OPPORTUNITIES AND APPROACHES FOR MANIPULATING SOIL-PLANT MICROBIOMES FOR EFFECTIVE CROP NITROGEN USE IN AGROECOSYSTEMS

Jingjing PENG, Olatunde OLADELE, Xiaotong SONG, Xiaotang JU, Zhongjun JIA, Hangwei HU, Xuejun LIU, Shuikuan BEI, Anhui GE, Limei ZHANG, Zhenling CUI

PDF(5811 KB)
PDF(5811 KB)
Front. Agr. Sci. Eng. ›› 2022, Vol. 9 ›› Issue (3) : 333-343. DOI: 10.15302/J-FASE-2022450
REVIEW
REVIEW

OPPORTUNITIES AND APPROACHES FOR MANIPULATING SOIL-PLANT MICROBIOMES FOR EFFECTIVE CROP NITROGEN USE IN AGROECOSYSTEMS

Author information +
History +

Highlights

● Matching nitrification inhibitors with soil properties and nitrifiers is vital to achieve a higher NUE.

● Enhancing BNF, DNRA and microbial N immobilization processes via soil amendments can greatly contribute to less chemical N fertilizer input.

● Plant-associated microbiomes are critical for plant nutrient uptake, growth and fitness.

● Coevolutionary trophic relationships among soil biota need to be considered for improving crop NUE.

Abstract

Soil microbiomes drive the biogeochemical cycling of nitrogen and regulate soil N supply and loss, thus, pivotal nitrogen use efficiency (NUE). Meanwhile, there is an increasing awareness that plant associated microbiomes and soil food web interactions is vital for modulating crop productivity and N uptake. The rapid advances in modern omics-based techniques and biotechnologies make it possible to manipulate soil-plant microbiomes for improving NUE and reducing N environmental impacts. This paper summarizes current progress in research on regulating soil microbial N cycle processes for NUE improvement, plant-microbe interactions benefiting plant N uptake, and the importance of soil microbiomes in promoting soil health and crop productivity. We also proposes a potential holistic (rhizosphere-root-phyllosphere) microbe-based approach to improve NUE and reduce dependence on mineral N fertilizer in agroecosystems, toward nature-based solution for nutrient management in intensive cropping systems.

Graphical abstract

Keywords

nitrogen / microbiome / NUE / rhizosphere / phyllosphere / soil food web

Cite this article

Download citation ▾
Jingjing PENG, Olatunde OLADELE, Xiaotong SONG, Xiaotang JU, Zhongjun JIA, Hangwei HU, Xuejun LIU, Shuikuan BEI, Anhui GE, Limei ZHANG, Zhenling CUI. OPPORTUNITIES AND APPROACHES FOR MANIPULATING SOIL-PLANT MICROBIOMES FOR EFFECTIVE CROP NITROGEN USE IN AGROECOSYSTEMS. Front. Agr. Sci. Eng., 2022, 9(3): 333‒343 https://doi.org/10.15302/J-FASE-2022450

