HIGH-PERFORMANCE COMPUTATION AND ARTIFICIAL INTELLIGENCE IN PESTICIDE DISCOVERY: STATUS AND OUTLOOK
Li ZHANG, Jialin CUI, Qi HE, Qing X. LI
HIGH-PERFORMANCE COMPUTATION AND ARTIFICIAL INTELLIGENCE IN PESTICIDE DISCOVERY: STATUS AND OUTLOOK
[1] |
Wu F , Zhuo L , Wang F , Huang W , Hao G , Yang G . Auto in silico ligand directing evolution (AILDE) to facilitate the rapid and efficient discovery of drug lead. iScience, 2020, 23( 6): 101179
CrossRef
Google scholar
|
[2] |
Zhao Q , Miriyala N , Su Y , Chen W , Gao X , Shao L , Yan R , Li H , Yao X , Cao D , Wang Y , Ouyang D . Computer-aided formulation design for a highly soluble lutein-cyclodextrin multiple-component delivery system. Molecular Pharmaceutics, 2018, 15( 4): 1664–1673
CrossRef
Google scholar
|
[3] |
Hao G F , Jiang W , Ye Y N , Wu F X , Zhu X L , Guo F B , Yang G F . ACFIS: a web server for fragment-based drug discovery. Nucleic Acids Research, 2016, 44( W1): W550–W556
CrossRef
Google scholar
|
[4] |
Yang H , Lou C , Sun L , Li J , Cai Y , Wang Z , Li W , Liu G , Tang Y . admetSAR 2.0: web-service for prediction and optimization of chemical ADMET properties. Bioinformatics, 2019, 35( 6): 1067–1069
CrossRef
Google scholar
|
[5] |
Hao G F , Wang F , Li H , Zhu X L , Yang W C , Huang L S , Wu J W , Berry E A , Yang G F . Computational discovery of picomolar Q(o) site inhibitors of cytochrome bc1 complex. Journal of the American Chemical Society, 2012, 134( 27): 11168–11176
CrossRef
Google scholar
|
[6] |
Lin H , Chen X , Chen J , Wang D , Wu F , Lin S , Zhan C , Wu J , Yang W , Yang G . Crystal Structure of 4-hydroxyphenylpyruvate dioxygenase in complex with substrate reveals a new starting point for herbicide discovery. Research, 2019,
|
[7] |
Xiong L , Li H , Jiang L N , Ge J M , Yang W C , Zhu X L , Yang G F . Structure-based discovery of potential fungicides as succinate ubiquinone oxidoreductase inhibitors. Journal of Agricultural and Food Chemistry, 2017, 65( 5): 1021–1029
CrossRef
Google scholar
|
[8] |
Liang Z , Li Q X . π-Cation interactions in molecular recognition: perspectives on pharmaceuticals and pesticides. Journal of Agricultural and Food Chemistry, 2018, 66( 13): 3315–3323
CrossRef
Google scholar
|
[9] |
Yang J F , Wang F , Chen Y Z , Hao G F , Yang G F . LARMD: integration of bioinformatic resources to profile ligand-driven protein dynamics with a case on the activation of estrogen receptor. Briefings in Bioinformatics, 2020, 21( 6): 2206–2218
CrossRef
Google scholar
|
[10] |
Yang G . Chemical biology-oriented molecular design of green pesticide. Bulletin of National Natural Science Foundation of China, 2020, 34( 4): 495–501
|
[11] |
Tunyasuvunakool K, Adler J, Wu Z, Green T, Zielinski M, Žídek A, Bridgland A, Cowie A, Meyer C, Laydon A, Velankar S, Kleywegt G J, Bateman A, Evans R, Pritzel A, Figurnov M, Ronneberger O, Bates R, Kohl S A A, Potapenko A, Ballard A J, Romera-Paredes B, Nikolov S, Jain R, Clancy E, Reiman D, Petersen S, Senior A W, Kavukcuoglu K, Birney E, Kohli P, Jumper J, Hassabis D. Highly accurate protein structure prediction for the human proteome. Nature, 2021. doi: 10.1038/s41586-021-03828-1
|
[12] |
Rathnayake L K , Northrup S H . Structure and mode of action of organophosphate pesticides: a computational study. Computational & Theoretical Chemistry, 2016, 1088
CrossRef
Google scholar
|
[13] |
Hao G F , Tan Y , Xu W F , Cao R J , Xi Z , Yang G F . Understanding resistance mechanism of protoporphyrinogen oxidase-inhibiting herbicides: insights from computational mutation scanning and site-directed mutagenesis. Journal of Agricultural and Food Chemistry, 2014, 62( 29): 7209–7215
CrossRef
Google scholar
|
[14] |
Wu F X , Wang F , Yang J F , Jiang W , Wang M Y , Jia C Y , Hao G F , Yang G F . AIMMS suite: a web server dedicated for prediction of drug resistance on protein mutation. Briefings in Bioinformatics, 2018, 21( 1): 318–328
CrossRef
Google scholar
|
[15] |
Li X , Zhang Y , Chen H , Li H , Zhao Y . Insights into the molecular basis of the acute contact toxicity of diverse organic chemicals in the honey bee. Journal of Chemical Information and Modeling, 2017, 57( 12): 2948–2957
CrossRef
Google scholar
|
[16] |
Wang F , Yang J F , Wang M Y , Jia C Y , Shi X X , Hao G F , Yang G F . Graph attention convolutional neural network model for chemical poisoning of honey bees prediction. Science Bulletin, 2020, 65( 14): 1184–1191
CrossRef
Google scholar
|
[17] |
Li F , Fan D , Wang H , Yang H , Li W , Tang Y , Liu G . In silico prediction of pesticide aquatic toxicity with chemical category approaches. Toxicology Research, 2017, 6( 6): 831–842
