A PLATFORM TO AID SELECT THE OPTIMAL TOOL TO DESIGN GUIDE RNAS

Qianqian YANG, Lei MA

PDF(2870 KB)
PDF(2870 KB)
Front. Agr. Sci. Eng. ›› 2023, Vol. 10 ›› Issue (2) : 296-305. DOI: 10.15302/J-FASE-2022479
REVIEW
REVIEW

A PLATFORM TO AID SELECT THE OPTIMAL TOOL TO DESIGN GUIDE RNAS

Author information +
History +

Highlights

● Summaries on sgRNAs design.

● Overview of the features of 43 web sgRNA designers.

● A platform to select optimal sgRNA design tool.

Abstract

CRISPR-mediated gene-editing technology has arguably driven an unprecedented revolution in biological sciences for its role in elucidating gene functions. A multitude of software has been developed for the design and analysis of CRISPR/Cas experiments, including predictive tools to design optimally guide RNA for various experimental operations. Different in silico sgRNA design tools have various application scenarios and identifying the optimal design tools can often be a challenge. This paper describes the sgRNA design workflow in experiments, the classification of sgRNA designers, previously published benchmarking work of in silico designers, and the criteria involved how to select an sgRNA web server. Through basic testing, this paper comprehensively overviews and compares the features of 43 web server designers to provide a reference for the readers. Ultimately, the project developed an integrated platform, called Aid-TG, which helps users find appropriate tools quickly.

Graphical abstract

Keywords

CRISPR/Cas / Aid-TG / gene editing / sgRNA design / web server

Cite this article

Download citation ▾
Qianqian YANG, Lei MA. A PLATFORM TO AID SELECT THE OPTIMAL TOOL TO DESIGN GUIDE RNAS. Front. Agr. Sci. Eng., 2023, 10(2): 296‒305 https://doi.org/10.15302/J-FASE-2022479