References

[1]
CanfieldD E, GlazerA N, FalkowskiP G. The evolution and future of Earth’s nitrogen cycle. Science , 2010, 330( 6001): 192–196
CrossRef Pubmed Google scholar
[2]
PhilippotL, RaaijmakersJ M, LemanceauP, vander Putten W H. Going back to the roots: the microbial ecology of the rhizosphere. Nature Reviews: Microbiology , 2013, 11( 11): 789–799
CrossRef Pubmed Google scholar
[3]
KuypersM M M, MarchantH K, KartalB. The microbial nitrogen-cycling network. Nature Reviews: Microbiology , 2018, 16( 5): 263–276
CrossRef Pubmed Google scholar
[4]
CuiZ, ZhangH, ChenX, ZhangC, MaW, Huang C, ZhangW, MiG, Miao Y, LiX, GaoQ, YangJ, WangZ, YeY, Guo S, LuJ, HuangJ, LvS, Sun Y, LiuY, PengX, RenJ, LiS, Deng X, ShiX, ZhangQ, YangZ, TangL, WeiC, JiaL, ZhangJ, HeM, Tong Y, TangQ, ZhongX, LiuZ, CaoN, KouC, YingH, YinY, JiaoX, ZhangQ, FanM, JiangR, ZhangF, DouZ. Pursuing sustainable productivity with millions of smallholder farmers. Nature , 2018, 555( 7696): 363–366
CrossRef Pubmed Google scholar
[5]
LiuL, XuW, Lu X, ZhongB, GuoY, LuX, Zhao Y, HeW, WangS, ZhangX, LiuX, VitousekP. Exploring global changes in agricultural ammonia emissions and their contribution to nitrogen deposition since 1980. Proceedings of the National Academy of Sciences of the United States of America , 2022, 119( 14): e2121998119
CrossRef Pubmed Google scholar
[6]
MartinF M, UrozS, BarkerD G. Ancestral alliances: plant mutualistic symbioses with fungi and bacteria. Science , 2017, 356( 6340): eaad4501
CrossRef Pubmed Google scholar
[7]
vanEck N J, WaltmanL. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics , 2010, 84( 2): 523–538
CrossRef Pubmed Google scholar
[8]
CoskunD, BrittoD T, ShiW, KronzuckerH J. Nitrogen transformations in modern agriculture and the role of biological nitrification inhibition. Nature Plants , 2017, 3( 6): 17074
CrossRef Pubmed Google scholar
[9]
WrageN, VelthofG L, vanBeusichem M L, OenemaO. Role of nitrifier denitrification in the production of nitrous oxide. Soil Biology & Biochemistry , 2001, 33( 12-13): 1723–1732
CrossRef Google scholar
[10]
DaimsH, LebedevaE V, PjevacP, HanP, HerboldC, AlbertsenM, JehmlichN, PalatinszkyM, VierheiligJ, BulaevA, KirkegaardR H, vonBergen M, RatteiT, BendingerB, NielsenP H, WagnerM. Complete nitrification by Nitrospira bacteria. Nature , 2015, 528( 7583): 504–509
CrossRef Pubmed Google scholar
[11]
vanKessel M A H J, SpethD R, AlbertsenM, NielsenP H, Opden Camp H J M, KartalB, JettenM S M, LückerS. Complete nitrification by a single microorganism. Nature , 2015, 528( 7583): 555–559
CrossRef Pubmed Google scholar
[12]
ShenT, StieglmeierM, DaiJ, UrichT, SchleperC. Responses of the terrestrial ammonia-oxidizing archaeon Ca. Nitrososphaera viennensis and the ammonia-oxidizing bacterium Nitrosospira multiformis to nitrification inhibitors. FEMS Microbiology Letters , 2013, 344( 2): 121–129
CrossRef Pubmed Google scholar
[13]
FanK, Delgado-BaquerizoM, GuoX, WangD, WuY, Zhu M, YuW, YaoH, ZhuY G, ChuH. Suppressed N fixation and diazotrophs after four decades of fertilization. Microbiome , 2019, 7( 1): 143
CrossRef Pubmed Google scholar
[14]
ShiX, HuH, Wang J, HeJ, ZhengC, WanX, HuangZ. Niche separation of comammox Nitrospira and canonical ammonia oxidizers in an acidic subtropical forest soil under long-term nitrogen deposition. Soil Biology & Biochemistry , 2018, 126 : 114–122
CrossRef Google scholar
[15]
ZhuG, JuX, Zhang J, MüllerC, ReesR M, ThormanR E, Sylvester-BradleyR. Effects of the nitrification inhibitor DMPP (3,4-dimethylpyrazole phosphate) on gross N transformation rates and N2O emissions. Biology and Fertility of Soils , 2019, 55( 6): 603–615