CrossRef
Google scholar
|
[18] |
Khan K , Benfenati E , Roy K . Consensus QSAR modeling of toxicity of pharmaceuticals to different aquatic organisms: ranking and prioritization of the DrugBank database compounds. Ecotoxicology and Environmental Safety, 2019, 168
CrossRef
Google scholar
|
[19] |
He L , Xiao K , Zhou C , Li G , Yang H , Li Z , Cheng J . Insights into pesticide toxicity against aquatic organism: QSTR models on Daphnia Magna. Ecotoxicology and Environmental Safety, 2019, 173
CrossRef
Google scholar
|
[20] |
Lunghini F , Marcou G , Azam P , Enrici M H , van Miert E , Varnek A . Consensus QSAR models estimating acute toxicity to aquatic organisms from different trophic levels: algae, Daphnia and fish. SAR and QSAR in Environmental Research, 2020, 31( 9): 655–675
CrossRef
Google scholar
|
[21] |
Li X , Chen L , Cheng F , Wu Z , Bian H , Xu C , Li W , Liu G , Shen X , Tang Y . In silico prediction of chemical acute oral toxicity using multi-classification methods. Journal of Chemical Information and Modeling, 2014, 54( 4): 1061–1069
CrossRef
Google scholar
|
[22] |
Sun G , Zhang Y , Pei L , Lou Y , Mu Y , Yun J , Li F , Wang Y , Hao Z , Xi S , Li C , Chen C , Zhao L , Zhang N , Zhong R , Peng Y . Chemometric QSAR modeling of acute oral toxicity of Polycyclic Aromatic Hydrocarbons (PAHs) to rat using simple 2D descriptors and interspecies toxicity modeling with mouse. Ecotoxicology and Environmental Safety, 2021, 222
CrossRef
Google scholar
|
[23] |
Minerali E , Foil D H , Zorn K M , Ekins S . Evaluation of assay central machine learning models for rat acute oral toxicity prediction. ACS Sustainable Chemistry & Engineering, 2020, 8( 42): 16020–16027
CrossRef
Google scholar
|
[24] |
Zhu H , Martin T M , Ye L , Sedykh A , Young D M , Tropsha A . Quantitative structure-activity relationship modeling of rat acute toxicity by oral exposure. Chemical Research in Toxicology, 2009, 22( 12): 1913–1921
CrossRef
Google scholar
|
[25] |
Mulliner D , Schmidt F , Stolte M , Spirkl H P , Czich A , Amberg A . Computational models for human and animal hepatotoxicity with a global application scope. Chemical Research in Toxicology, 2016, 29( 5): 757–767
CrossRef
Google scholar
|
[26] |
Wang Q , Li X , Yang H , Cai Y , Wang Y , Wang Z , Li W , Tang Y , Liu G . In silico prediction of serious eye irritation or corrosion potential of chemicals. RSC Advances, 2017, 7( 11): 6697–6703
CrossRef
Google scholar
|
[27] |
Xu C , Cheng F , Chen L , Du Z , Li W , Liu G , Lee P W , Tang Y . In silico prediction of chemical Ames mutagenicity. Journal of Chemical Information and Modeling, 2012, 52( 11): 2840–2847
CrossRef
Google scholar
|
[28] |
Li X , Du Z , Wang J , Wu Z , Li W , Liu G , Shen X , Tang Y . In silico estimation of chemical carcinogenicity with binary and ternary classification methods. Molecular Informatics, 2015, 34( 4): 228–235
CrossRef
Google scholar
|
[29] |
Hasic H , Ishida T . Single-step retrosynthesis prediction based on the identification of potential disconnection sites using molecular substructure fingerprints. Journal of Chemical Information and Modeling, 2021, 61( 2): 641–652
CrossRef
Google scholar
|
[30] |
Dong J , Gao H , Ouyang D . PharmSD: a novel AI-based computational platform for solid dispersion formulation design. International Journal of Pharmaceutics, 2021, 604
CrossRef
Google scholar
|
[31] |
Birru W A , Warren D B , Han S , Benameur H , Porter C J H , Pouton C W , Chalmers D K . Computational models of the gastrointestinal environment. 2. Phase behavior and drug solubilization capacity of a type i lipid-based drug formulation after digestion. Molecular Pharmaceutics, 2017, 14( 3): 580–592
CrossRef
Google scholar
|
[32] |
Metwally A A , Hathout R M . Computer-assisted drug formulation design: novel approach in drug delivery. Molecular Pharmaceutics, 2015, 12( 8): 2800–2810
CrossRef
Google scholar
|
[33] |
Sou T , Soukarieh F , Williams P , Stocks M J , Cámara M , Bergström C A S . Model-informed drug discovery and development in pulmonary delivery: biopharmaceutical pharmacometric modeling for formulation evaluation of pulmonary suspensions. ACS Omega, 2020, 5( 40): 25733–25746
CrossRef
Google scholar
|
[34] |
Meenashi R , Selvaraju K , Stephen A D , Jelsch C . Theoretical crystal structure prediction of aminosalicylic acid: charge density topological and electrostatic analyses. Journal of Molecular Structure, 2020, 1213
CrossRef
Google scholar
|
[35] |
Cyranoski D . AI drug discovery booms in China. Nature Biotechnology, 2021, 39( 8): 900–902
CrossRef
Google scholar
|
/
〈 | 〉 |