DISCIPLINE SYSTEM OF ALFALFA BIOLOGY: FROM MULTIOMICS TO BIOLOGICAL BREEDING
Tao WANG
DISCIPLINE SYSTEM OF ALFALFA BIOLOGY: FROM MULTIOMICS TO BIOLOGICAL BREEDING
● This review systematically raises the subject concept of alfalfa biology.
● The discipline of alfalfa biology has been divided into six major sections.
● The recent advances from the perspective of discipline system have been reviewed.
Alfalfa (Medicago sativa) is the main leguminous forage crop with great ecologic and economic value. The research of alfalfa in various fields has exploded, but has not been included in a systematic framework. This paper summarizes the status of global alfalfa research over the past 10 years, raise the subject concept of alfalfa biology, and review the recent advances from the perspective of discipline system as germplasm resources, multiomics and biotechnology, environmental biology, symbiotic nitrogen fixation, biological breeding and cultivation. This paper proposes the key unsolved scientific and technical issues in alfalfa biology, and hope to appeal the research interest of more plant scientists and to promote the development of alfalfa industry.
alfalfa / discipline system / forage biology / lucerne / Medicago sativa
[1] |
UndersanderD. Economic importance, practical limitations to production, management, and breeding targets of alfalfa. In: Yu L X, Kole C, eds. The Alfalfa Genome. Compendium of Plant Genomes. Cham: Springer, 2021, 1–11
|
[2] |
HeF, Xie K, WanL, LiX. The role of alfalfa on the maintenance of food security in China. Journal of Agricultural Science and Technology, 2014, 16(6): 7− 13 ( in Chinese)
|
[3] |
PutnamD H. Factors influencing yield and quality in alfalfa. In: Yu L X, Kole C, eds. The Alfalfa Genome. Compendium of Plant Genomes. Cham: Springer, 2021, 13–27
|
[4] |
WangZ, ŞakiroğluM. The origin, evolution, and genetic diversity of alfalfa. In: Yu L X, Kole C, eds. The Alfalfa Genome. Compendium of Plant Genomes. Cham: Springer, 2021, 29–42
|
[5] |
IrishB M, GreeneS L. Germplasm collection, genetic resources, and gene pools in alfalfa. In: Yu L X, Kole C, eds. The Alfalfa Genome. Compendium of Plant Genomes. Cham: Springer, 2021, 43–64
|
[6] |
Mejia-GuerraM K, ZhaoD, SheehanM J. Genomic resources for breeding in alfalfa: availability, utility and adoption. In: Yu L X, Kole C, eds. The Alfalfa Genome. Compendium of Plant Genomes. Cham: Springer, 2021, 177–189
|
[7] |
SamacD A, TempleS J. Biotechnology advances in alfalfa. In: Yu L X, Kole C, eds. The Alfalfa genome. Compendium of Plant Genomes. Cham: Springer, 2021, 65–86
|
[8] |
PotterR W K, SzomszorM, AdamsJ. Comparing standard, collaboration and fractional CNCI at the institutional level: consequences for performance evaluation. Scientometrics, 2022 [Published Online]
|
[9] |
WangW. Improving China’s alfalfa industry development: an economic analysis. China Agricultural Economic Review, 2021, 13( 1): 211–228
CrossRef
Google scholar
|
[10] |
ŞakiroğluM, İlhanD. Medicago sativa species complex: revisiting the century-old problem in the light of molecular tools. Crop Science, 2021, 61( 2): 827–838