CrossRef Google scholar
[16]
FriedlJ, ScheerC, RowlingsD W, MumfordM T, GraceP R. The nitrification inhibitor DMPP (3,4-dimethylpyrazole phosphate) reduces N2 emissions from intensively managed pastures in subtropical Australia. Soil Biology & Biochemistry , 2017, 108 : 55–64
CrossRef Google scholar
[17]
XiaW, ZhangC, ZengX, FengY, WengJ, LinX, ZhuJ, XiongZ, XuJ, Cai Z, JiaZ. Autotrophic growth of nitrifying community in an agricultural soil. ISME Journal , 2011, 5( 7): 1226–1236
CrossRef Pubmed Google scholar
[18]
ZhangL M, HuH W, ShenJ P, HeJ Z. Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils. ISME Journal , 2012, 6( 5): 1032–1045
CrossRef Pubmed Google scholar
[19]
ZhangL M, OffreP R, HeJ Z, VerhammeD T, NicolG W, ProsserJ I. Autotrophic ammonia oxidation by soil thaumarchaea. Proceedings of the National Academy of Sciences of the United States of America , 2010, 107( 40): 17240–17245
CrossRef Pubmed Google scholar
[20]
HarterJ, KrauseH M, SchuettlerS, RuserR, FrommeM, ScholtenT, KapplerA, BehrensS. Linking N2O emissions from biochar-amended soil to the structure and function of the N-cycling microbial community. ISME Journal , 2014, 8( 3): 660–674
CrossRef Pubmed Google scholar
[21]
XuH J, WangX H, LiH, Yao H Y, SuJ Q, ZhuY G. Biochar impacts soil microbial community composition and nitrogen cycling in an acidic soil planted with rape. Environmental Science & Technology , 2014, 48( 16): 9391–9399
CrossRef Pubmed Google scholar
[22]
ZhongY, HuJ, Xia Q, ZhangS, LiX, Pan X, ZhaoR, WangR, YanW, ShangguanZ, HuF, Yang C, WangW. Soil microbial mechanisms promoting ultrahigh rice yield. Soil Biology & Biochemistry , 2020, 143 : 107741
CrossRef Google scholar
[23]
AbalosD, LiangZ, DörschP, ElsgaardL. Trade-offs in greenhouse gas emissions across a liming-induced gradient of soil pH: role of microbial structure and functioning. Soil Biology & Biochemistry , 2020, 150 : 108006
CrossRef Google scholar
[24]
ZhangM, AlvesR J E, ZhangD, HanL, HeJ, Zhang L. Time-dependent shifts in populations and activity of bacterial and archaeal ammonia oxidizers in response to liming in acidic soils. Soil Biology & Biochemistry , 2017, 112 : 77–89
CrossRef Google scholar
[25]
HuangT, YangH, HuangC, JuX. Effect of fertilizer N rates and straw management on yield-scaled nitrous oxide emissions in a maize-wheat double cropping system. Field Crops Research , 2017, 204 : 1–11
CrossRef Google scholar
[26]
XuC, Han X, RuS, CárdenasL, ReesR M, WuD, Wu W, MengF. Crop straw incorporation interacts with N fertilizer on N2O emissions in an intensively cropped farmland. Geoderma , 2019, 341 : 129–137
CrossRef Google scholar
[27]
XiaL, LamS K, WolfB, KieseR, ChenD, Butterbach-BahlK. Trade-offs between soil carbon sequestration and reactive nitrogen losses under straw return in global agroecosystems. Global Change Biology , 2018, 24( 12): 5919–5932
CrossRef Pubmed Google scholar
[28]
WangY Q, BaiR, DiH J, MoL Y, HanB, ZhangL M, HeJ Z. Differentiated mechanisms of biochar mitigating straw-induced greenhouse gas emissions in two contrasting paddy Soils. Frontiers in Microbiology , 2018, 9 : 2566
CrossRef Pubmed Google scholar
[29]
ChengY, ElrysA S, MerwadA M, ZhangH, ChenZ, ZhangJ, CaiZ, MüllerC. Global patterns and drivers of soil dissimilatory nitrate reduction to ammonium. Environmental Science & Technology , 2022, 56( 6): 3791–3800
CrossRef Pubmed Google scholar
[30]
