PRODUCTION OF NEW WAP-8294A CYCLODEPSIPEPTIDES BY THE BIOLOGICAL CONTROL AGENT LYSOBACTER ENZYMOGENES OH11

Jing ZHU, Yuan CHEN, Liangcheng DU

PDF(2261 KB)
PDF(2261 KB)
Front. Agr. Sci. Eng. ›› 2022, Vol. 9 ›› Issue (1) : 120-132. DOI: 10.15302/J-FASE-2021410
RESEARCH ARTICLE
RESEARCH ARTICLE

PRODUCTION OF NEW WAP-8294A CYCLODEPSIPEPTIDES BY THE BIOLOGICAL CONTROL AGENT LYSOBACTER ENZYMOGENES OH11

Author information +
History +

Highlights

Lysobacter enzymogenes mutants were generated for WAP-8294A biosynthesis.

● Essential and non-essential accessory genes for WAP-8294A biosynthesis were determined.

● Six new WAP-8294A analogs were identified using UHPLC-HR-MS/MS.

● Three deoxy analogs were detected supporting the function of ORF4 in asparagine hydroxylation.

Abstract

Naturally-occurring environmental microorganisms may provide ‘green’ and effective biocontrol tools for disease management in agricultural crops. Due to the constant threat of resistant pathogens there is a pressing and continual need to search for new biocontrol tools. This study investigated the production of new analogs of WAP-8294A compounds by the biocontrol agent Lysobacter enzymogenes OH11 through biosynthetic engineering. WAP-8294As are a family of natural cyclic lipodepsipeptides with potent activity against Gram-positive bacteria. A series of genetic manipulations was therefore conducted on the accessory genes in the WAP biosynthetic gene cluster. The resulting strains containing a single-point mutation in ORF4, which was predicted to encode a 2-ketoglutarate dependent dioxygenase, produced deoxy-WAP-8294As. This result provides evidence for the function of ORF4 in catalyzing β-hydroxylation of the D-asparagine residue in WAP-8294As. In addition, six new analogs of WAP-8294As were identified by UHPLC-HR-MS/MS. This is the first attempt to produce new WAP-8294As in Lysobacter and shows that the spectrum of the biocontrol compounds may be expanded through the manipulation of biosynthetic genes.

Graphical abstract

Keywords

biocontrol / biosynthesis / Lysobacter / natural products / WAP-8294A

Cite this article

Download citation ▾
Jing ZHU, Yuan CHEN, Liangcheng DU. PRODUCTION OF NEW WAP-8294A CYCLODEPSIPEPTIDES BY THE BIOLOGICAL CONTROL AGENT LYSOBACTER ENZYMOGENES OH11. Front. Agr. Sci. Eng., 2022, 9(1): 120‒132 https://doi.org/10.15302/J-FASE-2021410