CrossRef
Google scholar
|
[11] |
ShenC, DuH, ChenZ, LuH, ZhuF, ChenH, MengX, LiuQ, LiuP, ZhengL, LiX, DongJ, LiangC, WangT. The chromosome-level genome sequence of the autotetraploid alfalfa and resequencing of core germplasms provide genomic resources for alfalfa research. Molecular Plant, 2020, 13( 9): 1250–1261
CrossRef
Pubmed
Google scholar
|
[12] |
ChenL, HeF, LongR, ZhangF, LiM, WangZ, KangJ, YangQ. A global alfalfa diversity panel reveals genomic selection signatures in Chinese varieties and genomic associations with root development. Journal of Integrative Plant Biology, 2021, 63( 11): 1937–1951
CrossRef
Pubmed
Google scholar
|
[13] |
İlhanD, LiX, BrummerE C, ŞakiroğluM. Genetic diversity and population structure of tetraploid accessions of the Medicago sativa-falcata complex. Crop Science, 2016, 56( 3): 1146–1156
CrossRef
Google scholar
|
[14] |
YinS, WangY, NanZ. Genetic diversity studies of alfalfa germplasm (Medicago sativa L. subsp sativa) of United States origin using microsatellite analysis. Legume Research, 2018, 41( 2): 202–207
|
[15] |
ChenJ, WuG, ShresthaN, WuS, GuoW, YinM, LiA, LiuJ, RenG. Phylogeny and species delimitation of Chinese Medicago (Leguminosae) and its relatives based on molecular and morphological evidence. Frontiers in Plant Science, 2021, 11 : 619799
CrossRef
Pubmed
Google scholar
|
[16] |
HeC, XiaZ L, CampbellT A, BauchanG R. Development and characterization of SSR markers and their use to assess genetic relationships among alfalfa germplasms. Crop Science, 2009, 49( 6): 2176–2186
CrossRef
Google scholar
|
[17] |
KidwellK K, AustinD F, OsbornT C. RFLP evaluation of nine Medicago accessions representing the original germplasm sources for North American alfalfa cultivars. Crop Science, 1994, 34( 1): 230–236
CrossRef
Google scholar
|
[18] |
KumarS. Biotechnological advancements in alfalfa improvement. Journal of Applied Genetics, 2011, 52( 2): 111–124
CrossRef
Pubmed
Google scholar
|
[19] |
LiX, HanY, WeiY, AcharyaA, FarmerA D, HoJ, MonterosM J, BrummerE C. Development of an alfalfa SNP array and its use to evaluate patterns of population structure and linkage disequilibrium. PLoS One, 2014, 9( 1): e84329
CrossRef
Pubmed
Google scholar
|
[20] |
TussipkanD, ManabayevaS A. Alfalfa (Medicago Sativa L.): genotypic diversity and transgenic alfalfa for phytoremediation. Frontiers in Environmental Science, 2022, 10 : 828257
CrossRef
Google scholar
|
[21] |
YoungN D, DebelléF, OldroydG E, GeurtsR, CannonS B, UdvardiM K, BeneditoV A, MayerK F X, GouzyJ, SchoofH, Vande Peer Y, ProostS, CookD R, MeyersB C, SpannaglM, CheungF, DeMita S, KrishnakumarV, GundlachH, ZhouS, MudgeJ, BhartiA K, MurrayJ D, NaoumkinaM A, RosenB, SilversteinK A T, TangH, RombautsS, ZhaoP X, ZhouP, BarbeV, BardouP, BechnerM, BellecA, BergerA, BergèsH, BidwellS, BisselingT, ChoisneN, CoulouxA, DennyR, DeshpandeS, DaiX, DoyleJ J, DudezA M, FarmerA D, FouteauS, FrankenC, GibelinC, GishJ, GoldsteinS, GonzálezA J, GreenP J, HallabA, HartogM, HuaA, HumphrayS