LassalettaL, BillenG, GrizzettiB, AngladeJ, GarnierJ. 50 year trends in nitrogen use efficiency of world cropping systems: the relationship between yield and nitrogen input to cropland. Environmental Research Letters , 2014, 9( 10): 105011
CrossRef Google scholar
[31]
WangY, LiC, Kou Y, WangJ, TuB, Li H, LiX, WangC, YaoM. Soil pH is a major driver of soil diazotrophic community assembly in Qinghai-Tibet alpine meadows. Soil Biology & Biochemistry , 2017, 115 : 547–555
CrossRef Google scholar
[32]
ShiW, ZhaoH, ChenY, WangJ, HanB, LiC, Lu J, ZhangL. Organic manure rather than phosphorus fertilization primarily determined asymbiotic nitrogen fixation rate and the stability of diazotrophic community in an upland red soil. Agriculture, Ecosystems & Environment , 2021, 319 : 107535
CrossRef Google scholar
[33]
WuX, Liu Y, ShangY, LiuD, LiesackW, CuiZ, PengJ, ZhangF. Peat-vermiculite alters microbiota composition towards increased soil fertility and crop productivity. Plant and Soil , 2022, 470( 1−2): 21–34
CrossRef Google scholar
[34]
WuX, Peng J, LiuP, BeiQ, RensingC, LiY, Yuan H, LiesackW, ZhangF, CuiZ. Metagenomic insights into nitrogen and phosphorus cycling at the soil aggregate scale driven by organic material amendments. Science of the Total Environment , 2021, 785 : 147329
CrossRef Pubmed Google scholar
[35]
BaiR, FangY, MoL, Shen J, SongL, WangY, ZhangL, HeJ. Greater promotion of DNRA rates and nrfA gene transcriptional activity by straw incorporation in alkaline than in acidic paddy soils. Soil Ecology Letters , 2020, 2( 4): 255–267
CrossRef Google scholar
[36]
CavicchioliR, RippleW J, TimmisK N, AzamF, BakkenL R, BaylisM, BehrenfeldM J, BoetiusA, BoydP W, ClassenA T, CrowtherT W, DanovaroR, ForemanC M, HuismanJ, HutchinsD A, JanssonJ K, KarlD M, KoskellaB, MarkWelch D B, MartinyJ B H, MoranM A, OrphanV J, ReayD S, RemaisJ V, RichV I, SinghB K, SteinL Y, StewartF J, SullivanM B, vanOppen M J H, WeaverS C, WebbE A, WebsterN S. Scientists’ warning to humanity: microorganisms and climate change. Nature Reviews: Microbiology , 2019, 17( 9): 569–586
CrossRef Pubmed Google scholar
[37]
OldroydG E D. Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nature Reviews: Microbiology , 2013, 11( 4): 252–263
CrossRef Pubmed Google scholar
[38]
LiB, Li Y Y, WuH M, ZhangF F, LiC J, LiX X, LambersH, LiL. Root exudates drive interspecific facilitation by enhancing nodulation and N2 fixation. Proceedings of the National Academy of Sciences of the United States of America , 2016, 113( 23): 6496–6501
CrossRef Pubmed Google scholar
[39]
SunB, GaoY, WuX, Ma H, ZhengC, WangX, ZhangH, LiZ, Yang H. The relative contributions of pH, organic anions, and phosphatase to rhizosphere soil phosphorus mobilization and crop phosphorus uptake in maize/alfalfa polyculture. Plant and Soil , 2020, 447( 1−2): 117–133
CrossRef Google scholar
[40]
ZakirH A K M, SubbaraoG V, PearseS J, GopalakrishnanS, ItoO, IshikawaT, KawanoN, NakaharaK, YoshihashiT, OnoH, YoshidaM. Detection, isolation and characterization of a root-exuded compound, methyl 3-(4-hydroxyphenyl) propionate, responsible for biological nitrification inhibition by sorghum (Sorghum bicolor). New Phytologist , 2008, 180( 2): 442–451
CrossRef Pubmed Google scholar
[41]
SubbaraoG V, NakaharaK, HurtadoM P, OnoH, MoretaD E, SalcedoA F, YoshihashiA T, IshikawaT, IshitaniM, Ohnishi-KameyamaM, YoshidaM, RondonM, RaoI M, LascanoC E, BerryW L, ItoO. Evidence for biological nitrification inhibition in Brachiaria pastures. Proceedings of the National Academy of Sciences of the United States of America , 2009, 106( 41): 17302–17307
