NEW INSIGHTS INTO THE PHYLOGENY AND SPECIATION OF KUMQUAT (FORTUNELLA SPP.) BASED ON CHLOROPLAST SNP, NUCLEAR SSR AND WHOLE-GENOME SEQUENCING
Chenqiao ZHU, Peng CHEN, Junli YE, Hang LI, Yue HUANG, Xiaoming YANG, Chuanwu CHEN, Chenglei ZHANG, Yuantao XU, Xiaoli WANG, Xiang YAN, Guangzhou DENG, Xiaolin JIANG, Nan WANG, Hongxing WANG, Quan SUN, Yun LIU, Di FENG, Min YU, Xietian SONG, Zongzhou XIE, Yunliu ZENG, Lijun CHAI, Qiang XU, Chongling DENG, Yunjiang CHENG, Xiuxin DENG
NEW INSIGHTS INTO THE PHYLOGENY AND SPECIATION OF KUMQUAT (FORTUNELLA SPP.) BASED ON CHLOROPLAST SNP, NUCLEAR SSR AND WHOLE-GENOME SEQUENCING
● Fortunella genus consists of two populations: cultivated kumquat and wild Hong Kong kumquat.
● Artificial selection might involve in the origin of cultivated Fortunella species.
● A hypothesis for the differentiation and speciation of Fortunella species is proposed.
Kumquat (Fortunella spp.) is a fruit and ornamental crop worldwide due to the palatable taste and high ornamental value of its fruit. Although Fortunella is classified into the economically important true citrus fruit tree group together with Citrus and Poncirus, few studies have been focused on its evolutionary scenario. In this study, analysis of five chloroplast loci and 47 nuclear microsatellites (nSSR) loci from 38 kumquat and 10 citrus accessions revealed the independent phylogeny of Fortunella among citrus taxa, and that Fortunella mainly comprises two populations: CUL, cultivated Fortunella spp. (F. margarita, F. crassifolia and F. japonica); and HK, wild Hong Kong kumquat (Fortunella hindsii). Genomic analysis based on whole-genome SNPs indicated that the allele frequency of both pupations deviated from the neutral selection model, suggesting directional selection was a force driving their evolutions. CUL exhibited lower genomic diversity and higher linkage strength than HK, suggesting artificial selection involved in its origin. A high level of genetic differentiation (Fst = 0.364) was detected and obviously asynchronous demographic changes were observed between CUL and HK. Based on these results, a new hypothesis for the speciation of Fortunella is proposed.
Citrus / Fortunella / kumquat / phylogenetics
[1] |
HuangC. Flora of China. Beijing: Science Press, 1997 (in Chinese)
|
[2] |
SwingleW T, Reece P C. The botany of Citrus and its wild relatives. In: Reuther W, Webber H J, Batchelor L D, eds. The Citrus Industry. Berkeley: University of California, 1967, 190–430
|
[3] |
ZhouK, Ye M. Fruit Trees in China. Citrus Volume. Beijing: China Forestry Publishing House, 2009 (in Chinese)
|
[4] |
Barreca D, Bellocco E, Laganà G, Ginestra G, Bisignano C. Biochemical and antimicrobial activity of phloretin and its glycosilated derivatives present in apple and kumquat. Food Chemistry, 2014, 160 : 292–297
CrossRef
Google scholar
|
[5] |
Sadek E S, Makris D P, Kefalas P. Polyphenolic composition and antioxidant characteristics of kumquat (Fortunella margarita) peel fractions. Plant Foods for Human Nutrition, 2009, 64( 4): 297–302
CrossRef
Google scholar
|
[6] |
Wang Y W, Zeng W C, Xu P Y, Lan Y J, Zhu R X, Zhong K, Huang Y N, Gao H. Chemical composition and antimicrobial activity of the essential oil of kumquat (Fortunella crassifolia Swingle) peel. International Journal of Molecular Sciences, 2012, 13( 3): 3382–3393
CrossRef
Google scholar
|
[7] |
Nagahama K, Eto N, Shimojo T, Kondoh T, Nakahara K, Sakakibara Y, Fukui K, Suiko M. Effect of kumquat (Fortunella crassifolia) pericarp on natural killer cell activity in vitro and in vivo. Bioscience, Biotechnology, and Biochemistry, 2015, 79( 8): 1327–1336
CrossRef
Google scholar
|
[8] |
Lou S N, Ho C T. Phenolic compounds and biological activities of small-size citrus: kumquat and calamondin. Journal of Food and Drug Analysis, 2017, 25( 1): 162–175
