RESEARCH PROGRESS ON THE IMPACT OF NITROGEN DEPOSITION ON GLOBAL GRASSLANDS

Carly J. STEVENS, Sofia BASTO, Michael D. BELL, Tianxiang HAO, Kevin KIRKMAN, Raul OCHOA-HUESO

PDF(2837 KB)
PDF(2837 KB)
Front. Agr. Sci. Eng. ›› 2022, Vol. 9 ›› Issue (3) : 425-444. DOI: 10.15302/J-FASE-2022457
REVIEW
REVIEW

RESEARCH PROGRESS ON THE IMPACT OF NITROGEN DEPOSITION ON GLOBAL GRASSLANDS

Author information +
History +

Highlights

● Grasslands in many regions of the world have been impacted by atmospheric nitrogen deposition.

● Nitrogen deposition commonly leads to reductions in species richness.

● Increases in biomass production is a common response to increased N deposition.

● In some parts of the world there has been limited research into the impacts of nitrogen deposition.

Abstract

Grasslands are globally-important ecosystems providing critical ecosystem services. The species composition and characteristics of grasslands vary considerably across the planet with a wide variety of different grasslands found. However, in many regions grasslands have been impacted by atmospheric nitrogen deposition originating from anthropogenic activities with effects on productivity, species composition and diversity widely reported. Impacts vary across grassland habitats but many show declines in species richness and increases in biomass production related to soil eutrophication and acidification. At a continental level there is considerable variation in the research effort that has been put into understanding the impacts of nitrogen deposition. In Europe, North America and parts of Asia, although there are unanswered research questions, there is a good understanding of N deposition impacts in most grassland habitats. This is not the case in other regions with large knowledge gaps in some parts of the world. This paper reviews the impacts of N deposition on grasslands around the world, highlighting recent advances and areas where research is still needed.

Graphical abstract

Keywords

Acidification / biomass production / critical load / eutrophication / species composition / species richness

Cite this article

Download citation ▾
Carly J. STEVENS, Sofia BASTO, Michael D. BELL, Tianxiang HAO, Kevin KIRKMAN, Raul OCHOA-HUESO. RESEARCH PROGRESS ON THE IMPACT OF NITROGEN DEPOSITION ON GLOBAL GRASSLANDS. Front. Agr. Sci. Eng., 2022, 9(3): 425‒444 https://doi.org/10.15302/J-FASE-2022457