CrossRef Pubmed Google scholar
[42]
SunL, LuY, Yu F, KronzuckerH J, ShiW. Biological nitrification inhibition by rice root exudates and its relationship with nitrogen-use efficiency. New Phytologist , 2016, 212( 3): 646–656
CrossRef Pubmed Google scholar
[43]
O′SullivanC A, FilleryI R P, RoperM M, RichardsR A. Identification of several wheat landraces with biological nitrification inhibition capacity. Plant and Soil , 2016, 404( 1−2): 61–74
CrossRef Google scholar
[44]
OtakaJ, SubbaraoG V, OnoH, YoshihashiT. Biological nitrification inhibition in maize—isolation and identification of hydrophobic inhibitors from root exudates. Biology and Fertility of Soils , 2022, 58( 3): 251–264
CrossRef Google scholar
[45]
BardonC, PiolaF, BellvertF, HaicharF E Z, ComteG, MeiffrenG, PommierT, PuijalonS, TsafackN, PolyF. Evidence for biological denitrification inhibition (BDI) by plant secondary metabolites. New Phytologist , 2014, 204( 3): 620–630
CrossRef Pubmed Google scholar
[46]
NieS, LiH, Yang X, ZhangZ, WengB, HuangF, ZhuG B, ZhuY G. Nitrogen loss by anaerobic oxidation of ammonium in rice rhizosphere. ISME Journal , 2015, 9( 9): 2059–2067
CrossRef Pubmed Google scholar
[47]
FinziA C, AbramoffR Z, SpillerK S, BrzostekE R, DarbyB A, KramerM A, PhillipsR P. Rhizosphere processes are quantitatively important components of terrestrial carbon and nutrient cycles. Global Change Biology , 2015, 21( 5): 2082–2094
CrossRef Pubmed Google scholar
[48]
GeorgeP B L, LalliasD, CreerS, SeatonF M, KennyJ G, EcclesR M, GriffithsR I, LebronI, EmmettB A, RobinsonD A, JonesD L. Divergent national-scale trends of microbial and animal biodiversity revealed across diverse temperate soil ecosystems. Nature Communications , 2019, 10( 1): 1107
CrossRef Pubmed Google scholar
[49]
ZhangJ, LiuY X, ZhangN, HuB, Jin T, XuH, QinY, YanP, ZhangX, GuoX, HuiJ, CaoS, WangX, WangC, WangH, QuB, Fan G, YuanL, Garrido-OterR, ChuC, BaiY. NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nature Biotechnology , 2019, 37( 6): 676–684
CrossRef Pubmed Google scholar
[50]
LynchJ P, StrockC F, SchneiderH M, SidhuJ S, AjmeraI, Galindo-CastañedaT, KleinS P, HanlonM T. Root anatomy and soil resource capture. Plant and Soil , 2021, 466( 1−2): 21–63
CrossRef Google scholar
[51]
ZhuY G, XiongC, WeiZ, ChenQ L, MaB, Zhou S Y, TanJ, ZhangL M, CuiH L, DuanG L. Impacts of global change on the phyllosphere microbiome. New Phytologist , 2022, 234( 6): 1977–1986
CrossRef Pubmed Google scholar
[52]
MadhaiyanM, AlexT H H, NgohS T, PrithivirajB, JiL. Leaf-residing Methylobacterium species fix nitrogen and promote biomass and seed production in Jatropha curcas . Biotechnology for Biofuels , 2015, 8(1): 222
[53]
BatoolF, RehmanY, HasnainS. Phylloplane associated plant bacteria of commercially superior wheat varieties exhibit superior plant growth promoting abilities. Frontiers in Life Science , 2016, 9( 4): 313–322
CrossRef Google scholar
[54]
GuptaV V S R, ZhangB, PentonC R, YuJ, Tiedje J M. Diazotroph diversity and nitrogen fixation in summer active perennial grasses in a mediterranean region agricultural soil. Frontiers in Molecular Biosciences , 2019, 6 : 115
CrossRef Pubmed Google scholar
[55]
FürnkranzM, WanekW, RichterA, AbellG, RascheF, SessitschA. Nitrogen fixation by phyllosphere bacteria associated with higher plants and their colonizing epiphytes of a tropical lowland rainforest of Costa Rica. ISME Journal , 2008, 2( 5): 561–570
CrossRef Pubmed Google scholar
[56]