CrossRef
Google scholar
|
[9] |
DengX, Peng S. Citrus Science. Beijing: China Agriculture Press, 2013 (in Chinese)
|
[10] |
Fu X Z, Gong X Q, Zhang Y X, Wang Y, Liu J H. Different transcriptional response to Xanthomonas citri subsp. citri between kumquat and sweet orange with contrasting canker tolerance. PLoS One, 2012, 7( 7): e41790
CrossRef
Google scholar
|
[11] |
YeY M. Kumquat germplasms in China. China Seed Industry, 1983, 4: 2−5 (in Chinese)
|
[12] |
Zhu C, Zheng X, Huang Y, Ye J, Chen P, Zhang C, Zhao F, Xie Z, Zhang S, Wang N, Li H, Wang L, Tang X, Chai L, Xu Q, Deng X. Genome sequencing and CRISPR/Cas9 gene editing of an early flowering mini-citrus (Fortunella hindsii). Plant Biotechnology Journal, 2019, 17( 11): 2199–2210
CrossRef
Google scholar
|
[13] |
Tanaka T. Species problem in Citrus: a critical study of wild and cultivated unites of citrus, based upon field studies in their native homes (Revisio Aurantiacearum IX). Japanese Society for the Promotion of Science, 1954, 1–141
|
[14] |
DengX, Peng C, ChenZ, DengZ, XuJ, LiJ, LiuY, TangX, Zhong G. Citrus Varieties in China. Beijing: China Agriculture Press, 2008 (in Chinese)
|
[15] |
Barkley N A, Roose M L, Krueger R R, Federici C T. Assessing genetic diversity and population structure in a citrus germplasm collection utilizing simple sequence repeat markers (SSRs). Theoretische und Angewandte Genetik, 2006, 112( 8): 1519–1531
|
[16] |
Cheng Y, de Vicente M C, Meng H, Guo W, Tao N, Deng X. A set of primers for analyzing chloroplast DNA diversity in Citrus and related genera. Tree Physiology, 2005, 25( 6): 661–672
CrossRef
Google scholar
|
[17] |
Pang X M, Hu C G, Deng X X. Phylogenetic relationships within Citrus and its related genera as inferred from AFLP markers. Genetic Resources and Crop Evolution, 2007, 54( 2): 429–436
CrossRef
Google scholar
|
[18] |
Yasuda K, Yahata M, Komatsu H, Kunitake H. Phylogeny and classification of Fortunella (Aurantioideae) inferred from DNA polymorphisms. Bulletin of the Faculty of Agriculture Miyazaki University, 2010, 56 : 103–110
|
[19] |
Garcia-Lor A, Curk F, Snoussi-Trifa H, Morillon R, Ancillo G, Luro F, Navarro L, Ollitrault P. A nuclear phylogenetic analysis: SNPs, indels and SSRs deliver new insights into the relationships in the ‘true citrus fruit trees’ group (Citrinae, Rutaceae) and the origin of cultivated species. Annals of Botany, 2013, 111( 1): 1–19
CrossRef
Google scholar
|
[20] |
Carbonell-Caballero J, Alonso R, Ibañez V, Terol J, Talon M, Dopazo J. A phylogenetic analysis of 34 chloroplast genomes elucidates the relationships between wild and domestic species within the genus Citrus. Molecular Biology and Evolution, 2015, 32( 8): 2015–2035
CrossRef
Google scholar
|
[21] |
Curk F, Ollitrault F, Garcia-Lor A, Luro F, Navarro L, Ollitrault P. Phylogenetic origin of limes and lemons revealed by cytoplasmic and nuclear markers. Annals of Botany, 2016, 117( 4): 565–583
CrossRef
Google scholar
|
[22] |
Xu Q, Chen L L, Ruan X, Chen D, Zhu A, Chen C, Bertrand D, Jiao W B, Hao B H, Lyon M P, Chen J, Gao S, Xing F, Lan H, Chang J W, Ge X, Lei Y, Hu Q, Miao Y, Wang L, Xiao S, Biswas M K, Zeng W, Guo F, Cao H, Yang X, Xu X W, Cheng Y J, Xu J, Liu J H, Luo O J, Tang Z, Guo W W, Kuang H, Zhang H Y, Roose M L, Nagarajan N, Deng X X, Ruan Y. The draft genome of sweet orange (Citrus sinensis). Nature Genetics, 2013, 45( 1): 59–66
CrossRef
Google scholar
|
[23] |