References

[1]
ReynoldsS G. Introduction. In: Suttie J M, Reynolds S G, Batello C, eds. Grasslands of the World. Rome: Food and Agriculture Organization of the United Nations (FAO) , 2005
[2]
O’MaraF P. The role of grasslands in food security and climate change. Annals of Botany , 2012, 110( 6): 1263–1270
CrossRef Pubmed Google scholar
[3]
ConantR T. Challenges and opportunities for carbon sequestration in grassland systems: a technical report on grassland management and climate change mitigation. Rome: Food and Agriculture Organization of the United Nations (FAO) , 2010
[4]
AckermanD, MilletD B, ChenX. Global estimates of inorganic nitrogen deposition across four decades. Global Biogeochemical Cycles , 2019, 33( 1): 100–107
CrossRef Google scholar
[5]
LovelandT R, ReedB C, BrownJ F, OhlenD O, ZhuZ, YangL, MerchantJ W. Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. International Journal of Remote Sensing , 2000, 21( 6–7): 1303–1330
CrossRef Google scholar
[6]
ClarkC M, HobbieS E, VentereaR, TilmanD. Long-lasting effects on nitrogen cycling 12 years after treatments cease despite minimal long-term nitrogen retention. Global Change Biology , 2009, 15( 7): 1755–1766
CrossRef Google scholar
[7]
BastoS, ThompsonK, PhoenixG, SloanV, LeakeJ, ReesM. Long-term nitrogen deposition depletes grassland seed banks. Nature Communications , 2015, 6( 1): 6185
CrossRef Pubmed Google scholar
[8]
HouS L, HättenschwilerS, YangJ J, SistlaS, WeiH W, ZhangZ W, HuY Y, WangR Z, CuiS Y, LüX T, HanX G. Increasing rates of long-term nitrogen deposition consistently increased litter decomposition in a semi-arid grassland. New Phytologist , 2021, 229( 1): 296–307
CrossRef Pubmed Google scholar
[9]
PitcairnC E R, LeithI D, SheppardL J, SuttonM A, FowlerD, MunroR C, TangS, WilsonD. The relationship between nitrogen deposition, species composition and foliar nitrogen concentrations in woodland flora in the vicinity of livestock farms. Environmental Pollution , 1998, 102(Supplement 1): 41−48
[10]
StevensC J, DuprèC, DorlandE, GaudnikC, GowingD J G, BleekerA, DiekmannM, AlardD, BobbinkR, FowlerD, CorcketE, MountfordJ O, VandvikV, AarrestadP A, MullerS, DiseN B. Nitrogen deposition threatens species richness of grasslands across Europe. Environmental Pollution , 2010, 158( 9): 2940–2945
CrossRef Pubmed Google scholar
[11]
StevensC J, LindE M, HautierY, HarpoleW S, BorerE T, HobbieS, SeabloomE W, LadwigL, BakkerJ D, ChuC, CollinsS, DaviesK F, FirnJ, HillebrandH, PierreK J L, MacDougallA, MelbourneB, McCulleyR L, MorganJ, OrrockJ L, ProberS M, RischA C, SchuetzM, WraggP D. Anthropogenic nitrogen deposition predicts local grassland primary production worldwide. Ecology , 2015, 96( 6): 1459–1465
CrossRef Google scholar
[12]
HautierY, NiklausP A, HectorA. Competition for light causes plant biodiversity loss after eutrophication. Science , 2009, 324( 5927): 636–638
CrossRef Pubmed Google scholar
[13]
BorerE T, HarpoleW S, AdlerP B, LindE M, OrrockJ L, SeabloomE W, SmithM D. Finding generality in ecology: a model for globally distributed experiments. Methods in Ecology and Evolution , 2014, 5( 1): 65–73
CrossRef Google scholar
[14]
SchusterB, DiekmannM. Changes in species density along the soil pH gradient—Evidence from German plant communities. Folia Geobotanica , 2003, 38( 4): 367–379
CrossRef Google scholar
[15]
AnderssonM. Toxicity and tolerance of aluminium in vascular plants. Water, Air, and Soil Pollution , 1988, 39( 3–4): 439–462
CrossRef Google scholar
[16]
BrittoD T, KronzuckerH J. NH4+ toxicity in higher plants: a critical review. Journal of Plant Physiology , 2002, 159( 6): 567–584
CrossRef Google scholar
[17]
PearsonJ, StewartG R. The deposition of atmospheric ammonia and its effects on plants. New Phytologist , 1993, 125( 2): 283–305
CrossRef Pubmed Google scholar
[18]
CapornS J M, AshendenT W, LeeJ A. The effect of exposure to NO2 and SO2 on frost hardiness in Calluna vulgaris . Environmental and Experimental Botany , 2000, 43(2): 111−119
[19]
BrunstingA M H, HeilG W. The role of nutrients in the interactions between a herbivorous beetle and some competing plant species in heathlands. Oikos , 1985, 44( 1): 23–26
CrossRef Google scholar
[20]
FieldC D, DiseN B, PayneR J, BrittonA J, EmmettB A, HelliwellR C, HughesS, JonesL, LeesS, LeakeJ R, LeithI D, PhoenixG K, PowerS A, SheppardL J, SouthonG E, StevensC J, CapornS J M. Nitrogen drives plant community change across semi-natural habitats. Ecosystems , 2014, 17 : 864–877
CrossRef Google scholar
[21]
SimkinS M, AllenE B, BowmanW D, ClarkC M, BelnapJ, BrooksM L, CadeB S, CollinsS L, GeiserL H, GilliamF S, JovanS E, PardoL H, SchulzB K, StevensC J, SudingK N, ThroopH L, WallerD M. Conditional vulnerability of plant diversity to atmospheric nitrogen deposition across the United States. Proceedings of the National Academy of Sciences of the United States of America , 2016, 113( 15): 4086–4091
CrossRef Pubmed Google scholar
[22]
NilssonJ. Critical Loads for sulphur and nitrogen. In: Mathy P, ed. Air Pollution and Ecosystems. Dordrecht: Springer , 1988, 85–91
[23]
DenglerJ, BiurrunI, BochS, DembiczI, TörökP. Grasslands of the Palaearctic biogeographic realm: introduction and synthesis. In: Goldstein M, Dellasala D, eds. Encyclopedia of the World’s Biomes. Elsevier , 2020, 617–637
[24]
StevensC J, DiseN B, MountfordJ O, GowingD J. Impact of nitrogen deposition on the species richness of grasslands. Science , 2004, 303( 5665): 1876–1879
CrossRef Pubmed Google scholar
[25]
DamgaardC, JensenL, FrohnL M, BorchseniusF, NielsenK E, EjrnæsR, StevensC J. The effect of nitrogen deposition on the species richness of acid grasslands in Denmark: a comparison with a study performed on a European scale. Environmental Pollution , 2011, 159( 7): 1778–1782
CrossRef Pubmed Google scholar
[26]
WilkinsK, AherneJ, BleasdaleA. Vegetation community change points suggest that critical loads of nutrient nitrogen may be too high. Atmospheric Environment , 2016, 146 : 324–331
CrossRef Google scholar
[27]
StevensC J, DiseN B, GowingD J, MountfordJ O. Loss of forb diversity in relation to nitrogen deposition in the UK: regional trends and potential controls. Global Change Biology , 2006, 12( 10): 1823–1833
CrossRef Google scholar
[28]
VanDen Berg L J L, JonesL, SheppardL J, SmartS M, BobbinkR, DiseN B, AshmoreM R. Evidence for differential effects of reduced and oxidised nitrogen deposition on vegetation independent of nitrogen load. Environmental Pollution , 2016, 208(Part B): 890–897
[29]
StevensC J, ThompsonK, GrimeJ P, LongC J, GowingD J G. Contribution of acidification and eutrophication to declines in species richness of calcifuge grasslands along a gradient of atmospheric nitrogen deposition. Functional Ecology , 2010, 24( 2): 478–484