J, JeongD H, JingY, JöckerA, KentonS M, KimD J, KleeK, LaiH, LangC, LinS, MacmilS L, MagdelenatG, MatthewsL, McCorrisonJ, MonaghanE L, MunJ H, NajarF Z, NicholsonC, NoirotC, O’BlenessM, PauleC R, PoulainJ, PrionF, QinB, QuC, RetzelE F, RiddleC, SalletE, SamainS, SamsonN, SandersI, SauratO, ScarpelliC, SchiexT, SegurensB, SeverinA J, SherrierD J, ShiR, SimsS, SingerS R, SinharoyS, SterckL, ViolletA, WangB B, WangK, WangM, WangX, WarfsmannJ, WeissenbachJ, WhiteD D, WhiteJ D, WileyG B, WinckerP, XingY, YangL, YaoZ, YingF, ZhaiJ, ZhouL, ZuberA, DénariéJ, DixonR A, MayG D, SchwartzD C, RogersJ, QuétierF, TownC D, RoeB A. The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature, 2011, 480( 7378): 520–524
CrossRef
Pubmed
Google scholar
|
[22] |
HrbáčkováM, Dvořák P, Takáč T, TicháM, Luptovčiak I, Šamajová O, OvečkaM, ŠamajJ. Biotechnological perspectives of omics and genetic engineering methods in alfalfa. Frontiers in Plant Science, 2020, 11 : 592
CrossRef
Pubmed
Google scholar
|
[23] |
HawkinsC, YuL X. Recent progress in alfalfa (Medicago sativa L.) genomics and genomic selection. Crop Journal, 2018, 6( 6): 565–575
CrossRef
Google scholar
|
[24] |
ChenH, ZengY, YangY, HuangL, TangB, ZhangH, HaoF, LiuW, LiY, LiuY, ZhangX, ZhangR, ZhangY, LiY, WangK, HeH, WangZ, FanG, YangH, BaoA, ShangZ, ChenJ, WangW, QiuQ. Allele-aware chromosome-level genome assembly and efficient transgene-free genome editing for the autotetraploid cultivated alfalfa. Nature Communications, 2020, 11( 1): 2494
CrossRef
Pubmed
Google scholar
|
[25] |
LiA, LiuA, DuX, ChenJ Y, YinM, HuH Y, ShresthaN, WuS D, WangH Q, DouQ W, LiuZ P, LiuJ Q, YangY Z, RenG P. A chromosome-scale genome assembly of a diploid alfalfa, the progenitor of autotetraploid alfalfa. Horticulture Research, 2020, 7( 1): 194
CrossRef
Pubmed
Google scholar
|
[26] |
LongR, ZhangF, ZhangZ, LiM, Chen L, WangX, LiuW, ZhangT, YuL–X, HeF, Jiang X, YangX, YangC, WangZ, KangJ, YangQ. Genome assembly of alfalfa cultivar zhongmu-4 and identification of SNPs associated with agronomic traits. Genomics, Proteomics & Bioinformatics, 2022 [Published Online]
|
[27] |
CuiJ, LuZ, WangT, ChenG, MostafaS, RenH, LiuS, FuC, WangL, ZhuY, LuJ, ChenX, WeiZ, JinB. The genome of Medicago polymorpha provides insights into its edibility and nutritional value as a vegetable and forage legume. Horticulture Research, 2021, 8( 1): 47
CrossRef
Pubmed
Google scholar
|
[28] |
YinM, ZhangS, DuX, MateoR G, GuoW, LiA, WangZ, WuS, ChenJ, LiuJ, RenG. Genomic analysis of Medicago ruthenica provides insights into its tolerance to abiotic stress and demographic history. Molecular Ecology Resources, 2021, 21( 5): 1641–1657
CrossRef
Pubmed
Google scholar
|
[29] |
WangT, RenL, LiC, ZhangD, ZhangX, ZhouG, GaoD, ChenR, ChenY, WangZ, ShiF, FarmerA D, LiY, ZhouM, YoungN D, ZhangW H. The genome of a wild Medicago species provides insights into the tolerant mechanisms of legume forage to environmental stress. BMC Biology, 2021, 19( 1): 96
CrossRef
Pubmed
Google scholar
|
[30] |