References

[1]
Christensen P , Cook F D . Lysobacter, a new genus of non-fruiting, gliding bacteria with a high base ratio. International Journal of Systematic Bacteriology, 1978, 28( 3): 367–393
CrossRef Google scholar
[2]
Xie Y , Wright S , Shen Y , Du L . Bioactive natural products from Lysobacter. Natural Product Reports, 2012, 29( 11): 1277–1287
CrossRef Google scholar
[3]
Giesler L J , Yuen G Y . Evaluation of Stenotrophomonas maltophilia strain C3 for biocontrol of brown patch disease. Crop Protection, 1998, 17( 6): 509–513
CrossRef Google scholar
[4]
Sullivan R F , Holtman M A , Zylstra G J , White J F Jr , Kobayashi D Y . Taxonomic positioning of two biological control agents for plant diseases as Lysobacter enzymogenes based on phylogenetic analysis of 16S rDNA, fatty acid composition and phenotypic characteristics. Journal of Applied Microbiology, 2003, 94( 6): 1079–1086
CrossRef Google scholar
[5]
Zhang Z , Yuen G Y . Biological control of Bipolaris sorakiniana on tall fescue by Stenotrophomonas maltophilia strain C3. Phytopathology, 1999, 89( 9): 817–822
CrossRef Google scholar
[6]
Yuen G Y , Steadman J R , Lindgren D T , Schaff D , Jochum C . Bean rust biological control using bacterial agents. Crop Protection, 2001, 20( 5): 395–402
CrossRef Google scholar
[7]
Jochum C C , Osborne L E , Yuen G Y . Fusarium head blight biological control with Lysobacter enzymogenes. Biological Control, 2006, 39( 3): 336–344
CrossRef Google scholar
[8]
Kobayashi D Y , Reedy R M , Palumbo J D , Zhou J M , Yuen G Y . A clp gene homologue belonging to the Crp gene family globally regulates lytic enzyme production, antimicrobial activity, and biological control activity expressed by Lysobacter enzymogenes strain C3. Applied and Environmental Microbiology, 2005, 71( 1): 261–269
CrossRef Google scholar
[9]
Li S , Du L , Yuen G , Harris S D . Distinct ceramide synthases regulate polarized growth in the filamentous fungus Aspergillus nidulans. Molecular Biology of the Cell, 2006, 17( 3): 1218–1227
CrossRef Google scholar
[10]
Yu F , Zaleta-Rivera K , Zhu X , Huffman J , Millet J C , Harris S D , Yuen G , Li X C , Du L . Structure and biosynthesis of heat-stable antifungal factor (HSAF), a broad-spectrum antimycotic with a novel mode of action. Antimicrobial Agents and Chemotherapy, 2007, 51( 1): 64–72
CrossRef Google scholar
[11]
Li S , Jochum C C , Yu F , Zaleta-Rivera K , Du L , Harris S D , Yuen G Y . An antibiotic complex from Lysobacter enzymogenes strain C3: antimicrobial activity and role in plant disease control. Phytopathology, 2008, 98( 6): 695–701
CrossRef Google scholar
[12]
Lou L , Qian G , Xie Y , Hang J , Chen H , Zaleta-Rivera K , Li Y , Shen Y , Dussault P H , Liu F , Du L . Biosynthesis of HSAF, a tetramic acid-containing macrolactam from Lysobacter enzymogenes. Journal of the American Chemical Society, 2011, 133( 4): 643–645
CrossRef Google scholar
[13]
Li Y , Chen H , Ding Y , Xie Y , Wang H , Cerny R L , Shen Y , Du L . Iterative assembly of two separate polyketide chains by the same single-module bacterial polyketide synthase in the biosynthesis of HSAF. Angewandte Chemie International Edition, 2014, 53( 29): 7524–7530
CrossRef Google scholar
[14]
Li Y , Wang H , Liu Y , Jiao Y , Li S , Shen Y , Du L . Biosynthesis of the polycyclic system in the antifungal HSAF and analogues from Lysobacter enzymogenes. Angewandte Chemie International Edition, 2018, 57( 21): 6221–6225
CrossRef Google scholar
[15]
Lee W , Schaefer K , Qiao Y , Srisuknimit V , Steinmetz H , Müller R , Kahne D , Walker S . The mechanism of action of lysobactin. Journal of the American Chemical Society, 2016, 138( 1): 100–103
CrossRef Google scholar
[16]
Hashizume H , Igarashi M , Hattori S , Hori M , Hamada M , Takeuchi T . Tripropeptins, novel antimicrobial agents produced by Lysobacter sp. I. Taxonomy, isolation and biological activities. Journal of Antibiotics, 2001, 54( 12): 1054–1059
CrossRef Google scholar
[17]
Hashizume H , Hirosawa S , Sawa R , Muraoka Y , Ikeda D , Naganawa H , Igarashi M . Tripropeptins, novel antimicrobial agents produced by Lysobacter sp. Journal of Antibiotics, 2004, 57( 1): 52–58
CrossRef Google scholar
[18]
Itoh H , Tokumoto K , Kaji T , Paudel A , Panthee S , Hamamoto H , Sekimizu K , Inoue M . Total synthesis and biological mode of action of WAP-8294A2: a menaquinone-targeting antibiotic. Journal of Organic Chemistry, 2018, 83( 13): 6924–6935