CrossRef Google scholar
[30]
RothT, KohliL, RihmB, MeierR, AchermannB. Using change-point models to estimate empirical critical loads for nitrogen in mountain ecosystems. Environmental Pollution , 2017, 220(Part B): 1480–1487
[31]
BochS, KurtogullariY, AllanE, Lessard-TherrienM, RiederN S, FischerM, MartínezDe León G, ArlettazR, HumbertJ Y. Effects of fertilization and irrigation on vascular plant species richness, functional composition and yield in mountain grasslands. Journal of Environmental Management , 2021, 279 : 111629
CrossRef Pubmed Google scholar
[32]
SilvertownJ, PoultonP, JohnstonE, EdwardsG, HeardM, BissP M. The Park Grass Experiment 1856–2006: its contribution to ecology. Journal of Ecology , 2006, 94( 4): 801–814
CrossRef Google scholar
[33]
GouldingK W T, BaileyN J, BradburyN J, HargreavesP, HoweM, MurphyD V, PoultonP R, WillisonT W. Nitrogen deposition and its contribution to nitrogen cycling and associated soil processes. New Phytologist , 1998, 139( 1): 49–58
CrossRef Google scholar
[34]
StorkeyJ, MacdonaldA J, PoultonP R, ScottT, KöhlerI H, SchnyderH, GouldingK W T, CrawleyM J. Grassland biodiversity bounces back from long-term nitrogen addition. Nature , 2015, 528( 7582): 401–404
CrossRef Pubmed Google scholar
[35]
MaskellL C, SmartS M, BullockJ M, ThompsonK, StevensC J. Nitrogen deposition causes widespread species loss in British Habitats. Global Change Biology , 2010, 16( 2): 671–679
CrossRef Google scholar
[36]
TippingE, HenrysP A, MaskellL C, SmartS M. Nitrogen deposition effects on plant species diversity; threshold loads from field data. Environmental Pollution , 2013, 179 : 218–223
CrossRef Pubmed Google scholar
[37]
VanDen Berg L J L, VergeerP, RichT C G, SmartS M, GuestD, AshmoreM R. Direct and indirect effects of nitrogen deposition on species composition change in calcareous grasslands. Global Change Biology , 2011, 17( 5): 1871–1883
CrossRef Google scholar
[38]
DiekmannM, JandtU, AlardD, BleekerA, CorcketE, GowingD J G, StevensC J, DuprèC. Long-term changes in calcareous grassland vegetation in North-western Germany—No decline in species richness, but a shift in species composition. Biological Conservation , 2014, 172 : 170–179
CrossRef Google scholar
[39]
BobbinkR, WillemsJ H. Increasing dominance of Brachypodium pinnatum (L.) Beauv. in chalk grasslands: a threat to a species-rich ecosystem. Biological Conservation , 1987, 40( 4): 301–314
CrossRef Google scholar
[40]
CeulemansT, VanGeel M, JacquemynH, BoeraeveM, PlueJ, SaarL, KasariL, PeetersG, VanAcker K, CrauwelsS, LievensB, HonnayO. Arbuscular mycorrhizal fungi in European grasslands under nutrient pollution. Global Ecology and Biogeography , 2019, 28( 12): 1796–1805
CrossRef Google scholar
[41]
BonanomiG, CaporasoS, AllegrezzaM. Effects of nitrogen enrichment, plant litter removal and cutting on a species-rich Mediterranean calcareous grassland. Plant Biosystems , 2009, 143( 3): 443–455
CrossRef Google scholar
[42]
NairR K F, MorrisK A, HertelM, LuoY, MorenoG, ReichsteinM, SchrumpfM, MigliavaccaM N. P stoichiometry and habitat effects on Mediterranean savanna seasonal root dynamics. Biogeosciences , 2019, 16( 9): 1883–1901
CrossRef Google scholar
[43]
LuoY, El-MadanyT, MaX, Nair R, JungM, WeberU, FilippaG, BucherS F, MorenoG, CremoneseE, CarraraA, Gonzalez-CasconR, CáceresEscudero Y, GalvagnoM, Pacheco-LabradorJ, MartínM P, Perez-PriegoO, ReichsteinM, RichardsonA D, MenzelA, RömermannC, MigliavaccaM. Nutrients and water availability constrain the seasonality of vegetation activity in a Mediterranean ecosystem. Global Change Biology , 2020, 26( 8): 4379–4400
CrossRef Pubmed Google scholar
[44]
Ochoa-HuesoR, Delgado-BaquerizoM, GallardoA, BowkerM A, MaestreF T. Climatic conditions, soil fertility and atmospheric nitrogen deposition largely determine the structure and functioning of microbial communities in biocrust-dominated Mediterranean drylands. Plant and Soil , 2016, 399( 1–2): 271–282
CrossRef Google scholar
[45]
Ochoa-HuesoR, MaestreF T, deLos Ríos A, ValeaS, TheobaldM R, VivancoM G, ManriqueE, BowkerM A. Nitrogen deposition alters nitrogen cycling and reduces soil carbon content in low-productivity semiarid Mediterranean ecosystems. Environmental Pollution , 2013, 179 : 185–193
CrossRef Pubmed Google scholar
[46]
KörnerC, DiemerM, SchäppiB, NiklausP, ArnoneJ III. The responses of alpine grassland to four seasons of CO2 enrichment: a synthesis. Acta Oecologica , 1997, 18( 3): 165–175
CrossRef Google scholar
[47]
SparriusL B, KooijmanA M, SevinkJ. Response of inland dune vegetation to increased nitrogen and phosphorus levels. Applied Vegetation Science , 2013, 16( 1): 40–50
CrossRef Google scholar
[48]
StilesW A V, RoweE C, DennisP. Long-term nitrogen and phosphorus enrichment alters vegetation species composition and reduces carbon storage in upland soil. Science of the Total Environment , 2017, 593–594: 688–694
[49]
BobbinkR, HettelinghJ P. Review and revision of empirical critical loads and dose-response relationships: proceedings of an expert workshop, Noordwijkerhout, 23–25 June 2010. Bilthoven: Coordination Centre for Effects, National Institute for Public Health and the Environment (RIVM) , 2011
[50]
FowlerD, O’donoghueM, MullerJ B A, SmithR, DragositsU, SkibaU, SuttonM A, BrimblecombeP. A chronology of nitrogen deposition in the UK between 1860 and 2000. Water Air and Soil Pollution Focus , 2004, 4( 6): 9–23
CrossRef Google scholar
[51]
StevensC J, ManningP, vanden Berg L J L, deGraaf M C C, WamelinkG W W, BoxmanA W, BleekerA, VergeerP, Arroniz-CrespoM, LimpensJ, LamersL P M, BobbinkR, DorlandE. Ecosystem responses to differing ratios of reduced and oxidised nitrogen inputs. Environmental Pollution , 2011, 159 : 665–676
CrossRef Pubmed Google scholar
[52]
SuttonM A, HowardC M, ErismanJ W, BillenG, BleekerA, GrennfeltP, VanGrinsven H, GrizzettiB. The European Nitrogen Assessment: Sources, Effects and Policy Perspectives. Cambridge: Cambridge University Press , 2011
[53]
StevensC J. How long do ecosystems take to recover from atmospheric nitrogen deposition. Biological Conservation , 2016, 200 : 160–167
CrossRef Google scholar
[54]
PardoL H, FennM E, GoodaleC L, GeiserL H, DriscollC T, AllenE B, BaronJ S, BobbinkR, BowmanW D, ClarkC M, EmmettB, GilliamF S, GreaverT L, HallS J, LilleskovE A, LiuL, LynchJ A, NadelhofferK J, PerakisS S, Robin-AbbottM J, StoddardJ L, WeathersK C, DennisR L. Effects of nitrogen deposition and empirical nitrogen critical loads for ecoregions of the United States. Ecological Applications , 2011, 21( 8): 3049–3082
CrossRef Google scholar
[55]
OmernikJ M, GriffithG E. Ecoregions of the conterminous United States: evolution of a hierarchical spatial framework. Environmental Management , 2014, 54( 6): 1249–1266