YangY, SaandM A, HuangL, AbdelaalW B, ZhangJ, WuY, LiJ, SirohiM H, WangF. Applications of multi-omics technologies for crop improvement. Frontiers in Plant Science, 2021, 12 : 563953
CrossRef
Pubmed
Google scholar
|
[31] |
NemchinovL G, ShaoJ, GrinsteadS, PostnikovaO A. Transcription factors in alfalfa ( Medicago sativa L.): genome-wide identification and a web resource center AlfalfaTFDB . In: Yu L X, Kole C, eds. The Alfalfa Genome. Compendium of Plant Genomes. Cham: Springer, 2021, 111–127
|
[32] |
LiJ, EssemineJ, ShangC, ZhangH, ZhuX, YuJ, ChenG, QuM, SunD. Combined proteomics and metabolism analysis unravels prominent roles of antioxidant system in the prevention of alfalfa (Medicago sativa L.) against salt stress. International Journal of Molecular Sciences, 2020, 21( 3): 909
CrossRef
Pubmed
Google scholar
|
[33] |
LiY, LiX, ZhangJ, LiD, YanL, YouM, ZhangJ, LeiX, ChangD, JiX, AnJ, LiM, BaiS, YanJ. Physiological and proteomic responses of contrasting alfalfa (Medicago sativa L.) varieties to high temperature stress. Frontiers in Plant Science, 2021, 12 : 753011
CrossRef
Pubmed
Google scholar
|
[34] |
MaQ, XuX, XieY, HuangT, WangW, ZhaoL, MaD. Comparative metabolomic analysis of the metabolism pathways under drought stress in alfalfa leaves. Environmental and Experimental Botany, 2021, 183 : 104329
CrossRef
Google scholar
|
[35] |
FanW, GeG, LiuY, WangW, LiuL, JiaY. Proteomics integrated with metabolomics: analysis of the internal causes of nutrient changes in alfalfa at different growth stages. BMC Plant Biology, 2018, 18( 1): 78
CrossRef
Pubmed
Google scholar
|
[36] |
AranjueloI, MoleroG, EriceG, AviceJ C, NoguésS. Plant physiology and proteomics reveals the leaf response to drought in alfalfa (Medicago sativa L.). Journal of Experimental Botany, 2011, 62( 1): 111–123
CrossRef
Pubmed
Google scholar
|
[37] |
LingL, AnY, WangD, TangL, DuB, ShuY, BaiY, GuoC. Proteomic analysis reveals responsive mechanisms for saline-alkali stress in alfalfa. Plant Physiology and Biochemistry, 2022, 170 : 146–159
CrossRef
Pubmed
Google scholar
|
[38] |
FuC, Hernandez T, ZhouC, WangZ Y. Alfalfa (Medicago sativa L.) . In: Wang K, ed. Agrobacterium Protocols. Methods in Molecular Biology, vol 1223. New York: Springer, 2015, 213–221
|
[39] |
WolabuT W, CongL, ParkJ J, BaoQ, ChenM, SunJ, XuB, GeY, ChaiM, LiuZ, WangZ Y. Development of a highly efficient multiplex genome editing system in outcrossing tetraploid alfalfa (Medicago sativa). Frontiers in Plant Science, 2020, 11 : 1063
CrossRef
Pubmed
Google scholar
|
[40] |
GaoC. Genome engineering for crop improvement and future agriculture. Cell, 2021, 184( 6): 1621–1635
CrossRef
Pubmed
Google scholar
|
[41] |
ZhuF, YeQ, Chen H, DongJ, WangT. Multigene editing reveals that MtCEP1/2/12 redundantly control lateral root and nodule number in Medicago truncatula. Journal of Experimental Botany, 2021, 72(10): 3661–3676
|
[42] |
YeQ, MengX, ChenH, WuJ, ZhengL, ShenC, GuoD, ZhaoY, LiuJ, XueQ, DongJ, WangT. Construction of genic male sterility system by CRISPR/Cas9 editing from model legume to alfalfa. Plant Biotechnology Journal, 2022, 20( 4): 613–615