Wu G A, Prochnik S, Jenkins J, Salse J, Hellsten U, Murat F, Perrier X, Ruiz M, Scalabrin S, Terol J, Takita M A, Labadie K, Poulain J, Couloux A, Jabbari K, Cattonaro F, Del Fabbro C, Pinosio S, Zuccolo A, Chapman J, Grimwood J, Tadeo F R, Estornell L H, Muñoz-Sanz J V, Ibanez V, Herrero-Ortega A, Aleza P, Pérez-Pérez J, Ramón D, Brunel D, Luro F, Chen C, Farmerie W G, Desany B, Kodira C, Mohiuddin M, Harkins T, Fredrikson K, Burns P, Lomsadze A, Borodovsky M, Reforgiato G, Freitas-Astúa J, Quetier F, Navarro L, Roose M, Wincker P, Schmutz J, Morgante M, Machado M A, Talon M, Jaillon O, Ollitrault P, Gmitter F, Rokhsar D. Sequencing of diverse mandarin, pummelo and orange genomes reveals complex history of admixture during citrus domestication. Nature Biotechnology, 2014, 32( 7): 656–662
CrossRef
Google scholar
|
[24] |
Wang L, He F, Huang Y, He J, Yang S, Zeng J, Deng C, Jiang X, Fang Y, Wen S, Xu R, Yu H, Yang X, Zhong G, Chen C, Yan X, Zhou C, Zhang H, Xie Z, Larkin R M, Deng X, Xu Q. Genome of wild mandarin and domestication history of mandarin. Molecular Plant, 2018, 11( 8): 1024–1037
CrossRef
Google scholar
|
[25] |
Yang X M, Li H, Yu H W, Chai L J, Xu Q, Deng X X. Molecular phylogeography and population evolution analysis of Citrus ichangensis (Rutaceae). Tree Genetics & Genomes, 2017, 13( 1): 29
CrossRef
Google scholar
|
[26] |
Yang X, Zhou T, Su X, Wang G, Zhang X, Guo Q, Cao F. Structural characterization and comparative analysis of the chloroplast genome of Ginkgo biloba and other gymnosperms. Journal of Forestry Research, 2020, 32( 2): 765–778
CrossRef
Google scholar
|
[27] |
Wang Y, Zhou T, Li D, Zhang X, Yu W, Cai J, Wang G, Guo Q, Yang X, Cao F. The genetic diversity and population structure of Sophora alopecuroides (Faboideae) as determined by microsatellite markers developed from transcriptome. PLoS One, 2019, 14( 12): e0226100
CrossRef
Google scholar
|
[28] |
Cheng Y J, Guo W W, Deng X X. Molecular characterization of cytoplasmic and nuclear genomes in phenotypically abnormal Valencia orange (Citrus sinensis) + Meiwa kumquat (Fortunella crassifolia) intergeneric somatic hybrids. Plant Cell Reports, 2003, 21( 5): 445–451
CrossRef
Google scholar
|
[29] |
Bausher M G, Singh N D, Lee S B, Jansen R K, Daniell H. The complete chloroplast genome sequence of Citrus sinensis (L.) Osbeck var ‘Ridge Pineapple’: organization and phylogenetic relationships to other angiosperms. BMC Plant Biology, 2006, 6( 1): 21
CrossRef
Google scholar
|
[30] |
Yang X, Li H, Liang M, Xu Q, Chai L, Deng X. Genetic diversity and phylogenetic relationships of citron (Citrus medica L.) and its relatives in southwest China. Tree Genetics & Genomes, 2015, 11( 6): 129
CrossRef
Google scholar
|
[31] |
Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 2016, 33( 7): 1870–1874
CrossRef
Google scholar
|
[32] |
Letunic I, Bork P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Research, 2016, 44( W1): W242–W245
CrossRef
Google scholar
|
[33] |
Rozas J, Ferrer-Mata A, Sánchez-DelBarrio J C, Guirao-Rico S, Librado P, Ramos-Onsins S E, Sánchez-Gracia A. DnaSP 6: DNA sequence polymorphism analysis of large datasets. Molecular Biology and Evolution, 2017, 34( 12): 3299–3302
CrossRef
Google scholar
|
[34] |
Polzin T, Daneshmand S V. On Steiner trees and minimum spanning trees in hypergraphs. Operations Research Letters, 2003, 31( 1): 12–20
CrossRef
Google scholar
|
[35] |
Ruiz C, Paz Breto M, Asíns M J. A quick methodology to identify sexual seedlings in citrus breeding programs using SSR markers. Euphytica, 2000, 112( 1): 89–94
CrossRef
Google scholar
|
[36] |
Peakall R, Smouse P E. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research —an update. Bioinformatics, 2012, 28( 19): 2537–2539
CrossRef
Google scholar
|
[37] |
Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology, 2005, 14( 8): 2611–2620
CrossRef
Google scholar
|
[38] |
Earl D A, Vonholdt B M. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources, 2012, 4( 2): 359–361
CrossRef
Google scholar
|
[39] |
Bolger A M, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 2014, 30( 15): 2114–2120
CrossRef
Google scholar
|
[40] |
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 2009, 25( 14): 1754–1760
CrossRef
Google scholar
|
[41] |
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup. The sequence alignment/map format and SAMtools. Bioinformatics, 2009, 25( 16): 2078–2079
CrossRef
Google scholar
|
[42] |
Cingolani P, Platts A, Wang L, Coon M, Nguyen T, Wang L, Land S J, Lu X, Ruden D M. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly, 2012, 6( 2): 80–92
CrossRef
Google scholar
|
[43] |
Yang J, Lee S H, Goddard M E, Visscher P M. GCTA: a tool for genome-wide complex trait analysis. American Journal of Human Genetics, 2011, 88( 1): 76–82
CrossRef
Google scholar
|
[44] |
Alexander D H, Lange K. Enhancements to the ADMIXTURE algorithm for individual ancestry estimation. BMC Bioinformatics, 2011, 12( 1): 246
CrossRef
Google scholar
|
[45] |
Danecek P, Auton A, Abecasis G, Albers C A, Banks E, DePristo M A, Handsaker R E, Lunter G, Marth G T, Sherry S T, McVean G, Durbin R. The variant call format and VCFtools. Bioinformatics, 2011, 27( 15): 2156–2158
CrossRef
Google scholar
|
[46] |
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira M A R, Bender D, Maller J, Sklar P, de Bakker P I W, Daly M J, Sham P C. PLINK: a tool set for whole-genome association and population-based linkage analyses. American Journal of Human Genetics, 2007, 81( 3): 559–575
CrossRef
Google scholar
|
[47] |
Vilella A J, Blanco-Garcia A, Hutter S, Rozas J. VariScan: analysis of evolutionary patterns from large-scale DNA sequence polymorphism data. Bioinformatics, 2005, 21( 11): 2791–2793
CrossRef
Google scholar
|
[48] |
Li H, Durbin R. Inference of human population history from individual whole-genome sequences. Nature, 2011, 475( 7357): 493–496
CrossRef
Google scholar
|
[49] |
Meirmans P G, Hedrick P W. Assessing population structure: F(ST) and related measures. Molecular Ecology Resources, 2011, 11( 1): 5–18
CrossRef
Google scholar
|
[50] |
Weir B S, Cockerham C C. Estimating F-statistics for the analysis of population structure. Evolution, 1984, 38( 6): 1358–1370
|
[51] |
Wang X, Xu Y, Zhang S, Cao L, Huang Y, Cheng J, Wu G, Tian S, Chen C, Liu Y, Yu H, Yang X, Lan H, Wang N, Wang L, Xu J, Jiang X, Xie Z, Tan M, Larkin R M, Chen L L, Ma B G, Ruan Y, Deng X, Xu Q. Genomic analyses of primitive, wild and cultivated citrus provide insights into asexual reproduction. Nature Genetics, 2017, 49( 5): 765–772
CrossRef
Google scholar
|
[52] |
LinD, WuF. Distribution and variety of kumquat in China. South China Fruits, 1987, 1(1): 3−5 (in Chinese)
|
[53] |
Garcia-Lor A, Luro F, Ollitrault P, Navarro L. Genetic diversity and population structure analysis of mandarin germplasm by nuclear, chloroplastic and mitochondrial markers. Tree Genetics & Genomes, 2015, 11( 6): 123
CrossRef
Google scholar
|
[54] |
ChenP. The investigation and genetic diversity evaluation of wild Hong Kong kumquat (Fotunella hindsii swingle) in China. Dissertation for the Master’s Degree. Wuhan: Huazhong Agricultural University, 2011 (in Chinese)
|
[55] |
Wu G A, Terol J, Ibanez V, López-García A, Pérez-Román E, Borredá C, Domingo C, Tadeo F R, Carbonell-Caballero J, Alonso R, Curk F, Du D, Ollitrault P, Roose M L, Dopazo J, Gmitter F G, Rokhsar D S, Talon M. Genomics of the origin and evolution of Citrus. Genomics of the origin and evolution of Citrus, 2018, 554( 7692): 311–316
CrossRef
Google scholar
|
[56] |
Atahan P, Itzstein-Davey F, Taylor D, Dodson J, Qin J, Zheng H, Brooks A. Holocene-aged sedimentary records of environmental changes and early agriculture in the lower Yangtze, China. Quaternary Science Reviews, 2008, 27( 5−6): 556–570
CrossRef
Google scholar
|
[57] |
ZhangJ Z, Chen C F, YangY Z. Origins and early development of agriculture in China. Journal of National Museum of China, 2014, 1: 6−16 (in Chinese)
|
/
〈 | 〉 |