CrossRef Pubmed Google scholar
[56]
BowmanW D, MurgelJ, BlettT, PorterE. Nitrogen critical loads for alpine vegetation and soils in Rocky Mountain National Park. Journal of Environmental Management , 2012, 103 : 165–171
CrossRef Pubmed Google scholar
[57]
BowmanW D, AyyadA, Buenode Mesquita C P, FiererN, PotterT S, SternagelS. Limited ecosystem recovery from simulated chronic nitrogen deposition. Ecological Applications , 2018, 28( 7): 1762–1772
CrossRef Pubmed Google scholar
[58]
McDonnellT C, BelyazidS, SullivanT J, SverdrupH, BowmanW D, PorterE M. Modeled subalpine plant community response to climate change and atmospheric nitrogen deposition in Rocky Mountain National Park, USA. Environmental Pollution , 2014, 187 : 55–64
CrossRef Pubmed Google scholar
[59]
BobbinkR, HicksK, GallowayJ, SprangerT, AlkemadeR, AshmoreM, BustamanteM, CinderbyS, DavidsonE, DentenerF, EmmettB, ErismanJ W, FennM, GilliamF, NordinA, PardoL, DeVries W. Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecological Applications , 2010, 20( 1): 30–59
CrossRef Pubmed Google scholar
[60]
KazanskiC E, CowlesJ, DymondS, ClarkA T, DavidA S, JungersJ M, KendigA E, RiggsC E, TrostJ, WeiX. Water availability modifies productivity response to biodiversity and nitrogen in long-term grassland experiments. Ecological Applications , 2021, 31( 6): e02363
CrossRef Pubmed Google scholar
[61]
PhillipsM L, WinklerD E, ReiboldR H, OsborneB B, ReedS C. Muted responses to chronic experimental nitrogen deposition on the Colorado Plateau. Oecologia , 2021, 195( 2): 513–524
CrossRef Pubmed Google scholar
[62]
BelnapJ, StarkJ M, RauB M, AllenE B, PhillipsS. Soil moisture and biogeochemical factors influence the distribution of annual Bromus species. In: Germino M J, Chambers J C, Brown C S, eds. Exotic Brome-Grasses in Arid and Semiarid Ecosystems of the Western US: Causes, Consequences, and Management Implications. Springer , 2016, 227–256
[63]
LadwigL M, CollinsS L, SwannA L, XiaY, AllenM F, AllenE B. Above- and belowground responses to nitrogen addition in a Chihuahuan Desert grassland. Oecologia , 2012, 169( 1): 177–185
CrossRef Pubmed Google scholar
[64]
CollinsS L, LadwigL M, PetrieM D, JonesS K, MulhouseJ M, ThibaultJ R, PockmanW T. Press-pulse interactions: effects of warming, N deposition, altered winter precipitation, and fire on desert grassland community structure and dynamics. Global Change Biology , 2017, 23( 3): 1095–1108
CrossRef Pubmed Google scholar
[65]
LyonsK G, Maldonado-LealB G, OwenG. Community and ecosystem effects of buffelgrass (Pennisetum ciliare) and nitrogen deposition in the Sonoran Desert. Invasive Plant Science and Management , 2013, 6( 1): 65–78
CrossRef Google scholar
[66]
MinnichR A, DezzaniR J. Historical decline of coastal sage scrub in the Riverside-Perris Plain, California. Western Birds , 1998, 29 : 366–391
[67]
SandelB, DangremondE M. Climate change and the invasion of California by grasses. Global Change Biology , 2012, 18( 1): 277–289
CrossRef Google scholar
[68]
CoxR D, PrestonK L, JohnsonR F, MinnichR A, AllenE B. Influence of landscape-scale variables on vegetation conversion to exotic annual grassland in southern California, USA. Global Ecology and Conservation , 2014, 2 : 190–203
CrossRef Google scholar
[69]
AllenE B, Egerton-WarburtonL M, HilbigB E, ValliereJ M. Interactions of arbuscular mycorrhizal fungi, critical loads of nitrogen deposition, and shifts from native to invasive species in a southern California shrubland. Botany , 2016, 94( 6): 425–433
CrossRef Google scholar
[70]
ValliereJ M, IrvineI C, SantiagoL, AllenE B. High N, dry: experimental nitrogen deposition exacerbates native shrub loss and nonnative plant invasion during extreme drought. Global Change Biology , 2017, 23( 10): 4333–4345
CrossRef Pubmed Google scholar
[71]
HarveyE, MacdougallA S. Non-interacting impacts of fertilization and habitat area on plant diversity via contrasting assembly mechanisms. Diversity & Distributions , 2018, 24( 4): 509–520
CrossRef Google scholar
[72]
BiedermanL, MortensenB, FayP, HagenahN, KnopsJ, LaPierre K, LaunganiR, LindE, McCulleyR, PowerS, SeabloomE, TognettiP. Nutrient addition shifts plant community composition towards earlier flowering species in some prairie ecoregions in the U.S. Central Plains. PLoS One , 2017, 12( 5): e0178440
CrossRef Pubmed Google scholar
[73]
SymstadA J, SmithA T, NewtonW E, KnappA K. Experimentally derived nitrogen critical loads for northern Great Plains vegetation. Ecological Applications , 2019, 29( 5): e01915
CrossRef Pubmed Google scholar
[74]
Ponette-GonzálezA G, GreenM L, McCullarsJ, GoughL. Ambient urban N deposition drives increased biomass and total plant N in two native prairie grass species in the U.S. Southern Great Plains. PLoS One , 2021, 16( 5): e0251089
CrossRef Pubmed Google scholar
[75]
ThomasR Q, CanhamC D, WeathersK C, GoodaleC L. Increased tree carbon storage in response to nitrogen deposition in the US. Nature Geoscience , 2010, 3( 1): 13–17
CrossRef Google scholar
[76]
HornK J, ThomasR Q, ClarkC M, PardoL H, FennM E, LawrenceG B, PerakisS S, SmithwickE A H, BaldwinD, BraunS, NordinA, PerryC H, PhelanJ N, SchabergP G, St.Clair S B, WarbyR, WatmoughS. Growth and survival relationships of 71 tree species with nitrogen and sulfur deposition across the conterminous U.S. PLoS One , 2018, 13( 10): e0205296
CrossRef Pubmed Google scholar
[77]
GeiserL H, RootH, SmithR J, JovanS E, StClair L, DillmanK L. Lichen-based critical loads for deposition of nitrogen and sulfur in US forests. Environmental Pollution , 2021, 291 : 118187
CrossRef Pubmed Google scholar
[78]
ClarkC M, SimkinS M, AllenE B, BowmanW D, BelnapJ, BrooksM L, CollinsS L, GeiserL H, GilliamF S, JovanS E, PardoL H, SchulzB K, StevensC J, SudingK N, ThroopH L, WallerD M. Potential vulnerability of 348 herbaceous species to atmospheric deposition of nitrogen and sulfur in the United States. Nature Plants , 2019, 5( 7): 697–705
CrossRef Pubmed Google scholar
[79]
WilkinsK, ClarkC, AherneJ. Ecological thresholds under atmospheric nitrogen deposition for 1200 herbaceous species and 24 communities across the United States. Global Change Biology , 2022, 28( 7): 2381–2395
CrossRef Pubmed Google scholar
[80]
ClarkC M, BellM D, BoydJ W, ComptonJ A, DavidsonE A, DavisC, FennM E, GeiserL, JonesL, BlettT F. Nitrogen-induced terrestrial eutrophication: cascading effects and impacts on ecosystem services. Ecosphere , 2017, 8( 7): e01877
CrossRef Google scholar
[81]
LiY, Schichtel B A, WalkerJ T, SchwedeD B, ChenX, LehmannC M B, PuchalskiM A, GayD A, CollettJ L Jr. Increasing importance of deposition of reduced nitrogen in the United States. Proceedings of the National Academy of Sciences of the United States of America , 2016, 113( 21): 5874–5879