CrossRef
Pubmed
Google scholar
|
[43] |
ZhengL, WenJ, LiuJ, MengX, LiuP, CaoN, DongJ, WangT. From model to alfalfa: gene editing to obtain semidwarf and prostrate growth habits. The Crop Journal, 2021 [Published Online]
|
[44] |
LiX, Alarcón-ZúñigaB, KangJ, TahirM H N, JiangQ, WeiY, ReynoR, RobinsJ G, BrummerE C. Mapping fall dormancy and winter injury in tetraploid alfalfa. Crop Science, 2015, 55( 5): 1995–2011
CrossRef
Google scholar
|
[45] |
BrouwerD J, DukeS H, OsbornT C. Mapping genetic factors associated with winter hardiness, fail growth, and freezing injury in autotetraploid alfalfa. Crop Science, 2000, 40( 5): 1387–1396
CrossRef
Google scholar
|
[46] |
BrummerE C, ShahM M, LuthD. Reexamining the relationship between fall dormancy and winter hardiness in alfalfa. Crop Science, 2000, 40( 4): 971–977
CrossRef
Google scholar
|
[47] |
WangZ, WangX, ZhangH, MaL, ZhaoH, JonesC S, ChenJ, LiuG. A genome-wide association study approach to the identification of candidate genes underlying agronomic traits in alfalfa (Medicago sativa L.). Plant Biotechnology Journal, 2020, 18( 3): 611–613
CrossRef
Pubmed
Google scholar
|
[48] |
ZhangS, WangC. Transcriptome profiling of gene expression in fall dormant and nondormant alfalfa. Genomics Data, 2014, 2 : 282–284
CrossRef
Pubmed
Google scholar
|
[49] |
ZhangS, ShiY, ChengN, DuH, FanW, WangC. De novo characterization of fall dormant and nondormant alfalfa (Medicago sativa L.) leaf transcriptome and identification of candidate genes related to fall dormancy. PLoS One, 2015, 10( 3): e0122170
CrossRef
Pubmed
Google scholar
|
[50] |
DuH, ShiY, LiD, FanW, WangG, WangC. Screening and identification of key genes regulating fall dormancy in alfalfa leaves. PLoS One, 2017, 12( 12): e0188964
CrossRef
Pubmed
Google scholar
|
[51] |
YuL X, MedinaC A, PeelM. Genetic and genomic assessments for improving drought resilience in alfalfa. In: Yu L X, Kole C, eds. The Alfalfa Genome. Compendium of Plant Genomes. Cham: Springer, 2021, 235–253
|
[52] |
MiaoZ, XuW, LiD, HuX, LiuJ, ZhangR, TongZ, DongJ, SuZ, ZhangL, SunM, LiW, DuZ, HuS, WangT. De novo transcriptome analysis of Medicago falcata reveals novel insights about the mechanisms underlying abiotic stress-responsive pathway. BMC Genomics, 2015, 16( 1): 818
CrossRef
Pubmed
Google scholar
|
[53] |
LiuW, ZhangZ, ChenS, MaL, WangH, DongR, WangY, LiuZ. Global transcriptome profiling analysis reveals insight into saliva-responsive genes in alfalfa. Plant Cell Reports, 2016, 35( 3): 561–571
CrossRef
Pubmed
Google scholar
|
[54] |
LiD, ZhangY, HuX, ShenX, MaL, SuZ, WangT, DongJ. Transcriptional profiling of Medicago truncatula under salt stress identified a novel CBF transcription factor MtCBF4 that plays an important role in abiotic stress responses. BMC Plant Biology, 2011, 11( 1): 109
CrossRef
Pubmed
Google scholar
|
[55] |
DuanM, ZhangR, ZhuF, ZhangZ, GouL, WenJ, DongJ, WangT. A lipid-anchored NAC transcription factor is translocated into the nucleus and activates glyoxalase I expression during drought stress. Plant Cell, 2017, 29( 7): 1748–1772
