
HERBICIDES THAT INHIBIT ACETOLACTATE SYNTHASE
Thierry LONHIENNE, Mario Daniel GARCIA, Yu Shang LOW, Luke W. GUDDAT
Front. Agr. Sci. Eng. ›› 2022, Vol. 9 ›› Issue (1) : 155-160.
HERBICIDES THAT INHIBIT ACETOLACTATE SYNTHASE
Fig.1 Chemical reactions for ALS and structures of ALS-inhibiting herbicides. (a) The chemical reactions of ALS. (b) The five different chemical classes of ALS-inhibiting herbicide, imidazolinones (IMIs) in pink, pyrimidinyl benzoates (PBs) in brown, a selection of sulfonylureas (SUs) in black, triazolopyrimidines (TPs) in blue, and the sulfonylamino-carbonyl-triazolinones (SCTs) in purple. |
Fig.2 Cryo-EM and crystal structures of Arabidopsis thaliana ALS. (a) The complex between the CSUs (blue) and the RSUs (white) as determined by cryo-EM. (b) Close up of the interaction between the CSUs and RSUs. FAD, ThDP, Q-loop and valine are in yellow, green, red and blue, respectively. (c, d) Crystal structure of the complex between the CSU of A. thaliana ALS and the herbicide, penoxsulam. Penoxsulam is shown as a ball and stick model in with magenta carbon atoms. (c) The interface between the two CSU subunits (green and blue) is shown as a surface. Herbicide resistance sites are in red. (d) Details of the herbicide binding site. FAD, ThDP and peracetate are shown as stick models. The herbicide resistance sites are labeled and highlighted in red. |
[1] |
Peterson M A , McMaster S A , Riechers D E , Skelton J , Stahlman P W . 2,4-D Past, present, and future: a review. Weed Technology, 2016, 30( 2): 303–345
CrossRef
Google scholar
|
[2] |
Franz J E , Mao M K , Sikorski J A . Glyphosate: a unique and global herbicide. American Chemical Society, 1997,
|
[3] |
Heap I. The International Herbicide-Resistant Weed Database. Available at WeedScience website on August 2, 2021
|
[4] |
Schloss J V , Ciskanik L M , Dyk D E V . Origin of the herbicide binding site of acetolactate synthase. Nature, 1988, 331( 6154): 360–362
CrossRef
Google scholar
|
[5] |
Lonhienne T , Garcia M D , Noble C , Harmer J , Fraser J A , Williams C M , Guddat L W . High resolution crystal structures of the acetohydroxyacid synthase-pyruvate complex provide new insights into its catalytic mechanism. ChemistrySelect, 2017, 2( 36): 11981–11988
CrossRef
Google scholar
|
[6] |
Lonhienne T , Garcia M D , Pierens G , Mobli M , Nouwens A , Guddat L W . Structural insights into the mechanism of inhibition of AHAS by herbicides. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115( 9): E1945–E1954
CrossRef
Google scholar
|
[7] |
Lonhienne T , Low Y S , Garcia M D , Croll T , Gao Y , Wang Q , Brillault L , Williams C M , Fraser J A , McGeary R P , West N P , Landsberg M J , Rao Z , Schenk G , Guddat L W . Structures of fungal and plant acetohydroxyacid synthases. Nature, 2020, 586( 7828): 317–321
CrossRef
Google scholar
|
[8] |
Garcia M D , Nouwens A , Lonhienne T G , Guddat L W . Comprehensive understanding of acetohydroxyacid synthase inhibition by different herbicide families. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114( 7): E1091–E1100
CrossRef
Google scholar
|
[9] |
McCourt J A , Pang S S , King-Scott J , Guddat L W , Duggleby R G . Herbicide-binding sites revealed in the structure of plant acetohydroxyacid synthase. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103( 3): 569–573
CrossRef
Google scholar
|
[10] |
Lonhienne T , Garcia M D , Guddat L W . The role of a FAD cofactor in the regulation of acetohydroxyacid synthase by redox signaling molecules. Journal of Biological Chemistry, 2017, 292( 12): 5101–5109
CrossRef
Google scholar
|
[11] |
Qu R Y , He B , Yang J F , Lin H Y , Yang W C , Wu Q Y , Li Q X , Yang G F . Where are the new herbicides?. Pest Management Science, 2021, 77( 6): 2620–2625
CrossRef
Google scholar
|
[12] |
Ji F Q , Niu C W , Chen C N , Chen Q , Yang G F , Xi Z , Zhan C G . Computational design and discovery of conformationally flexible inhibitors of acetohydroxyacid synthase to overcome drug resistance associated with the W586L mutation. ChemMedChem, 2008, 3( 8): 1203–1206
CrossRef
Google scholar
|
[13] |
Qu R Y , Yang J F , Chen Q , Niu C W , Xi Z , Yang W C , Yang G F . Fragment-based discovery of flexible inhibitor targeting wild-type acetohydroxyacid synthase and P197L mutant. Pest Management Science, 2020, 76( 10): 3403–3412
CrossRef
Google scholar
|
[14] |
Qu R Y , Yang J F , Devendar P , Kang W M , Liu Y C , Chen Q , Niu C W , Xi Z , Yang G F . Discovery of new 2-[(4,6-dimethoxy-1,3,5-triazin-2-yl) oxy]-6-(substituted phenoxy) benzoic acids as flexible inhibitors of Arabidopsis thaliana acetohydroxyacid synthase and its P197L mutant. Journal of Agricultural and Food Chemistry, 2017, 65( 51): 11170–11178
CrossRef
Google scholar
|
[15] |
Qu R Y , Yang J F , Liu Y C , Chen Q , Hao G F , Niu C W , Xi Z , Yang G F . Computational design of novel inhibitors to overcome weed resistance associated with acetohydroxyacid synthase (AHAS) P197L mutant. Pest Management Science, 2017, 73( 7): 1373–1381
CrossRef
Google scholar
|
/
〈 |
|
〉 |