CrossRef Pubmed Google scholar
[82]
NopmongcolU, BeardsleyR, KumarN, KnippingE, YarwoodG. Changes in United States deposition of nitrogen and sulfur compounds over five decades from 1970 to 2020. Atmospheric Environment , 2019, 209 : 144–151
CrossRef Google scholar
[83]
BondW J, StevensN, MidgleyG F, LehmannC E R. The trouble with trees: afforestation plans for Africa. Trends in Ecology & Evolution , 2019, 34( 11): 963–965
CrossRef Pubmed Google scholar
[84]
BondW J. Ancient grasslands at risk. Science , 2016, 351( 6269): 120–122
CrossRef Pubmed Google scholar
[85]
NerlekarA N, VeldmanJ W. High plant diversity and slow assembly of old-growth grasslands. Proceedings of the National Academy of Sciences of the United States of America , 2020, 117( 31): 18550–18556
CrossRef Pubmed Google scholar
[86]
SilveiraF A O, ArrudaA J, BondW, DuriganG, FidelisA, KirkmanK, OliveiraR S, OverbeckG E, SanseveroJ B B, SiebertF, SiebertS J, YoungT P, BuissonE. Myth-busting tropical grassy biome restoration. Restoration Ecology , 2020, 28( 5): 1067–1073
CrossRef Google scholar
[87]
SankaranM, HananN P, ScholesR J, RatnamJ, AugustineD J, CadeB S, GignouxJ, HigginsS I, LeRoux X, LudwigF, ArdoJ, BanyikwaF, BronnA, BuciniG, CaylorK K, CoughenourM B, DioufA, EkayaW, FeralC J, FebruaryE C, FrostP G H, HiernauxP, HrabarH, MetzgerK L, PrinsH H T, RingroseS, SeaW, TewsJ, WordenJ, ZambatisN. Determinants of woody cover in African savannas. Nature , 2005, 438( 7069): 846–849
CrossRef Pubmed Google scholar
[88]
MenaultJ C, BarbaultR, LavelleP, LepageM. African savannas: biological systems of humification and mineralization. In: Tothill J C, Mott J J, eds. Ecology and Management of the World’s Savannas. Canberra: Australian Academy of Science , 1985
[89]
HenglT, LeenaarsJ G B, ShepherdK D, WalshM G, HeuvelinkG B M, MamoT, TilahunH, BerkhoutE, CooperM, FegrausE, WheelerI, KwabenaN A. Soil nutrient maps of Sub-Saharan Africa: assessment of soil nutrient content at 250 m spatial resolution using machine learning. Nutrient Cycling in Agroecosystems , 2017, 109( 1): 77–102
CrossRef Pubmed Google scholar
[90]
FynnR W S, HaynesR J, O’connorT G. Burning causes long-term changes in soil organic matter contentof a South African Grassland. Soil Biology & Biochemistry , 2003, 35( 5): 677–687
CrossRef Google scholar
[91]
GrayE F, BondW J. Soil nutrients in an African forest/savanna mosaic. South African Journal of Botany , 2015, 101 : 66–72
CrossRef Google scholar
[92]
BautersM, DrakeT W, VerbeeckH, BodéS, Hervé-FernándezP, ZitoP, PodgorskiD C, BoyembaF, MakeleleI, CizunguNtaboba L, SpencerR G M, BoeckxP. High fire-derived nitrogen deposition on central African forests. Proceedings of the National Academy of Sciences of the United States of America , 2018, 115( 3): 549–554
CrossRef Pubmed Google scholar
[93]
MompatiM K. Atmospheric deposition of sulphur and nitrogen over eastern South Africa. Dissertation for the Master’s Degree. Porchefstroom: North West University , 2019
[94]
OssohouM, Galy-LacauxC, YobouéV, AdonM, DelonC, GardratE, KonatéI, KiA, Zouzou R. Long-term atmospheric inorganic nitrogen deposition in West Africam savanna over 16 year period (Lamto, Cote d’Ivoire). Environmental Research Letters , 2021, 16( 1): 015004
CrossRef Google scholar
[95]
FynnR W S, O’connorT G. Determinants of community organization of a South African mesic grassland. Journal of Vegetation Science , 2005, 16( 1): 93–102
CrossRef Google scholar
[96]
TsvuuraZ, KirkmanK P. Yield and species composition of a mesic grassland savanna in South Africa are influenced by long-term nutrient addition. Austral Ecology , 2013, 38( 8): 959–970
CrossRef Google scholar
[97]
LeRoux N P, MentisM T. Veld compositional response to fertilization in the tall grassveld of Natal. South African Journal of Plant and Soil , 1986, 3( 1): 1–10
CrossRef Google scholar
[98]
TsvuuraZ, AvolioM L, KirkmanK P. Nutrient addition increases biomass of soil fungi: evidence from a South African Grassland. South African Journal of Plant and Soil , 2017, 34( 1): 71–73
CrossRef Google scholar
[99]
WardD, KirkmanK, HagenahN, TsvuuraZ. Soil respiration declines with increasing nitrogen fertilization and is not related to productivity in long-term grassland experiments. Soil Biology & Biochemistry , 2017, 115 : 415–422
CrossRef Google scholar
[100]
FynnR W S, MorrisC D, KirkmanK P. Plant strategies and trait trade-offs influence trends in competitive ability along gradients of soil fertility and disturbance. Journal of Ecology , 2005, 93( 2): 384–394
CrossRef Google scholar
[101]
FynnR, MorrisC, WardD, KirkmanK. Trait–environment relations for dominant grasses in South African mesic grassland support a general leaf economic model. Journal of Vegetation Science , 2011, 22( 3): 528–540
CrossRef Google scholar
[102]
SnymanH A, OosthuizenI B. Influence of fertilization on botanical composition and productivity of rangeland in a semi-arid climate of South Africa. In: XIX International Grassland Congress. São Pedro: Fundacao de Estudos Agrarios Luiz de Queiroz , 2001
[103]
CraineJ M, MorrowC, StockW D. Nutrient concentration ratios and co-limitation in South African grasslands. New Phytologist , 2008, 179( 3): 829–836
CrossRef Pubmed Google scholar
[104]
LudwigF, DeKroon H, PrinsH H T, BerendseF. Effects of nutrients and shade on tree-grass interactions in an East African savanna. Journal of Vegetation Science , 2001, 12( 4): 579–588
CrossRef Google scholar
[105]
HamiltonE W III, GiovanniniM S, MosesS A, ColemanJ S, McNaughtonS J. Biomass and mineral element responses of a Serengeti short-grass species to nitrogen supply and defoliation: compensation requires a critical [N]. Oecologia , 1998, 116( 3): 407–418
CrossRef Pubmed Google scholar
[106]
WardD, KirkmanK, TsvuuraZ. An African grassland responds similarly to long-term fertilization to the Park Grass experiment. PLoS One , 2017, 12( 5): e0177208
CrossRef Pubmed Google scholar
[107]
WardD, KirkmanK P, TsvuuraZ, MorrisC, FynnR W S. Are there common assembly rules fro different grasslands? Comparisons of long-term data from a subtropical grassland with temperate grasslands.. Journal of Vegetation Science , 2020, 31( 5): 780–791
CrossRef Google scholar
[108]
KirkmanK P, CollinsS L, SmithM D, KnappA K, BurkepileD E, BurnsC E, FynnR W S, HagenahN, MatchettK J, ThompsonD I, WilcoxK R, WraggP D. Responses to fire differ between South African and North American grassland communities. Journal of Vegetation Science , 2014, 25( 3): 793–804
CrossRef Google scholar
[109]