CrossRef
Pubmed
Google scholar
|
[56] |
XieC, ZhangR, QuY, MiaoZ, ZhangY, ShenX, WangT, DongJ. Overexpression of MtCAS31 enhances drought tolerance in transgenic Arabidopsis by reducing stomatal density. New Phytologist, 2012, 195( 1): 124–135
CrossRef
Pubmed
Google scholar
|
[57] |
LiX, LiuQ, FengH, DengJ, ZhangR, WenJ, DongJ, WangT. Dehydrin MtCAS31 promotes autophagic degradation under drought stress. Autophagy, 2020, 16( 5): 862–877
CrossRef
Pubmed
Google scholar
|
[58] |
BacenettiJ, LovarelliD, TedescoD, PretolaniR, FerranteV. Environmental impact assessment of alfalfa (Medicago sativa L.) hay production. Science of the Total Environment, 2018, 635 : 551–558
CrossRef
Pubmed
Google scholar
|
[59] |
RoyS, LiuW, NandetyR S, CrookA, MysoreK S, PislariuC I, FrugoliJ, DicksteinR, UdvardiM K. Celebrating 20 years of genetic discoveries in legume nodulation and symbiotic nitrogen fixation. Plant Cell, 2020, 32( 1): 15–41
CrossRef
Pubmed
Google scholar
|
[60] |
RenB, WangX, DuanJ, MaJ. Rhizobial tRNA-derived small RNAs are signal molecules regulating plant nodulation. Science, 2019, 365( 6456): 919–922
CrossRef
Pubmed
Google scholar
|
[61] |
CaiQ, QiaoL, WangM, HeB, LinF M, PalmquistJ, HuangS D, JinH. Plants send small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes. Science, 2018, 360( 6393): 1126–1129
CrossRef
Pubmed
Google scholar
|
[62] |
OldroydG E D, MurrayJ D, PooleP S, DownieJ A. The rules of engagement in the legume-rhizobial symbiosis. Annual Review of Genetics, 2011, 45( 1): 119–144
CrossRef
Pubmed
Google scholar
|
[63] |
LiuC W, BreakspearA, StaceyN, FindlayK, NakashimaJ, RamakrishnanK, LiuM, XieF, EndreG, deCarvalho-Niebel F, OldroydG E D, UdvardiM K, FournierJ, MurrayJ D. A protein complex required for polar growth of rhizobial infection threads. Nature Communications, 2019, 10( 1): 2848
CrossRef
Pubmed
Google scholar
|
[64] |
LiangP, SchmitzC, LaceB, DitengouF A, SuC, Schulze E, KnerrJ, GrosseR, KellerJ, LibourelC, DelauxP M, OttT. Formin-mediated bridging of cell wall, plasma membrane, and cytoskeleton in symbiotic infections of Medicago truncatula. Current Biology, 2021, 31(12): 2712–2719.e5
|
[65] |
ZhangX, HanL, WangQ, ZhangC, YuY, Tian J, KongZ. The host actin cytoskeleton channels rhizobia release and facilitates symbiosome accommodation during nodulation in Medicago truncatula. New Phytologist, 2019, 221(2): 1049–1059
|
[66] |
DongW, ZhuY, ChangH, WangC, YangJ, ShiJ, GaoJ, YangW, LanL, WangY, ZhangX, DaiH, MiaoY, XuL, HeZ, SongC, WuS, WangD, YuN, WangE. An SHR-SCR module specifies legume cortical cell fate to enable nodulation. Nature, 2021, 589( 7843): 586–590
CrossRef
Pubmed
Google scholar
|
[67] |
ZhuF, DengJ, ChenH, LiuP, ZhengL, YeQ, Li R, BraultM, WenJ, FrugierF, DongJ, WangT. A CEP peptide receptor-like kinase regulates auxin biosynthesis and ethylene signaling to coordinate root growth and symbiotic nodulation in Medicago truncatula. Plant Cell, 2020, 32(9): 2855–2877
|
[68] |