CrossRef Google scholar
[19]
Zhang W , Li Y , Qian G , Wang Y , Chen H , Li Y Z , Liu F , Shen Y , Du L . Identification and characterization of the anti-methicillin-resistant Staphylococcus aureus WAP-8294A2 biosynthetic gene cluster from Lysobacter enzymogenes OH11. Antimicrobial Agents and Chemotherapy, 2011, 55( 12): 5581–5589
CrossRef Google scholar
[20]
Hamamoto H , Urai M , Ishii K , Yasukawa J , Paudel A , Murai M , Kaji T , Kuranaga T , Hamase K , Katsu T , Su J , Adachi T , Uchida R , Tomoda H , Yamada M , Souma M , Kurihara H , Inoue M , Sekimizu K . Lysocin E is a new antibiotic that targets menaquinone in the bacterial membrane. Nature Chemical Biology, 2015, 11( 2): 127–133
CrossRef Google scholar
[21]
Murai M , Kaji T , Kuranaga T , Hamamoto H , Sekimizu K , Inoue M . Total synthesis and biological evaluation of the antibiotic lysocin E and its enantiomeric, epimeric, and N-demethylated analogues. Angewandte Chemie International Edition, 2015, 54( 5): 1556–1560
CrossRef Google scholar
[22]
Itoh H , Tokumoto K , Kaji T , Paudel A , Panthee S , Hamamoto H , Sekimizu K , Inoue M . Development of a high-throughput strategy for discovery of potent analogues of antibiotic lysocin E. Nature Communications, 2019, 10( 1): 2992
CrossRef Google scholar
[23]
Sang M , Wang H , Shen Y , Rodrigues de Almeida N , Conda-Sheridan M , Li S , Li Y , Du L . Identification of an anti-MRSA cyclic lipodepsipeptide, WBP-29479A1, by genome mining of Lysobacter antibioticus. Organic Letters, 2019, 21( 16): 6432–6436
CrossRef Google scholar
[24]
Kato A , Nakaya S , Ohashi Y , Hirata H , Fujii K , Harada K . WAP-8294A(2), a novel anti-MRSA antibiotic produced by Lysobacter sp. Journal of the American Chemical Society, 1997, 119( 28): 6680–6681
CrossRef Google scholar
[25]
Kato A , Nakaya S , Kokubo N , Aiba Y , Ohashi Y , Hirata H , Fujii K , Harada K . A new anti-MRSA antibiotic complex, WAP-8294A. I. Taxonomy, isolation and biological activities. Journal of Antibiotic, 1998, 51( 10): 929–935
CrossRef Google scholar
[26]
Kato A , Hirata H , Ohashi Y , Fujii K , Mori K , Harada K . A new anti-MRSA antibiotic complex, WAP-8294A II. Structure characterization of minor components by ESI LCMS and MS/MS. Journal of Antibiotics, 2011, 64( 5): 373–379
CrossRef Google scholar
[27]
Wang Y , Qian G , Liu F , Li Y Z , Shen Y , Du L . Facile method for site-specific gene integration in Lysobacter enzymogenes for yield improvement of the anti-MRSA antibiotics WAP-8294A and the antifungal antibiotic HSAF. ACS Synthetic Biology, 2013, 2( 11): 670–678
CrossRef Google scholar
[28]
Yu L , Su W , Fey P D , Liu F , Du L . Yield improvement of the anti-MRSA antibiotics WAP-8294A by CRISPR/dCas9 combined with refactoring self-protection genes in Lysobacter enzymogenes OH11. ACS Synthetic Biology, 2018, 7( 1): 258–266
CrossRef Google scholar
[29]
Aron A T , Gentry E C , McPhail K L , Nothias L F , Nothias-Esposito M , Bouslimani A , Petras D , Gauglitz J M , Sikora N , Vargas F , van der Hooft J J J , Ernst M , Kang K B , Aceves C M , Caraballo-Rodríguez A M , Koester I , Weldon K C , Bertrand S , Roullier C , Sun K , Tehan R M , Boya P C A , Christian M H , Gutiérrez M , Ulloa A M , Tejeda Mora J A , Mojica-Flores R , Lakey-Beitia J , Vásquez-Chaves V , Zhang Y , Calderón A I , Tayler N , Keyzers R A , Tugizimana F , Ndlovu N , Aksenov A A , Jarmusch A K , Schmid R , Truman A W , Bandeira N , Wang M , Dorrestein P C . Reproducible molecular networking of untargeted mass spectrometry data using GNPS. Nature Protocols, 2020, 15( 6): 1954–1991
CrossRef Google scholar
[30]
Wang M , Carver J J , Phelan V V , Sanchez L M , Garg N , Peng Y , Nguyen D D , Watrous J , Kapono C A , Luzzatto-Knaan T , Porto C , Bouslimani A , Melnik A V , Meehan M J , Liu W T , Crüsemann M , Boudreau P D , Esquenazi E , Sandoval-Calderón M , Kersten R D , Pace L A , Quinn R A , Duncan K R , Hsu C C , Floros D J , Gavilan R G , Kleigrewe K , Northen T , Dutton R J , Parrot D , Carlson E E , Aigle B , Michelsen C F , Jelsbak L , Sohlenkamp C , Pevzner P , Edlund A , McLean J , Piel J , Murphy B T , Gerwick L , Liaw C C , Yang Y L , Humpf H U , Maansson M , Keyzers R A , Sims A C , Johnson A R , Sidebottom A M , Sedio B E , Klitgaard A , Larson C B , Boya P C A , Torres-Mendoza D , Gonzalez D J , Silva D B , Marques L M , Demarque D P , Pociute E , O’Neill E C , Briand E , Helfrich E J N , Granatosky E A , Glukhov E , Ryffel