References

[1]
Knott G J, Doudna J A . CRISPR-Cas guides the future of genetic engineering. Science, 2018, 361(6405): 866–869
CrossRef Pubmed Google scholar
[2]
Gilbert L A, Larson M H, Morsut L, Liu Z, Brar G A, Torres S E, Stern-Ginossar N, Brandman O, Whitehead E H, Doudna J A, Lim W A, Weissman J S, Qi L S . CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell, 2013, 154(2): 442–451
CrossRef Pubmed Google scholar
[3]
Jiang F, Doudna J A . CRISPR-Cas9 structures and mechanisms. Annual Review of Biophysics, 2017, 46(1): 505–529
CrossRef Pubmed Google scholar
[4]
Hanna R E, Doench J G . Design and analysis of CRISPR-Cas experiments. Nature Biotechnology, 2020, 38(7): 813–823
CrossRef Pubmed Google scholar
[5]
Zhang C, Quan R, Wang J . Development and application of CRISPR/Cas9 technologies in genomic editing. Human Molecular Genetics, 2018, 27(R2): R79–R88
CrossRef Pubmed Google scholar
[6]
Trevino A E, Zhang F . Genome editing using Cas9 nickases. Methods in Enzymology, 2014, 546: 161–174
CrossRef Pubmed Google scholar
[7]
Kazi T A, Biswas S R . CRISPR/dCas system as the modulator of gene expression. Progress in Molecular Biology and Translational Science, 2021, 178: 99–122
CrossRef Pubmed Google scholar
[8]
Nuñez J K, Chen J, Pommier G C, Cogan J Z, Replogle J M, Adriaens C, Ramadoss G N, Shi Q, Hung K L, Samelson A J, Pogson A N, Kim J Y S, Chung A, Leonetti M D, Chang H Y, Kampmann M, Bernstein B E, Hovestadt V, Gilbert L A, Weissman J S . Genome-wide programmable transcriptional memory by CRISPR-based epigenome editing. Cell, 2021, 184(9): 2503–2519.e17
CrossRef Pubmed Google scholar
[9]
Paul B, Montoya G . CRISPR-Cas12a: functional overview and applications. Biomedical Journal, 2020, 43(1): 8–17
CrossRef Pubmed Google scholar
[10]
Cox D B T, Gootenberg J S, Abudayyeh O O, Franklin B, Kellner M J, Joung J, Zhang F . RNA editing with CRISPR-Cas13. Science, 2017, 358(6366): 1019–1027
CrossRef Pubmed Google scholar
[11]
Doench J G, Hartenian E, Graham D B, Tothova Z, Hegde M, Smith I, Sullender M, Ebert B L, Xavier R J, Root D E . Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nature Biotechnology, 2014, 32(12): 1262–1267
CrossRef Pubmed Google scholar
[12]
Zhang Y, Zhao G, Ahmed F Y H, Yi T, Hu S, Cai T, Liao Q . In silico method in CRISPR/Cas system: an expedite and powerful booster. Frontiers in Oncology, 2020, 10: 584404
CrossRef Pubmed Google scholar
[13]
Doench J G, Fusi N, Sullender M, Hegde M, Vaimberg E W, Donovan K F, Smith I, Tothova Z, Wilen C, Orchard R, Virgin H W, Listgarten J, Root D E . Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nature Biotechnology, 2016, 34(2): 184–191
CrossRef Pubmed Google scholar
[14]
Chuai G, Ma H, Yan J, Chen M, Hong N, Xue D, Zhou C, Zhu C, Chen K, Duan B, Gu F, Qu S, Huang D, Wei J, Liu Q . DeepCRISPR: optimized CRISPR guide RNA design by deep learning. Genome Biology, 2018, 19(1): 80
CrossRef Pubmed Google scholar
[15]
Kim H K, Min S, Song M, Jung S, Choi J W, Kim Y, Lee S, Yoon S, Kim H H . Deep learning improves prediction of CRISPR-Cpf1 guide RNA activity. Nature Biotechnology, 2018, 36(3): 239–241
CrossRef Pubmed Google scholar
[16]
Liu Q, Cheng X, Liu G, Li B, Liu X . Deep learning improves the ability of sgRNA off-target propensity prediction. BMC Bioinformatics, 2020, 21(1): 51
CrossRef Pubmed Google scholar
[17]
Wong N, Liu W, Wang X . WU-CRISPR: characteristics of functional guide RNAs for the CRISPR/Cas9 system. Genome Biology, 2015, 16(1): 218
CrossRef Pubmed Google scholar
[18]
Labun K, Montague T G, Krause M, Torres Cleuren Y N, Tjeldnes H, Valen E . CHOPCHOP v3: expanding the CRISPR web toolbox beyond genome editing. Nucleic Acids Research, 2019, 47(W1): W171–W174
CrossRef Pubmed Google scholar
[19]
Stemmer M, Thumberger T, Del Sol Keyer M, Wittbrodt J, Mateo J L . CCTop: an intuitive, flexible and reliable CRISPR/Cas9 target prediction tool. PLoS One, 2015, 10(4): e0124633
CrossRef Pubmed Google scholar
[20]