FengJ, LeeT, SchiesslK, OldroydG E D. Processing of NODULE INCEPTION controls the transition to nitrogen fixation in root nodules. Science, 2021, 374( 6567): 629–632
CrossRef
Pubmed
Google scholar
|
[69] |
UdvardiM, PooleP S. Transport and metabolism in legume-rhizobia symbioses. Annual Review of Plant Biology, 2013, 64( 1): 781–805
CrossRef
Pubmed
Google scholar
|
[70] |
JiangS, JardinaudM F, GaoJ, PecrixY, WenJ, MysoreK, XuP, Sanchez-CanizaresC, RuanY, LiQ, ZhuM, LiF, WangE, PooleP S, GamasP, MurrayJ D. NIN-like protein transcription factors regulate leghemoglobin genes in legume nodules. Science, 2021, 374( 6567): 625–628
CrossRef
Pubmed
Google scholar
|
[71] |
ShiS, NanL, SmithK F. The current status, problems, and prospects of alfalfa (Medicago sativa L.) breeding in China. Agronomy, 2017, 7( 1): 1
CrossRef
Google scholar
|
[72] |
AnnicchiaricoP, NazzicariN, LiX, WeiY, PecettiL, BrummerE C. Accuracy of genomic selection for alfalfa biomass yield in different reference populations. BMC Genomics, 2015, 16( 1): 1020
CrossRef
Pubmed
Google scholar
|
[73] |
YuL X, ZhengP, BhamidimarriS, LiuX P, MainD. The impact of genotyping-by-sequencing pipelines on SNP discovery and identification of markers associated with verticillium wilt resistance in autotetraploid alfalfa (Medicago sativa L.). Frontiers in Plant Science, 2017, 8 : 89
CrossRef
Pubmed
Google scholar
|
[74] |
LinS, MedinaC A, BogeB, HuJ, FransenS, NorbergS, YuL X. Identification of genetic loci associated with forage quality in response to water deficit in autotetraploid alfalfa (Medicago sativa L.). BMC Plant Biology, 2020, 20( 1): 303
CrossRef
Pubmed
Google scholar
|
[75] |
MedinaC A, HawkinsC, LiuX P, PeelM, YuL X. Genome-wide association and prediction of traits related to salt tolerance in autotetraploid alfalfa (Medicago sativa L.). International Journal of Molecular Sciences, 2020, 21( 9): 3361
CrossRef
Pubmed
Google scholar
|
[76] |
MedinaC A, KaurH, RayI, YuL X. Strategies to increase prediction accuracy in genomic selection of complex traits in alfalfa (Medicago sativa L.). Cells, 2021, 10( 12): 3372
CrossRef
Pubmed
Google scholar
|
[77] |
PettemF D A. The selection of male-sterile lines in alfalfa. B. The witches’ broom disease of alfalfa in British Columbia. Dissertation for the Master’s Degree. Vancouver: University of British Columbia, 1951
|
[78] |
DavisW H, GreenblattI M. Cytoplasmic male sterility in alfalfa. Journal of Heredity, 1967, 58( 6): 301–305
CrossRef
Google scholar
|
[79] |
BradnerN R, ChildersW R. Cytoplasmic male sterility in alfalfa. Canadian Journal of Plant Science, 1968, 48( 1): 111–112
CrossRef
Google scholar
|
[80] |
PedersenM W, StuckerR E. Evidence of cytoplasmic male sterility in alfalfa. Crop Science, 1969, 9( 6): 767–770
CrossRef
Google scholar
|
[81] |
BarnesD K, BinghamE T, AxtellJ D, DavisW H. The flower, sterility mechanisms, and pollination control. In: Hanson C H, ed. Alfalfa Science and Technology. Madison: American Society of Agronomy, 1972, 123–141
|
[82] |