F , Houson H , Mohimani H , Kharbush J J , Zeng Y , Vorholt J A , Kurita K L , Charusanti P , McPhail K L , Nielsen K F , Vuong L , Elfeki M , Traxler M F , Engene N , Koyama N , Vining O B , Baric R , Silva R R , Mascuch S J , Tomasi S , Jenkins S , Macherla V , Hoffman T , Agarwal V , Williams P G , Dai J , Neupane R , Gurr J , Rodríguez A M C , Lamsa A , Zhang C , Dorrestein K , Duggan B M , Almaliti J , Allard P M , Phapale P , Nothias L F , Alexandrov T , Litaudon M , Wolfender J L , Kyle J E , Metz T O , Peryea T , Nguyen D T , VanLeer D , Shinn P , Jadhav A , Müller R , Waters K M , Shi W , Liu X , Zhang L , Knight R , Jensen P R , Palsson B Ø , Pogliano K , Linington R G , Gutiérrez M , Lopes N P , Gerwick W H , Moore B S , Dorrestein P C , Bandeira N . Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nature Biotechnology, 2016, 34( 8): 828–837
CrossRef Google scholar
[31]
Chambers M C , Maclean B , Burke R , Amodei D , Ruderman D L , Neumann S , Gatto L , Fischer B , Pratt B , Egertson J , Hoff K , Kessner D , Tasman N , Shulman N , Frewen B , Baker T A , Brusniak M Y , Paulse C , Creasy D , Flashner L , Kani K , Moulding C , Seymour S L , Nuwaysir L M , Lefebvre B , Kuhlmann F , Roark J , Rainer P , Detlev S , Hemenway T , Huhmer A , Langridge J , Connolly B , Chadick T , Holly K , Eckels J , Deutsch E W , Moritz R L , Katz J E , Agus D B , MacCoss M , Tabb D L , Mallick P . A cross-platform toolkit for mass spectrometry and proteomics. Nature Biotechnology, 2012, 30( 10): 918–920
CrossRef Google scholar
[32]
Pluskal T , Castillo S , Villar-Briones A , Oresic M . MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics, 2010, 11( 1): 395
CrossRef Google scholar
[33]
Shannon P , Markiel A , Ozier O , Baliga N S , Wang J T , Ramage D , Amin N , Schwikowski B , Ideker T . Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research, 2003, 13( 11): 2498–2504
CrossRef Google scholar
[34]
Elkins J M , Ryle M J , Clifton I J , Dunning Hotopp J C , Lloyd J S , Burzlaff N I , Baldwin J E , Hausinger R P , Roach P L . X-ray crystal structure of Escherichia coli taurine/alpha-ketoglutarate dioxygenase complexed to ferrous iron and substrates. Biochemistry, 2002, 41( 16): 5185–5192
CrossRef Google scholar
[35]
Chen H , Olson A S , Su W , Dussault P H , Du L . Fatty acyl incorporation in the biosynthesis of WAP-8294A, a group of potent anti-MRSA cyclic lipodepsipeptides. RSC Advances, 2015, 5( 128): 105753–105759
CrossRef Google scholar
[36]
Strieker M , Kopp F , Mahlert C , Essen L O , Marahiel M A . Mechanistic and structural basis of stereospecific Cbeta-hydroxylation in calcium-dependent antibiotic, a daptomycin-type lipopeptide. ACS Chemical Biology, 2007, 2( 3): 187–196
CrossRef Google scholar
[37]
Chen H , Hubbard B K , O’Connor S E , Walsh C T . Formation of beta-hydroxy histidine in the biosynthesis of nikkomycin antibiotics. Chemistry & Biology, 2002, 9( 1): 103–112
CrossRef Google scholar
[38]
Yu L , Du F , Chen X , Zheng Y , Morton M , Liu F , Du L . Identification of the biosynthetic gene cluster for the anti-MRSA lysocins through gene cluster activation using strong promoters of housekeeping genes and production of new analogs in Lysobacter sp. 3655. ACS Synthetic Biology, 2020, 9( 8): 1989–1997
CrossRef Google scholar
[39]
Li S , Wu X , Zhang L , Shen Y , Du L . Activation of a cryptic gene cluster in Lysobacter enzymogenes reveals a module/domain portable mechanism of nonribosomal peptide synthetases in the biosynthesis of pyrrolopyrazines. Organic Letters, 2017, 19( 19): 5010–5013
CrossRef Google scholar

Supplementary materials

The online version of this article at https://doi.org/10.15302/J-FASE-2021410 contains supplementary materials (Tables S1−S2, Figs. S1−S4).

Acknowledgements

This study was supported in part by University of Nebraska Collaboration Initiative Seed Grant. Jing Zhu and Yuan Chen were recipients of a China Scholarship Council fellowship.

Compliance with ethics guidelines

Jing Zhu, Yuan Chen, and Liangcheng Du declare that they have no conflicts of interest or financial conflicts to disclose. This article does not contain any study with human or animal subjects performed by any of the authors.

RIGHTS & PERMISSIONS

The Author(s) 2021. Published by Higher Education Press. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0)
AI Summary AI Mindmap
PDF(2261 KB)

Accesses

Citations

Detail

Sections
Recommended

/