BuisG M, BlairJ M, BurkepileD E, BurnsC E, ChamberlainA J, ChapmanP L, CollinsS L, FynnR W S, GovenderN, KirkmanK P, SmithM D, KnappA K. Controls of aboveground net primary production in mesic savanna grasslands: an inter-hemispheric comparison. Ecosystems , 2009, 12( 6): 982–995
CrossRef Google scholar
[110]
SmithM D, KnappA K, CollinsS L, BurkepileD E, KirkmanK P, KoernerS E, ThompsonD I, BlairJ M, BurnsC E, EbyS, ForrestelE J, FynnR W S, GovenderN, HagenahN, HooverD L, WilcoxK R. Shared drivers but divergent ecological responses: insights from long-term experiments in mesic savanna grasslands. Bioscience , 2016, 66( 8): 666–682
CrossRef Google scholar
[111]
FayP A, ProberS M, HarpoleW S, KnopsJ M H, BakkerJ D, BorerE T, LindE M, MacDougallA S, SeabloomE W, WraggP D, AdlerP B, BlumenthalD M, BuckleyY M, ChuC, ClelandE E, CollinsS L, DaviesK F, DuG, Feng X, FirnJ, GrunerD S, HagenahN, HautierY, HeckmanR W, JinV L, KirkmanK P, KleinJ, LadwigL M, LiQ, McCulley R L, MelbourneB A, MitchellC E, MooreJ L, MorganJ W, RischA C, SchützM, StevensC J, WedinD A, YangL H. Grassland productivity limited by multiple nutrients. Nature Plants , 2015, 1( 7): 15080
CrossRef Pubmed Google scholar
[112]
HarpoleW S, SullivanL L, LindE M, FirnJ, AdlerP B, BorerE T, ChaseJ, FayP A, HautierY, HillebrandH, MacDougallA S, SeabloomE W, WilliamsR, BakkerJ D, CadotteM W, ChanetonE J, ChuC, ClelandE E, D’AntonioC, DaviesK F, GrunerD S, HagenahN, KirkmanK, KnopsJ M H, LaPierre K J, McCulleyR L, MooreJ L, MorganJ W, ProberS M, RischA C, SchuetzM, StevensC J, WraggP D. Addition of multiple limiting resources reduces grassland diversity. Nature , 2016, 537( 7618): 93–96
CrossRef Pubmed Google scholar
[113]
Flores-MorenoH, ReichP B, LindE M, SullivanL L, SeabloomE W, YahdjianL, MacDougallA S, ReichmannL G, AlbertiJ, BáezS, BakkerJ D, CadotteM W, CaldeiraM C, ChanetonE J, D’AntonioC M, FayP A, FirnJ, HagenahN, HarpoleW S, IribarneO, KirkmanK P, KnopsJ M H, LaPierre K J, LaunganiR, LeakeyA D B, McCulleyR L, MooreJ L, PascualJ, BorerE T. Climate modifies response of non-native and native species richness to nutrient enrichment. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences , 2016, 371( 1694): 20150273
CrossRef Pubmed Google scholar
[114]
PenningsS C, ClarkC M, ClelandE E, CollinsS L, GoughL, GrossK L, MilchunasD G, SudingK N. Do individual plant species show predictable responses to nitrogen addition across multiple experiments. Oikos , 2005, 110( 3): 547–555
CrossRef Google scholar
[115]
GoldsteinM I, DellasalaD A. Encyclopedia of the World’s Biomes. Elsevier , 2020
[116]
SoudzilovskaiaN A, OnipchenkoV G. Experimental investigation of fertilization and irrigation effects on an alpine heath, northwestern Caucasus, Russia. Arctic, Antarctic, and Alpine Research , 2005, 37( 4): 602–610
CrossRef Google scholar
[117]
SrinivasanM P, GleesonS K, ArthurM A. Short-term impacts of nitrogen fertilization on a montane grassland ecosystem in a South Asian biodiversity hotspot. Plant Ecology & Diversity , 2012, 5( 3): 289–299
CrossRef Google scholar
[118]
VermaP, SagarR, VermaH, VermaP, SinghD K. Changes in species composition, diversity and biomass of herbaceous plant traits due to N amendment in a dry tropical environment of India. Journal of Plant Ecology , 2015, 8( 3): 321–332
CrossRef Google scholar
[119]
HanW, CaoJ, LiuJ, JiangJ, NiJ. Impacts of nitrogen deposition on terrestrial plant diversity: a meta-analysis in China. Journal of Plant Ecology , 2019, 12( 6): 1025–1033
CrossRef Google scholar
[120]
PalpurinaS, ChytrýM, HölzelN, TichýL, WagnerV, HorsákM, AxmanováI, HájekM, HájkováP, FreitagM, LososováZ, MatharW, TzonevR, DanihelkaJ, DřevojanP. The type of nutrient limitation affects the plant species richness—productivity relationship: evidence from dry grasslands across Eurasia. Journal of Ecology , 2019, 107( 3): 1038–1050
CrossRef Google scholar
[121]
LinB L, KumonY, InoueK, TobariN, XueM, TsunemiK, TeradaA. Increased nitrogen deposition contributes to plant biodiversity loss in Japan: insights from long-term historical monitoring data. Environmental Pollution , 2021, 290 : 118033
CrossRef Pubmed Google scholar
[122]
LuP, Hao T, LiX, WangH, ZhaiX, TianQ, BaiW, StevensC, ZhangW H. Ambient nitrogen deposition drives plant-diversity decline by nitrogen accumulation in a closed grassland ecosystem. Ambient nitrogen deposition drives plant-diversity decline by nitrogen accumulation in a closed grassland ecosystem. Journal of Applied Ecology , 2021, 58( 9): 1888–1898
CrossRef Google scholar
[123]
SquiresV R, DenglerJ, HuaL, FengH. Grasslands of the world: diversity, management and conservation. CRC Press , 2018
[124]
FangY, XunF, BaiW, ZhangW, LiL. Long-term nitrogen addition leads to loss of species richness due to litter accumulation and soil acidification in a temperate steppe. PLoS One , 2012, 7( 10): e47369
CrossRef Pubmed Google scholar
[125]
SongL, BaoX, LiuX, ZhangF. Impact of nitrogen addition on plant community in a semi-arid temperate steppe in China. Journal of Arid Land , 2012, 4( 1): 3–10
CrossRef Google scholar
[126]
BaiY, WuJ, Clark C M, NaeemS, PanQ, HuangJ, ZhangL, HanX. Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: evidence from inner Mongolia Grasslands. Global Change Biology , 2010, 16( 1): 358–372
CrossRef Google scholar
[127]
ZhangY, FengJ, IsbellF, LüX, HanX. Productivity depends more on the rate than the frequency of N addition in a temperate grassland. Scientific Reports , 2015, 5( 1): 12558
CrossRef Pubmed Google scholar
[128]
BaiW, GuoD, TianQ, LiuN, ChengW, LiL, Zhang W. Differential responses of grasses and forbs led to marked reduction in below‐ground productivity in temperate steppe following chronic N deposition. Journal of Ecology , 2015, 103( 6): 1570–1579
CrossRef Google scholar
[129]
XuZ, Ren H, LiM H, BrunnerI, YinJ, LiuH, KongD, LüX T, SunT, CaiJ, WangR, ZhangY, HeP, Han X, WanS, JiangY. Experimentally increased water and nitrogen affect root production and vertical allocation of an old-field grassland. Plant and Soil , 2017, 412( 1–2): 369–380
CrossRef Google scholar
[130]
LanZ, BaiY. Testing mechanisms of N-enrichment-induced species loss in a semiarid Inner Mongolia grassland: critical thresholds and implications for long-term ecosystem responses. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences , 2012, 367( 1606): 3125–3134
CrossRef Pubmed Google scholar
[131]
LanZ, JeneretteG D, ZhanS, LiW, Zheng S, BaiY. Testing the scaling effects and mechanisms of N-induced biodiversity loss: evidence from a decade-long grassland experiment. Journal of Ecology , 2015, 103( 3): 750–760
CrossRef Google scholar
[132]
HaoT, SongL, GouldingK, ZhangF, LiuX. Cumulative and partially recoverable impacts of nitrogen addition on a temperate steppe. Ecological Applications , 2018, 28( 1): 237–248
CrossRef Pubmed Google scholar
[133]