Xu H, Xiao T, Chen C H, Li W, Meyer C A, Wu Q, Wu D, Cong L, Zhang F, Liu J S, Brown M, Liu X S . Sequence determinants of improved CRISPR sgRNA design. Genome Research, 2015, 25(8): 1147–1157
CrossRef Pubmed Google scholar
[21]
Qianqian Y, Lei M. A platform to aid select the optimal tool to design guide RNAs. Available at Aid-TG website on April 20, 2022
[22]
Yan J, Xue D, Chuai G, Gao Y, Zhang G, Liu Q . Benchmarking and integrating genome-wide CRISPR off-target detection and prediction. Nucleic Acids Research, 2020, 48(20): 11370–11379
CrossRef Pubmed Google scholar
[23]
O’Brien A, Bailey T L . GT-Scan: identifying unique genomic targets. Bioinformatics, 2014, 30(18): 2673–2675
CrossRef Pubmed Google scholar
[24]
Park J, Bae S, Kim J S . Cas-Designer: a web-based tool for choice of CRISPR-Cas9 target sites. Bioinformatics, 2015, 31(24): 4014–4016
Pubmed
[25]
Hwang G H, Park J, Lim K, Kim S, Yu J, Yu E, Kim S T, Eils R, Kim J S, Bae S . Web-based design and analysis tools for CRISPR base editing. BMC Bioinformatics, 2018, 19(1): 542
CrossRef Pubmed Google scholar
[26]
Bae S, Park J, Kim J S . Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics, 2014, 30(10): 1473–1475
CrossRef Pubmed Google scholar
[27]
Hwang G H, Jeong Y K, Habib O, Hong S A, Lim K, Kim J S, Bae S . PE-Designer and PE-Analyzer: web-based design and analysis tools for CRISPR prime editing. Nucleic Acids Research, 2021, 49(W1): W499–W504
CrossRef Pubmed Google scholar
[28]
He C, Liu H, Chen D, Xie W Z, Wang M, Li Y, Gong X, Yan W, Chen L L . CRISPR-Cereal: a guide RNA design tool integrating regulome and genomic variation for wheat, maize and rice. Plant Biotechnology Journal, 2021, 19(11): 2141–2143
CrossRef Pubmed Google scholar
[29]
Oliveros J C, Franch M, Tabas-Madrid D, San-León D, Montoliu L, Cubas P, Pazos F . Breaking-Cas-interactive design of guide RNAs for CRISPR-Cas experiments for ENSEMBL genomes. Nucleic Acids Research, 2016, 44(W1): W267–W271
CrossRef Pubmed Google scholar
[30]
Chow R D, Chen J S, Shen J, Chen S . A web tool for the design of prime-editing guide RNAs. Nature Biomedical Engineering, 2021, 5(2): 190–194
CrossRef Pubmed Google scholar
[31]
Minkenberg B, Zhang J, Xie K, Yang Y . CRISPR-PLANT v2: an online resource for highly specific guide RNA spacers based on improved off-target analysis. Plant Biotechnology Journal, 2019, 17(1): 5–8
CrossRef Pubmed Google scholar
[32]
Gratz S J, Ukken F P, Rubinstein C D, Thiede G, Donohue L K, Cummings A M, O’Connor-Giles K M . Highly specific and efficient CRISPR/Cas9-catalyzed homology-directed repair in Drosophila. Genetics, 2014, 196(4): 961–971
CrossRef Pubmed Google scholar
[33]
Blin K, Shaw S, Tong Y, Weber T . Designing sgRNAs for CRISPR-BEST base editing applications with CRISPy-web 2.0. Synthetic and Systems Biotechnology, 2020, 5(2): 99–102
CrossRef Pubmed Google scholar
[34]
Heigwer F, Kerr G, Boutros M . E-CRISP: fast CRISPR target site identification. Nature Methods, 2014, 11(2): 122–123
CrossRef Pubmed Google scholar
[35]
Pliatsika V, Rigoutsos I . “Off-Spotter”: very fast and exhaustive enumeration of genomic lookalikes for designing CRISPR/Cas guide RNAs. Biology Direct, 2015, 10(1): 4
CrossRef Pubmed Google scholar
[36]
Moreno-Mateos M A, Vejnar C E, Beaudoin J D, Fernandez J P, Mis E K, Khokha M K, Giraldez A J . CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo. Nature Methods, 2015, 12(10): 982–988
CrossRef Pubmed Google scholar
[37]
Prykhozhij S V, Rajan V, Gaston D, Berman J N . CRISPR multitargeter: a web tool to find common and unique CRISPR single guide RNA targets in a set of similar sequences. PLoS One, 2015, 10(3): e0119372
CrossRef Pubmed Google scholar
[38]
Sander J D, Joung J K . CRISPR-Cas systems for editing, regulating and targeting genomes. Nature Biotechnology, 2014, 32(4): 347–355
CrossRef Pubmed Google scholar
[39]
Zhang T, Gao Y, Wang R, Zhao Y . Production of guide RNAs in vitro and in vivo for CRISPR using ribozymes and RNA polymerase II promoters. Bio-Protocol, 2017, 7(4): e2148
CrossRef Pubmed Google scholar
[40]
Hodgkins A, Farne A, Perera S, Grego T, Parry-Smith D J, Skarnes W C, Iyer V . WGE: a CRISPR database for genome engineering. Bioinformatics, 2015, 31(18): 3078–3080
CrossRef Pubmed Google scholar
[41]
Liu H, Wei Z, Dominguez A, Li Y, Wang X, Qi L S . CRISPR-ERA: a comprehensive design tool for CRISPR-mediated gene editing, repression and activation. Bioinformatics, 2015, 31(22): 3676–3678
CrossRef Pubmed Google scholar
[42]
Zhu H, Richmond E, Liang C . CRISPR-RT: a web application for designing CRISPR-C2c2 crRNA with improved target specificity. Bioinformatics, 2018, 34(1): 117–119
CrossRef Pubmed Google scholar
[43]
Xie X, Ma X, Zhu Q, Zeng D, Li G, Liu Y G . CRISPR-GE: a convenient software toolkit for CRISPR-based genome editing. Molecular Plant, 2017, 10(9): 1246–1249
CrossRef Pubmed Google scholar
[44]
Perez A R, Pritykin Y, Vidigal J A, Chhangawala S, Zamparo L, Leslie C S, Ventura A . GuideScan software for improved single and paired CRISPR guide RNA design. Nature Biotechnology, 2017, 35(4): 347–349
CrossRef Pubmed Google scholar
[45]
Lei Y, Lu L, Liu H Y, Li S, Xing F, Chen L L . CRISPR-P: a web tool for synthetic single-guide RNA design of CRISPR-system in plants. Molecular Plant, 2014, 7(9): 1494–1496
CrossRef Pubmed Google scholar
[46]
Concordet J P, Haeussler M . CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids Research, 2018, 46(W1): W242–W245
CrossRef Pubmed Google scholar
[47]
Allen F, Crepaldi L, Alsinet C, Strong A J, Kleshchevnikov V, De Angeli P, Páleníková P, Khodak A, Kiselev V, Kosicki M, Bassett A R, Harding H, Galanty Y, Muñoz-Martínez F, Metzakopian E, Jackson S P, Parts L . Predicting the mutations generated by repair of Cas9-induced double-strand breaks. Nature Biotechnology, 2019, 37(1): 64–72
CrossRef Pubmed Google scholar
[48]
Chari R, Mali P, Moosburner M, Church G M . Unraveling CRISPR-Cas9 genome engineering parameters via a library-on-library approach. Nature Methods, 2015, 12(9): 823–826
CrossRef Pubmed Google scholar
[49]
Wilms D, Adler Y, Schröer F, Bunnemann L, Schmidt S . Elastic modulus distribution in poly(N-isopopylacrylamide) and oligo(ethylene glycol methacrylate)-based microgels studied by AFM. Soft Matter, 2021, 17(23): 5711–5717
CrossRef Pubmed Google scholar
[50]
Billon P, Bryant E E, Joseph S A, Nambiar T S, Hayward S B, Rothstein R, Ciccia A . CRISPR-mediated base editing enables efficient disruption of eukaryotic genes through induction of STOP codons. Molecular Cell, 2017, 67(6): 1068–1079.e4
CrossRef Pubmed Google scholar
[51]
Cornean A, Gierten J, Welz B, Mateo J L, Thumberger T, Wittbrodt J . Precise in vivo functional analysis of DNA variants with base editing using ACEofBASEs target prediction. eLife, 2022, 11: e72124
CrossRef Pubmed Google scholar
[52]
Wang D, Zhang C, Wang B, Li B, Wang Q, Liu D, Wang H, Zhou Y, Shi L, Lan F, Wang Y . Optimized CRISPR guide RNA design for two high-fidelity Cas9 variants by deep learning. Nature Communications, 2019, 10(1): 4284
CrossRef Pubmed Google scholar
[53]
Shen M W, Arbab M, Hsu J Y, Worstell D, Culbertson S J, Krabbe O, Cassa C A, Liu D R, Gifford D K, Sherwood R I . Predictable and precise template-free CRISPR editing of pathogenic variants. Nature, 2018, 563(7733): 646–651
CrossRef Pubmed Google scholar
[54]
Arbab M, Shen M W, Mok B, Wilson C, Matuszek Ż, Cassa C A, Liu D R . Determinants of base editing outcomes from target library analysis and machine learning. Cell, 2020, 182(2): 463–480.e30
CrossRef Pubmed Google scholar
[55]
Chari R, Yeo N C, Chavez A, Church G M . sgRNA Scorer 2.0: a species-independent model to predict CRISPR/Cas9 activity. ACS Synthetic Biology, 2017, 6(5): 902–904
CrossRef Pubmed Google scholar
[56]
Kim H K, Kim Y, Lee S, Min S, Bae J Y, Choi J W, Park J, Jung D, Yoon S, Kim H H . SpCas9 activity prediction by DeepSpCas9, a deep learning-based model with high generalization performance. Science Advance, 2019, 5(11): eaax9249
[57]
