T, Yan N, Fei T, Zheng J, Meng J, Li N, Liu J, Zhang H, Xie L, Ying W, Li D, Shi L, Sun Y, Li Y, Li Y, Sun Y, Zuo E . Optimization of C-to-G base editors with sequence context preference predictable by machine learning methods. Nature Communications, 2021, 12(1): 4902
CrossRef
Pubmed
Google scholar
|
[58] |
Pulido-Quetglas C, Aparicio-Prat E, Arnan C, Polidori T, Hermoso T, Palumbo E, Ponomarenko J, Guigo R, Johnson R . Scalable design of paired CRISPR guide RNAs for genomic deletion. PLoS Computational Biology, 2017, 13(3): e1005341
CrossRef
Pubmed
Google scholar
|
[59] |
Naito Y, Hino K, Bono H, Ui-Tei K . CRISPRdirect: software for designing CRISPR/Cas guide RNA with reduced off-target sites. Bioinformatics, 2015, 31(7): 1120–1123
CrossRef
Pubmed
Google scholar
|
[60] |
Peng D, Tarleton R . EuPaGDT: a web tool tailored to design CRISPR guide RNAs for eukaryotic pathogens. Microbial Genomics, 2015, 1(4): e000033
CrossRef
Pubmed
Google scholar
|
[61] |
Xiong Y, Xie X, Wang Y, Ma W, Liang P, Songyang Z, Dai Z . pgRNAFinder: a web-based tool to design distance independent paired-gRNA. Bioinformatics, 2017, 33(22): 3642–3644
CrossRef
Pubmed
Google scholar
|
[62] |
Wilson L O W, Reti D, O’Brien A R, Dunne R A, Bauer D C . High activity target-site identification using phenotypic independent CRISPR-Cas9 core functionality. CRISPR Journal, 2018, 1(2): 182–190
CrossRef
Pubmed
Google scholar
|
[63] |
Song M, Kim H K, Lee S, Kim Y, Seo S Y, Park J, Choi J W, Jang H, Shin J H, Min S, Quan Z, Kim J H, Kang H C, Yoon S, Kim H H . Sequence-specific prediction of the efficiencies of adenine and cytosine base editors. Nature Biotechnology, 2020, 38(9): 1037–1043
CrossRef
Pubmed
Google scholar
|
[64] |
Marquart K F, Allam A, Janjuha S, Sintsova A, Villiger L, Frey N, Krauthammer M, Schwank G . Predicting base editing outcomes with an attention-based deep learning algorithm trained on high-throughput target library screens. Nature Communications, 2021, 12(1): 5114
CrossRef
Pubmed
Google scholar
|
[65] |
Moreb E A, Lynch M D . Genome dependent Cas9/gRNA search time underlies sequence dependent gRNA activity. Nature Communications, 2021, 12(1): 5034
CrossRef
Pubmed
Google scholar
|
[66] |
Meier J A, Zhang F, Sanjana N E . GUIDES: sgRNA design for loss-of-function screens. Nature Methods, 2017, 14(9): 831–832
CrossRef
Pubmed
Google scholar
|
[67] |
Alkan F, Wenzel A, Anthon C, Havgaard J H, Gorodkin J . CRISPR-Cas9 off-targeting assessment with nucleic acid duplex energy parameters. Genome Biology, 2018, 19(1): 177
CrossRef
Pubmed
Google scholar
|
[68] |
Yan J, Chuai G, Zhou C, Zhu C, Yang J, Zhang C, Gu F, Xu H, Wei J, Liu Q . Benchmarking CRISPR on-target sgRNA design. Briefings in Bioinformatics, 2018, 19(4): 721–724
CrossRef
Pubmed
Google scholar
|
[69] |
Haeussler M, Schönig K, Eckert H, Eschstruth A, Mianné J, Renaud J B, Schneider-Maunoury S, Shkumatava A, Teboul L, Kent J, Joly J S, Concordet J P . Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biology, 2016, 17(1): 148
CrossRef
Pubmed
Google scholar
|
[70] |
Blin K, Pedersen L E, Weber T, Lee S Y . CRISPy-web: an online resource to design sgRNAs for CRISPR applications. Synthetic and Systems Biotechnology, 2016, 1(2): 118–121
CrossRef
Pubmed
Google scholar
|
[71] |
Chu V T, Graf R, Wirtz T, Weber T, Favret J, Li X, Petsch K, Tran N T, Sieweke M H, Berek C, Kühn R, Rajewsky K . Efficient CRISPR-mediated mutagenesis in primary immune cells using CrispRGold and a C57BL/6 Cas9 transgenic mouse line. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(44): 12514–12519
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |