HIGH-PERFORMANCE COMPUTATION AND ARTIFICIAL INTELLIGENCE IN PESTICIDE DISCOVERY: STATUS AND OUTLOOK

Li ZHANG, Jialin CUI, Qi HE, Qing X. LI

PDF(398 KB)
PDF(398 KB)
Front. Agr. Sci. Eng. ›› 2022, Vol. 9 ›› Issue (1) : 150-154. DOI: 10.15302/J-FASE-2021419
PERSPECTIVE
PERSPECTIVE

HIGH-PERFORMANCE COMPUTATION AND ARTIFICIAL INTELLIGENCE IN PESTICIDE DISCOVERY: STATUS AND OUTLOOK

Author information +
History +

Cite this article

Download citation ▾
Li ZHANG, Jialin CUI, Qi HE, Qing X. LI. HIGH-PERFORMANCE COMPUTATION AND ARTIFICIAL INTELLIGENCE IN PESTICIDE DISCOVERY: STATUS AND OUTLOOK. Front. Agr. Sci. Eng., 2022, 9(1): 150‒154 https://doi.org/10.15302/J-FASE-2021419

References

[1]
Wu F , Zhuo L , Wang F , Huang W , Hao G , Yang G . Auto in silico ligand directing evolution (AILDE) to facilitate the rapid and efficient discovery of drug lead. iScience, 2020, 23( 6): 101179
CrossRef Google scholar
[2]
Zhao Q , Miriyala N , Su Y , Chen W , Gao X , Shao L , Yan R , Li H , Yao X , Cao D , Wang Y , Ouyang D . Computer-aided formulation design for a highly soluble lutein-cyclodextrin multiple-component delivery system. Molecular Pharmaceutics, 2018, 15( 4): 1664–1673
CrossRef Google scholar
[3]
Hao G F , Jiang W , Ye Y N , Wu F X , Zhu X L , Guo F B , Yang G F . ACFIS: a web server for fragment-based drug discovery. Nucleic Acids Research, 2016, 44( W1): W550–W556
CrossRef Google scholar
[4]
Yang H , Lou C , Sun L , Li J , Cai Y , Wang Z , Li W , Liu G , Tang Y . admetSAR 2.0: web-service for prediction and optimization of chemical ADMET properties. Bioinformatics, 2019, 35( 6): 1067–1069
CrossRef Google scholar
[5]
Hao G F , Wang F , Li H , Zhu X L , Yang W C , Huang L S , Wu J W , Berry E A , Yang G F . Computational discovery of picomolar Q(o) site inhibitors of cytochrome bc1 complex. Journal of the American Chemical Society, 2012, 134( 27): 11168–11176
CrossRef Google scholar
[6]
Lin H , Chen X , Chen J , Wang D , Wu F , Lin S , Zhan C , Wu J , Yang W , Yang G . Crystal Structure of 4-hydroxyphenylpyruvate dioxygenase in complex with substrate reveals a new starting point for herbicide discovery. Research, 2019, 2602414
[7]
Xiong L , Li H , Jiang L N , Ge J M , Yang W C , Zhu X L , Yang G F . Structure-based discovery of potential fungicides as succinate ubiquinone oxidoreductase inhibitors. Journal of Agricultural and Food Chemistry, 2017, 65( 5): 1021–1029
CrossRef Google scholar
[8]
Liang Z , Li Q X . π-Cation interactions in molecular recognition: perspectives on pharmaceuticals and pesticides. Journal of Agricultural and Food Chemistry, 2018, 66( 13): 3315–3323
CrossRef Google scholar
[9]
Yang J F , Wang F , Chen Y Z , Hao G F , Yang G F . LARMD: integration of bioinformatic resources to profile ligand-driven protein dynamics with a case on the activation of estrogen receptor. Briefings in Bioinformatics, 2020, 21( 6): 2206–2218
CrossRef Google scholar
[10]
Yang G . Chemical biology-oriented molecular design of green pesticide. Bulletin of National Natural Science Foundation of China, 2020, 34( 4): 495–501
[11]
Tunyasuvunakool K, Adler J, Wu Z, Green T, Zielinski M, Žídek A, Bridgland A, Cowie A, Meyer C, Laydon A, Velankar S, Kleywegt G J, Bateman A, Evans R, Pritzel A, Figurnov M, Ronneberger O, Bates R, Kohl S A A, Potapenko A, Ballard A J, Romera-Paredes B, Nikolov S, Jain R, Clancy E, Reiman D, Petersen S, Senior A W, Kavukcuoglu K, Birney E, Kohli P, Jumper J, Hassabis D. Highly accurate protein structure prediction for the human proteome. Nature, 2021. doi: 10.1038/s41586-021-03828-1
[12]
Rathnayake L K , Northrup S H . Structure and mode of action of organophosphate pesticides: a computational study. Computational & Theoretical Chemistry, 2016, 1088 : 9–23
CrossRef Google scholar
[13]
Hao G F , Tan Y , Xu W F , Cao R J , Xi Z , Yang G F . Understanding resistance mechanism of protoporphyrinogen oxidase-inhibiting herbicides: insights from computational mutation scanning and site-directed mutagenesis. Journal of Agricultural and Food Chemistry, 2014, 62( 29): 7209–7215
CrossRef Google scholar
[14]
Wu F X , Wang F , Yang J F , Jiang W , Wang M Y , Jia C Y , Hao G F , Yang G F . AIMMS suite: a web server dedicated for prediction of drug resistance on protein mutation. Briefings in Bioinformatics, 2018, 21( 1): 318–328
CrossRef Google scholar
[15]
Li X , Zhang Y , Chen H , Li H , Zhao Y . Insights into the molecular basis of the acute contact toxicity of diverse organic chemicals in the honey bee. Journal of Chemical Information and Modeling, 2017, 57( 12): 2948–2957
CrossRef Google scholar
[16]
Wang F , Yang J F , Wang M Y , Jia C Y , Shi X X , Hao G F , Yang G F . Graph attention convolutional neural network model for chemical poisoning of honey bees prediction. Science Bulletin, 2020, 65( 14): 1184–1191
CrossRef Google scholar
[17]
Li F , Fan D , Wang H , Yang H , Li W , Tang Y , Liu G . In silico prediction of pesticide aquatic toxicity with chemical category approaches. Toxicology Research, 2017, 6( 6): 831–842
CrossRef Google scholar
[18]
Khan K , Benfenati E , Roy K . Consensus QSAR modeling of toxicity of pharmaceuticals to different aquatic organisms: ranking and prioritization of the DrugBank database compounds. Ecotoxicology and Environmental Safety, 2019, 168 : 287–297
CrossRef Google scholar
[19]
He L , Xiao K , Zhou C , Li G , Yang H , Li Z , Cheng J . Insights into pesticide toxicity against aquatic organism: QSTR models on Daphnia Magna. Ecotoxicology and Environmental Safety, 2019, 173 : 285–292
CrossRef Google scholar
[20]
Lunghini F , Marcou G , Azam P , Enrici M H , van Miert E , Varnek A . Consensus QSAR models estimating acute toxicity to aquatic organisms from different trophic levels: algae, Daphnia and fish. SAR and QSAR in Environmental Research, 2020, 31( 9): 655–675
CrossRef Google scholar
[21]
Li X , Chen L , Cheng F , Wu Z , Bian H , Xu C , Li W , Liu G , Shen X , Tang Y . In silico prediction of chemical acute oral toxicity using multi-classification methods. Journal of Chemical Information and Modeling, 2014, 54( 4): 1061–1069
CrossRef Google scholar
[22]
Sun G , Zhang Y , Pei L , Lou Y , Mu Y , Yun J , Li F , Wang Y , Hao Z , Xi S , Li C , Chen C , Zhao L , Zhang N , Zhong R , Peng Y . Chemometric QSAR modeling of acute oral toxicity of Polycyclic Aromatic Hydrocarbons (PAHs) to rat using simple 2D descriptors and interspecies toxicity modeling with mouse. Ecotoxicology and Environmental Safety, 2021, 222 : 112525
CrossRef Google scholar
[23]
Minerali E , Foil D H , Zorn K M , Ekins S . Evaluation of assay central machine learning models for rat acute oral toxicity prediction. ACS Sustainable Chemistry & Engineering, 2020, 8( 42): 16020–16027
CrossRef Google scholar
[24]
Zhu H , Martin T M , Ye L , Sedykh A , Young D M , Tropsha A . Quantitative structure-activity relationship modeling of rat acute toxicity by oral exposure. Chemical Research in Toxicology, 2009, 22( 12): 1913–1921
CrossRef Google scholar
[25]
Mulliner D , Schmidt F , Stolte M , Spirkl H P , Czich A , Amberg A . Computational models for human and animal hepatotoxicity with a global application scope. Chemical Research in Toxicology, 2016, 29( 5): 757–767
CrossRef Google scholar
[26]
Wang Q , Li X , Yang H , Cai Y , Wang Y , Wang Z , Li W , Tang Y , Liu G . In silico prediction of serious eye irritation or corrosion potential of chemicals. RSC Advances, 2017, 7( 11): 6697–6703
CrossRef Google scholar
[27]
Xu C , Cheng F , Chen L , Du Z , Li W , Liu G , Lee P W , Tang Y . In silico prediction of chemical Ames mutagenicity. Journal of Chemical Information and Modeling, 2012, 52( 11): 2840–2847
CrossRef Google scholar
[28]
Li X , Du Z , Wang J , Wu Z , Li W , Liu G , Shen X , Tang Y . In silico estimation of chemical carcinogenicity with binary and ternary classification methods. Molecular Informatics, 2015, 34( 4): 228–235
CrossRef Google scholar
[29]
Hasic H , Ishida T . Single-step retrosynthesis prediction based on the identification of potential disconnection sites using molecular substructure fingerprints. Journal of Chemical Information and Modeling, 2021, 61( 2): 641–652
CrossRef Google scholar
[30]
Dong J , Gao H , Ouyang D . PharmSD: a novel AI-based computational platform for solid dispersion formulation design. International Journal of Pharmaceutics, 2021, 604 : 120705
CrossRef Google scholar
[31]
Birru W A , Warren D B , Han S , Benameur H , Porter C J H , Pouton C W , Chalmers D K . Computational models of the gastrointestinal environment. 2. Phase behavior and drug solubilization capacity of a type i lipid-based drug formulation after digestion. Molecular Pharmaceutics, 2017, 14( 3): 580–592
CrossRef Google scholar
[32]
Metwally A A , Hathout R M . Computer-assisted drug formulation design: novel approach in drug delivery. Molecular Pharmaceutics, 2015, 12( 8): 2800–2810
CrossRef Google scholar
[33]
Sou T , Soukarieh F , Williams P , Stocks M J , Cámara M , Bergström C A S . Model-informed drug discovery and development in pulmonary delivery: biopharmaceutical pharmacometric modeling for formulation evaluation of pulmonary suspensions. ACS Omega, 2020, 5( 40): 25733–25746
CrossRef Google scholar
[34]
Meenashi R , Selvaraju K , Stephen A D , Jelsch C . Theoretical crystal structure prediction of aminosalicylic acid: charge density topological and electrostatic analyses. Journal of Molecular Structure, 2020, 1213 : 128139
CrossRef Google scholar
[35]
Cyranoski D . AI drug discovery booms in China. Nature Biotechnology, 2021, 39( 8): 900–902
CrossRef Google scholar

Acknowledgements

This work was funded in part by the National Natural Science Foundation of China (21977114) and the USDA (Hatch project HAW5032-R).

RIGHTS & PERMISSIONS

The Author(s) 2021. Published by Higher Education Press. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0)
AI Summary AI Mindmap
PDF(398 KB)

Accesses

Citations

Detail

Sections
Recommended

/