YangG J, LüX T, StevensC J, ZhangG M, WangH Y, WangZ W, ZhangZ J, LiuZ Y, HanX G. Mowing mitigates the negative impacts of N addition on plant species diversity. Oecologia , 2019, 189( 3): 769–779
CrossRef Pubmed Google scholar
[134]
TianQ, LiuN, BaiW, LiL, Chen J, ReichP B, YuQ, Guo D, SmithM D, KnappA K, ChengW, LuP, Gao Y, YangA, WangT, LiX, Wang Z, MaY, HanX, ZhangW H. A novel soil manganese mechanism drives plant species loss with increased nitrogen deposition in a temperate steppe. Ecology , 2016, 97( 1): 65–74
CrossRef Pubmed Google scholar
[135]
FuG, Shen Z X. Response of alpine plants to nitrogen addition on the Tibetan Plateau: a meta-analysis. Journal of Plant Growth Regulation , 2016, 35( 4): 974–979
CrossRef Google scholar
[136]
LiS, Dong S, ShenH, HanY, ZhangJ, XuY, Gao X, YangM, LiY, Zhao Z, LiuS, ZhouH, DongQ, YeomansJ C. Different responses of multifaceted plant diversities of alpine meadow and alpine steppe to nitrogen addition gradients on Qinghai-Tibetan Plateau. Science of the Total Environment , 2019, 688 : 1405–1412
CrossRef Pubmed Google scholar
[137]
WangD, ZhouH, YaoB, WangW, DongS, ShangZ, SheY, MaL, Huang X, ZhangZ, ZhangQ, ZhaoF, ZuoJ, MaoZ. Effects of nutrient addition on degraded alpine grasslands of the Qinghai-Tibetan Plateau: a meta-analysis. Agriculture, Ecosystems & Environment , 2020, 301 : 106970
CrossRef Google scholar
[138]
YangZ, HautierY, BorerE T, ZhangC, DuG. Abundance- and functional-based mechanisms of plant diversity loss with fertilization in the presence and absence of herbivores. Oecologia , 2015, 179( 1): 261–270
CrossRef Pubmed Google scholar
[139]
LiK, Liu X, SongL, GongY, LuC, Yue P, TianC, ZhangF. Response of alpine grassland to elevated nitrogen deposition and water supply in China. Oecologia , 2015, 177( 1): 65–72
CrossRef Pubmed Google scholar
[140]
ZongN, ZhaoG, ShiP. Different sensitivity and threshold in response to nitrogen addition in four alpine grasslands along a precipitation transect on the Northern Tibetan Plateau. Ecology and Evolution , 2019, 9( 17): 9782–9793
CrossRef Pubmed Google scholar
[141]
NiuK, CholerP, DeBello F, MirotchnickN, DuG, Sun S. Fertilization decreases species diversity but increases functional diversity: a three-year experiment in a Tibetan alpine meadow. Agriculture, Ecosystems & Environment , 2014, 182 : 106–112
CrossRef Google scholar
[142]
SagarR, VermaP, VermaH, SinghD K, VermaP. Species diversity—Primary productivity relationships in a nitrogen amendment experiment in grasslands at Varanasi, India. Current Science , 2015, 108( 12): 2163–2166
[143]
VermaP, SagarR. Responses of diversity, productivity, and stability to the nitrogen input in a tropical grassland. Ecological Applications , 2020, 30( 2): e02037
CrossRef Pubmed Google scholar
[144]
YangY H, JiC J, MaW H, WangS F, WangS P, HanW X, MohammatA, RobinsonD, SmithP. Significant soil acidification across northern China’s grasslands during 1980s–2000s. Global Change Biology , 2012, 18( 7): 2292–2300
CrossRef Google scholar
[145]
ZhangY, LüX, IsbellF, StevensC, HanX, HeN, Zhang G, YuQ, HuangJ, HanX. Rapid plant species loss at high rates and at low frequency of N addition in temperate steppe. Global Change Biology , 2014, 20( 11): 3520–3529
CrossRef Pubmed Google scholar
[146]
BustamanteM M C, MedinaE, AsnerG P, NardotoG B, Garcia-MontielD C. Nitrogen cycling in tropical and temperate savannas. Biogeochemistry , 2006, 79( 1–2): 209–237
CrossRef Google scholar
[147]
BlairJ, NippertJ, BriggsJ. Grassland ecology. In: Monson R K. Ecology and the Environment. Springer , 2014, 389–423
[148]
DixonA P, Faber‐LangendoenD, JosseC, MorrisonJ, LoucksC J. Distribution mapping of world grassland types. Journal of Biogeography , 2014, 41( 11): 2003–2019
CrossRef Google scholar
[149]
DinersteinE, OlsonD, JoshiA, VynneC, BurgessN D, WikramanayakeE, HahnN, PalminteriS, HedaoP, NossR, HansenM, LockeH, EllisE C, JonesB, BarberC V, HayesR, KormosC, MartinV, CristE, SechrestW, PriceL, BaillieJ E M, WeedenD, SucklingK, DavisC, SizerN, MooreR, ThauD, BirchT, PotapovP, TurubanovaS, TyukavinaA, deSouza N, PinteaL, BritoJ C, LlewellynO A, MillerA G, PatzeltA, GhazanfarS A, TimberlakeJ, KlöserH, Shennan-FarpónY, KindtR, LillesøJ B, vanBreugel P, GraudalL, VogeM, Al-ShammariK F, SaleemM. An ecoregion-based approach to protecting half the terrestrial realm. Bioscience , 2017, 67( 6): 534–545
CrossRef Pubmed Google scholar
[150]
KozovitsA R, BustamanteM M C. Land use change, air pollution and climate change—Vegetation response in Latin America. In: Matyssek R, Clarke N, Cudlin P, Mikkelsen T N, Tuovinen J P, Wieser G, Paoletti E, eds. Developments in Environmental Science. Elsevier , 2013, 13 : 411–427
[151]
ReisC R G, PachecoF S, ReedS C, TejadaG, NardotoG B, FortiM C, OmettoJ P. Biological nitrogen fixation across major biomes in Latin America: patterns and global change effects. Science of the Total Environment , 2020, 746 : 140998
CrossRef Pubmed Google scholar
[152]
López-HernándezD. N biogeochemistry and cycling in two well-drained savannas: a comparison between the Orinoco Basin (Llanos, Venezuela) and Ivory Coast (western Africa). Chemistry and Ecology , 2013, 29( 3): 280–295
CrossRef Google scholar
[153]
BorghettiF, BarbosaE, RibeiroL, RibeiroJ F, WalterB M T. South American savannas. In: Scogings P F, Sankaran M, eds. Savanna Woody Plants and Large Herbivores. Wiley , 2019, 77–122
[154]
BustamanteM M C, DeBrito D Q, KozovitsA R, LuedemannG, DeMello T R B, DeSiqueira Pinto A, MunhozC B R, TakahashiF S C. Effects of nutrient additions on plant biomass and diversity of the herbaceous-subshrub layer of a Brazilian savanna (Cerrado). Plant Ecology , 2012, 213( 5): 795–808
CrossRef Google scholar
[155]
DellaChiesa T, PiñeiroG, YahdjianL. Gross, background, and net anthropogenic soil nitrous oxide emissions from soybean, corn, and wheat croplands. Journal of Environmental Quality , 2019, 48( 1): 16–23
CrossRef Pubmed Google scholar
[156]
OmettoJ P, AscarrunzN L, AustinA T, BustamanteM M, Cunha-ZeriG, FortiM C, HoelzemannJ, JaramilloV J, MartinelliL A, PachecoF, PerezC, PerezT, SteinA. The Latin America regional nitrogen centre: concepts and recent activities. In: Sutton M A, Mason K E, Bleeker A, Hicks W K, Masson C, Raghuram N, Reis S, Bekunda M, eds. Just Enough Nitrogen. Springer , 2020, 499–514
[157]
VetR, ArtzR S, CarouS, ShawM, RoC U, AasW, BakerA, BowersoxV C, DentenerF, Galy-LacauxC, HouA, PienaarJ J, GillettR, FortiM C, GromovS, HaraH, KhodzherT, MahowaldN M, NickovicoS, RaoP S P, ReidN W. A global assessment of precipitation chemistry and deposition of sulfur, nitrogen, sea salt, base cations, organic acids, acidity and pH, and phosphorus. Atmospheric Environment , 2014, 93 : 3–100