Yuan T, Yan N, Fei T, Zheng J, Meng J, Li N, Liu J, Zhang H, Xie L, Ying W, Li D, Shi L, Sun Y, Li Y, Li Y, Sun Y, Zuo E . Optimization of C-to-G base editors with sequence context preference predictable by machine learning methods. Nature Communications, 2021, 12(1): 4902
CrossRef Pubmed Google scholar
[58]
Pulido-Quetglas C, Aparicio-Prat E, Arnan C, Polidori T, Hermoso T, Palumbo E, Ponomarenko J, Guigo R, Johnson R . Scalable design of paired CRISPR guide RNAs for genomic deletion. PLoS Computational Biology, 2017, 13(3): e1005341
CrossRef Pubmed Google scholar
[59]
Naito Y, Hino K, Bono H, Ui-Tei K . CRISPRdirect: software for designing CRISPR/Cas guide RNA with reduced off-target sites. Bioinformatics, 2015, 31(7): 1120–1123
CrossRef Pubmed Google scholar
[60]
Peng D, Tarleton R . EuPaGDT: a web tool tailored to design CRISPR guide RNAs for eukaryotic pathogens. Microbial Genomics, 2015, 1(4): e000033
CrossRef Pubmed Google scholar
[61]
Xiong Y, Xie X, Wang Y, Ma W, Liang P, Songyang Z, Dai Z . pgRNAFinder: a web-based tool to design distance independent paired-gRNA. Bioinformatics, 2017, 33(22): 3642–3644
CrossRef Pubmed Google scholar
[62]
Wilson L O W, Reti D, O’Brien A R, Dunne R A, Bauer D C . High activity target-site identification using phenotypic independent CRISPR-Cas9 core functionality. CRISPR Journal, 2018, 1(2): 182–190
CrossRef Pubmed Google scholar
[63]
Song M, Kim H K, Lee S, Kim Y, Seo S Y, Park J, Choi J W, Jang H, Shin J H, Min S, Quan Z, Kim J H, Kang H C, Yoon S, Kim H H . Sequence-specific prediction of the efficiencies of adenine and cytosine base editors. Nature Biotechnology, 2020, 38(9): 1037–1043
CrossRef Pubmed Google scholar
[64]
Marquart K F, Allam A, Janjuha S, Sintsova A, Villiger L, Frey N, Krauthammer M, Schwank G . Predicting base editing outcomes with an attention-based deep learning algorithm trained on high-throughput target library screens. Nature Communications, 2021, 12(1): 5114
CrossRef Pubmed Google scholar
[65]
Moreb E A, Lynch M D . Genome dependent Cas9/gRNA search time underlies sequence dependent gRNA activity. Nature Communications, 2021, 12(1): 5034
CrossRef Pubmed Google scholar
[66]
Meier J A, Zhang F, Sanjana N E . GUIDES: sgRNA design for loss-of-function screens. Nature Methods, 2017, 14(9): 831–832
CrossRef Pubmed Google scholar
[67]
Alkan F, Wenzel A, Anthon C, Havgaard J H, Gorodkin J . CRISPR-Cas9 off-targeting assessment with nucleic acid duplex energy parameters. Genome Biology, 2018, 19(1): 177
CrossRef Pubmed Google scholar
[68]
Yan J, Chuai G, Zhou C, Zhu C, Yang J, Zhang C, Gu F, Xu H, Wei J, Liu Q . Benchmarking CRISPR on-target sgRNA design. Briefings in Bioinformatics, 2018, 19(4): 721–724
CrossRef Pubmed Google scholar
[69]
Haeussler M, Schönig K, Eckert H, Eschstruth A, Mianné J, Renaud J B, Schneider-Maunoury S, Shkumatava A, Teboul L, Kent J, Joly J S, Concordet J P . Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biology, 2016, 17(1): 148
CrossRef Pubmed Google scholar
[70]
Blin K, Pedersen L E, Weber T, Lee S Y . CRISPy-web: an online resource to design sgRNAs for CRISPR applications. Synthetic and Systems Biotechnology, 2016, 1(2): 118–121
CrossRef Pubmed Google scholar
[71]
Chu V T, Graf R, Wirtz T, Weber T, Favret J, Li X, Petsch K, Tran N T, Sieweke M H, Berek C, Kühn R, Rajewsky K . Efficient CRISPR-mediated mutagenesis in primary immune cells using CrispRGold and a C57BL/6 Cas9 transgenic mouse line. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(44): 12514–12519
CrossRef Pubmed Google scholar

Compliance with ethics guidelines

Qianqian Yang and Lei Ma declare that they have no conflicts of interest or financial conflicts to disclose. This article does not contain any studies with human or animal subjects performed by any of the authors.

RIGHTS & PERMISSIONS

The Author(s) 2022. Published by Higher Education Press. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0)
AI Summary AI Mindmap
PDF(2870 KB)

Accesses

Citations

Detail

Sections
Recommended

/