KniefC, RametteA, FrancèsL, Alonso-BlancoC, VorholtJ A. Site and plant species are important determinants of the Methylobacterium community composition in the plant phyllosphere. ISME Journal , 2010, 4( 6): 719–728
CrossRef Pubmed Google scholar
[57]
XiongC, SinghB K, HeJ Z, HanY L, LiP P, WanL H, MengG Z, LiuS Y, WangJ T, WuC F, GeA H, ZhangL M. Plant developmental stage drives the differentiation in ecological role of the maize microbiome. Microbiome , 2021, 9( 1): 171
CrossRef Pubmed Google scholar
[58]
BowatteS, NewtonP C D, BrockS, TheobaldP, LuoD. Bacteria on leaves: a previously unrecognised source of N2O in grazed pastures. ISME Journal , 2015, 9( 1): 265–267
CrossRef Pubmed Google scholar
[59]
BrownS P, GrilloM A, PodowskiJ C, HeathK D. Soil origin and plant genotype structure distinct microbiome compartments in the model legume Medicago truncatula . Microbiome , 2020, 8(1): 139
[60]
AbdelfattahA, WisniewskiM, SchenaL, TackA J M. Experimental evidence of microbial inheritance in plants and transmission routes from seed to phyllosphere and root. Environmental Microbiology , 2021, 23( 4): 2199–2214
CrossRef Pubmed Google scholar
[61]
DiH J, CameronK C, MclarenR G. Isotopic dilution methods to determine the gross transformation rates of nitrogen, phosphorus, and sulfur in soil: a review of the theory, methodologies, and limitations. Soil Research , 2000, 38( 1): 213–230
CrossRef Google scholar
[62]
BardgettR. The biology of soil: a community and ecosystem approach. Cambridge: Oxford university press, 2005
[63]
MooshammerM, WanekW, HämmerleI, FuchsluegerL, HofhanslF, KnoltschA, SchneckerJ, TakritiM, WatzkaM, WildB, KeiblingerK M, Zechmeister-BoltensternS, RichterA. Adjustment of microbial nitrogen use efficiency to carbon:nitrogen imbalances regulates soil nitrogen cycling. Nature Communications , 2014, 5( 1): 3694
CrossRef Pubmed Google scholar
[64]
NevisonC, HessP, GoodaleC, ZhuQ,Vira J. Nitrification, denitrification, and competition for soil N: evaluation of two earth system models against observations. Ecological Applications , 2022, e2528
[65]
GuoS, XiongW, HangX, GaoZ, JiaoZ, LiuH, MoY, Zhang N, KowalchukG A, LiR, ShenQ, GeisenS. Protists as main indicators and determinants of plant performance. Microbiome , 2021, 9( 1): 64
CrossRef Pubmed Google scholar
[66]
SantiC, BoguszD, FrancheC. Biological nitrogen fixation in non-legume plants. Annals of Botany , 2013, 111( 5): 743–767
CrossRef Pubmed Google scholar
[67]
CobanO, DeDeyn G B, vander Ploeg M. Soil microbiota as game-changers in restoration of degraded lands. Science , 2022, 375( 6584): abe0725
CrossRef Pubmed Google scholar
[68]
VerzeauxJ, HirelB, DuboisF, LeaP J, TétuT. Agricultural practices to improve nitrogen use efficiency through the use of arbuscular mycorrhizae: basic and agronomic aspects. Plant Science , 2017, 264 : 48–56
CrossRef Pubmed Google scholar
[69]
ParniskeM. Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nature Reviews: Microbiology , 2008, 6( 10): 763–775
CrossRef Pubmed Google scholar
[70]
LesuffleurF, PaynelF, BatailléM P, LeDeunff E, CliquetJ B. Root amino acid exudation: measurement of high efflux rates of glycine and serine from six different plant species. Plant and Soil , 2007, 294( 1−2): 235–246
CrossRef Google scholar
[71]
HuH W, HeJ. Manipulating the soil microbiome for improved nitrogen management. Microbiology Australia , 2018, 39( 1): 24–27
CrossRef Google scholar
[72]
XiaW W, ZhaoJ, ZhengY, ZhangH M, ZhangJ B, ChenR R, LinX G, JiaZ J. Active soil nitrifying communities revealed by in situ transcriptomics and microcosm-based stable-isotope probing. Applied and Environmental Microbiology , 2020, 86( 23): e01807-20