CrossRef Google scholar
[158]
BuenoM L, DexterK G, PenningtonR T, PontaraV, NevesD M, RatterJ A, DeOliveira‐Filho A T. The environmental triangle of the Cerrado Domain: ecological factors driving shifts in tree species composition between forests and savannas. Journal of Ecology , 2018, 106( 5): 2109–2120
CrossRef Google scholar
[159]
BargerN N, D’antonioC M, GhneimT, BrinkK, CuevasE. Nutrient limitation to primary productivity in a secondary savanna in Venezuela. Biotropica , 2002, 34( 4): 493–501
CrossRef Google scholar
[160]
CopelandS M, BrunaE M, SilvaL V B, MackM C, VasconcelosH L. Short‐term effects of elevated precipitation and nitrogen on soil fertility and plant growth in a neotropical savanna. Ecosphere , 2012, 3( 4): 1–20
CrossRef Google scholar
[161]
SarmientoG, DaSilva M P, NaranjoM E, PinillosM. Nitrogen and phosphorus as limiting factors for growth and primary production in a flooded savanna in the Venezuelan Llanos. Journal of Tropical Ecology , 2006, 22( 2): 203–212
CrossRef Google scholar
[162]
YahdjianL, GherardiL, SalaO E. Grasses have larger response than shrubs to increased nitrogen availability: a fertilization experiment in the Patagonian steppe. Journal of Arid Environments , 2014, 102 : 17–20
CrossRef Google scholar
[163]
FlombaumP, YahdjianL, SalaO E. Global-change drivers of ecosystem functioning modulated by natural variability and saturating responses. Global Change Biology , 2017, 23( 2): 503–511
CrossRef Pubmed Google scholar
[164]
McivorJ G. Australian grasslands. In: Suttie J M, Reynolds S G, Batello C, eds. Grasslands of the World. Rome: Food and Agriculture Organization of the United Nations (FAO) , 2005
[165]
BellL W, HayesR C, PembletonK G, WatersC M. Opportunities and challenges in Australian grasslands: pathways to achieve future sustainability and productivity imperatives. Crop & Pasture Science , 2014, 65( 6): 489–507
CrossRef Google scholar
[166]
LambersH, BrundrettM C, RavenJ A, HopperS D. Plant mineral nutrition in ancient landscapes: high plant species diversity on infertile soils is linked to functional diversity for nutritional strategies. Plant and Soil , 2011, 348( 1–2): 7–27
CrossRef Google scholar
[167]
BroadhurstL, CoatesD. Plant conservation in Australia: current directions and future challenges. Plant Diversity , 2017, 39( 6): 348–356
CrossRef Pubmed Google scholar
[168]
NobleJ C, HikD S, SinclairA R E. Landscape ecology of the burrowing bettong: fire and marsupial biocontrol of shrubs in semi-arid Australia. Rangeland Journal , 2007, 29( 1): 107–119
CrossRef Google scholar
[169]
LindenmayerD B, SteffenW, BurbidgeA A, HughesL, KitchingR L, MusgraveW, SmithM S, WerneraP A. Conservation strategies in response to rapid climate change: Australia as a case study. Biological Conservation , 2010, 143( 7): 1587–1593
CrossRef Google scholar
[170]
MorganJ W. Patterns of invasion of an urban remnant of a species-rich grassland in southeastern Australia by non-native plant species. Journal of Vegetation Science , 1998, 9( 2): 181–190
CrossRef Google scholar
[171]
DecinaS M, HutyraL R, TemplerP H. Hotspots of nitrogen deposition in the world’s urban areas: a global data synthesis. Frontiers in Ecology and the Environment , 2020, 18( 2): 92–100
CrossRef Google scholar
[172]
AyersG P, MalfroyH, GillettR W, HigginsD, SelleckP W, MarshallJ C. Deposition of acidic species at a rural location in New South Wales, Australia. Water, Air, and Soil Pollution , 1995, 85( 4): 2089–2094
CrossRef Google scholar
[173]
DentenerF, DrevetJ, LamarqueJ F, BeyI, EickhoutB, FioreA M, HauglustaineD, HorowitzL W, KrolM, KulshresthaU C, LawrenceM, Galy-LacauxC, RastS, ShindellD, StevensonD, VanNoije T, AthertonC, BellN, BergmanD, ButlerT, CofalaJ, CollinsB, DohertyR, EllingsenK, GallowayJ, GaussM, MontanaroV, MullerJ F, PitariG, RodriguezJ, SandersonM, SolmonF, StrahanS, SchultzM, SudoK, SzopaS, WildO. Nitrogen and sulfur deposition on regional and global scales: a multimodel evaluation. Global Biogeochemical Cycles , 2006, 20( 4): GB4003
CrossRef Google scholar
[174]
StohlA, EckhardtS, ForsterC, JamesP, SpichtingerN. On the pathways and timescales of intercontinental air pollution transport. Journal of Geophysical Research Atmospheres , 2002, 107(D23): ACH 6-1−ACH 6-17
[175]
LongleyI, TunnoB, SomervellE, EdwardsS, OlivaresG, GrayS, CoulsonG, CambalL, RoperC, ChubbL, CloughertyJ E. Assessment of spatial variability across multiple pollutants in Auckland, New Zealand. International Journal of Environmental Research and Public Health , 2019, 16( 9): 1567
CrossRef Pubmed Google scholar
[176]
ShenJ, ChenD, BaiM, SunJ, CoatesT, LamS K, LiY. Ammonia deposition in the neighbourhood of an intensive cattle feedlot in Victoria, Australia. Scientific Reports , 2016, 6( 1): 32793
CrossRef Pubmed Google scholar
[177]
HendryxM, IslamM S, DongG H, PaulG. Air pollution emissions 2008–2018 from Australian coal mining: implications for public and occupational health. International Journal of Environmental Research and Public Health , 2020, 17( 5): 1570
CrossRef Pubmed Google scholar
[178]
GallowayJ N, BleekerA, ErismanJ W. The human creation and use of reactive nitrogen: a global and regional perspective. Annual Review of Environment and Resources , 2021, 46( 1): 255–288
CrossRef Google scholar
[179]
BorerE T, GraceJ B, HarpoleW S, MacdougallA S, SeabloomE W. A decade of insights into grassland ecosystem responses to global environmental change. Nature Ecology & Evolution , 2017, 1 : 0118
[180]
Ochoa-HuesoR, Delgado-BaquerizoM, AnKing P T, BenhamM, ArcaV, PowerS A. Ecosystem type and resource quality are more important than global change drivers in regulating early stages of litter decomposition. Soil Biology & Biochemistry , 2019, 129 : 144–152
CrossRef Google scholar
[181]
StandishR J, FontaineJ B, HarrisR J, StockW D, HobbsR J. Interactive effects of altered rainfall and simulated nitrogen deposition on seedling establishment in a global biodiversity hotspot. Oikos , 2012, 121( 12): 2014–2025
CrossRef Google scholar
[182]
BorerE T, StevensC J. Nitrogen deposition and climate: an integrated synthesis. Trends in Ecology & Evolution , 2022, 37( 6): 541–552
CrossRef Pubmed Google scholar

Compliance with ethics guidelines

Carly J. Stevens, Sofía Basto, Michael D. Bell, Tianxiang Hao, Kevin Kirkman, and Raúl Ochoa-Hueso declare that they have no conflicts of interest or financial conflicts to disclose. This article does not contain any studies with human or animal subjects performed by any of the authors.

RIGHTS & PERMISSIONS

The Author(s) 2022. Published by Higher Education Press. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0)
AI Summary AI Mindmap
PDF(2837 KB)

Accesses

Citations

Detail

Sections
Recommended

/