ViandsD R, SunP, BarnesD K. Pollination control: mechanical and sterility. In: Hanson A A, Barnes D K, Hill R R, eds. Alfalfa and alfalfa improvement. Madison, WI: ASA, CSSA, SSSA, 1988, 931–960
|
[83] |
ParajuliA, YuL X, PeelM, SeeD, WagnerS, NorbergS, ZhangZ. Self-incompatibility, inbreeding depression, and potential to develop inbred lines in alfalfa. In: Yu L X, Kole C, eds. The Alfalfa Genome. Compendium of Plant Genomes. Cham: Springer, 2021, 255–269
|
[84] |
WangN, XiaX, JiangT, LiL, Zhang P, NiuL, ChengH, WangK, LinH. In planta haploid induction by genome editing of DMP in the model legume Medicago truncatula. Plant Biotechnology Journal, 2022, 20(1): 22–24
|
[85] |
TongZ, LiH, ZhangR, MaL, DongJ, WangT. Co-downregulation of the hydroxycinnamoyl-CoA:shikimate hydroxycinnamoyl transferase and coumarate 3-hydroxylase significantly increases cellulose content in transgenic alfalfa (Medicago sativa L.). Plant Science, 2015, 239 : 230–237
CrossRef
Pubmed
Google scholar
|
[86] |
TongZ, XieC, MaL, LiuL, JinY, DongJ, WangT. Co-expression of bacterial aspartate kinase and adenylylsulfate reductase genes substantially increases sulfur amino acid levels in transgenic alfalfa (Medicago sativa L.). PLoS One, 2014, 9( 2): e88310
CrossRef
Pubmed
Google scholar
|
[87] |
DonaldC M. The breeding of crop ideotypes. Euphytica, 1968, 17( 3): 385–403
CrossRef
Google scholar
|
[88] |
GriederC, KempfK, SchubigerF X. Breeding alfalfa (Medicago sativa L.) in mixture with grasses. Sustainability, 2021, 13( 16): 8929
CrossRef
Google scholar
|
[89] |
PengY, LiZ, SunT, ZhangF, WuQ, DuM, ShengT. Modeling long-term water use and economic returns to optimize alfalfa-corn rotation in the corn belt of northeast China. Field Crops Research, 2022, 276 : 108379
CrossRef
Google scholar
|
[90] |
AuduV, RascheF, MårtenssonL M D, EmmerlingC. Perennial cereal grain cultivation: implication on soil organic matter and related soil microbial parameters. Applied Soil Ecology, 2022, 174 : 104414
CrossRef
Google scholar
|
[91] |
XuR, ZhaoH, LiuG, LiY, LiS, ZhangY, LiuN, MaL. Alfalfa and silage maize intercropping provides comparable productivity and profitability with lower environmental impacts than wheat-maize system in the North China plain. Agricultural Systems, 2022, 195 : 103305
CrossRef
Google scholar
|
[92] |
WangQ, ZhangD, ZhouX, Mak-MensahE, ZhaoX, ZhaoW, WangX, StellmachD, LiuQ, LiX, LiG, WangH, ZhangK. Optimum planting configuration for alfalfa production with ridge-furrow rainwater harvesting in a semiarid region of China. Agricultural Water Management, 2022, 266 : 107594
CrossRef
Google scholar
|
[93] |
YinM, MaY, KangY, JiaQ, QiG, WangJ, YangC, YuJ. Optimized farmland mulching improves alfalfa yield and water use efficiency based on meta-analysis and regression analysis. Agricultural Water Management, 2022, 267 : 107617
CrossRef
Google scholar
|
[94] |
GrahamS L, LaubachJ, HuntJ E, MudgeP L, NunezJ, RogersG N D, BuxtonR P, CarrickS, WhiteheadD. Irrigation and grazing management affect leaching losses and soil nitrogen balance of lucerne. Agricultural Water Management, 2022, 259 : 107233
CrossRef
Google scholar
|
/
〈 | 〉 |