CrossRef Pubmed Google scholar
[73]
ChenQ L, DingJ, ZhuY G, HeJ Z, HuH W. Soil bacterial taxonomic diversity is critical to maintaining the plant productivity. Environment International , 2020, 140 : 105766
CrossRef Pubmed Google scholar
[74]
XiongC, ZhuY G, WangJ T, SinghB, HanL L, ShenJ P, LiP P, WangG B, WuC F, GeA H, ZhangL M, HeJ Z. Host selection shapes crop microbiome assembly and network complexity. New Phytologist , 2021, 229( 2): 1091–1104
CrossRef Pubmed Google scholar
[75]
ShiY, Delgado-BaquerizoM, LiY, Yang Y, ZhuY G, PeñuelasJ, ChuH. Abundance of kinless hubs within soil microbial networks are associated with high functional potential in agricultural ecosystems. Environment International , 2020, 142 : 105869
CrossRef Pubmed Google scholar
[76]
deVries F T, vanGroenigen J W, HofflandE, BloemJ. Nitrogen losses from two grassland soils with different fungal biomass. Soil Biology & Biochemistry , 2011, 43( 5): 997–1005
CrossRef Google scholar
[77]
deVries F T, LiiriM E, BjornlundL, BowkerM A, ChristensenS, SetalaH M, BardgettR D. Land use alters the resistance and resilience of soil food webs to drought. Nature Climate Change , 2012, 2( 4): 276–280
CrossRef Google scholar
[78]
SuL, Bai T, QinX, YuH, Wu G, ZhaoQ, TanL. Organic manure induced soil food web of microbes and nematodes drive soil organic matter under jackfruit planting. Applied Soil Ecology , 2021, 166 : 103994
CrossRef Google scholar
[79]
HungateB A, MarksJ C, PowerM E, SchwartzE, vanGroenigen K J, BlazewiczS J, ChuckranP, DijkstraP, FinleyB K, FirestoneM K, FoleyM, GreenlonA, HayerM, HofmockelK S, KochB J, MackM C, MauR L, MillerS N, MorrisseyE M, PropsterJ R, PurcellA M, SieradzkiE, StarrE P, StoneB W G, TerrerC, Pett-RidgeJ. The functional significance of bacterial predators. mBio , 2021, 12( 2): e00466-21
CrossRef Pubmed Google scholar
[80]
LerouxS J, HawlenaD, SchmitzO J. Predation risk, stoichiometric plasticity and ecosystem elemental cycling. Proceedings. Biological Sciences , 2012, 279( 1745): 4183–4191
CrossRef Pubmed Google scholar
[81]
SchimelJ P, BennettJ. Nitrogen mineralization: challenges of a changing paradigm. Ecology , 2004, 85( 3): 591–602
CrossRef Google scholar
[82]
ZhaoZ B, HeJ Z, GeisenS, HanL L, WangJ T, ShenJ P, WeiW X, FangY T, LiP P, ZhangL M. Protist communities are more sensitive to nitrogen fertilization than other microorganisms in diverse agricultural soils. Microbiome , 2019, 7( 1): 33
CrossRef Pubmed Google scholar

Acknowledgements

This study was financially supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA28020101), the National Key Research and Development Program of China (2021YFD1900100), the National Natural Science Foundation of China (51108439 and 42007032), the Natural Science Foundation of Chongqing, China (cstc2014jcyjA20010), and the 2115 Talent Development Program of China Agricultural University.

Compliance with ethics guidelines

Jingjing Peng, Olatunde Oladele, Xiaotong Song, Xiaotang Ju, Zhongjun Jia, Hangwei Hu, Xuejun Liu, Shuikuan Bei, Anhui Ge, Limei Zhang, and Zhenling Cui declare that they have no conflicts of interest or financial conflicts to disclose. This article does not contain any studies with human or animal subjects performed by any of the authors.

RIGHTS & PERMISSIONS

The Author(s) 2022. Published by Higher Education Press. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0)
AI Summary AI Mindmap
PDF(5811 KB)

Accesses

Citations

Detail

Sections
Recommended

/