INTERCROPPING: FEED MORE PEOPLE AND BUILD MORE SUSTAINABLE AGROECOSYSTEMS
Hao YANG, Weiping ZHANG, Long LI
INTERCROPPING: FEED MORE PEOPLE AND BUILD MORE SUSTAINABLE AGROECOSYSTEMS
• Intercropping is a useful practice when agricultural sustainability is emphasized.
• We integrate biodiversity-ecosystem functioning and intercropping.
• Intercropping optimizes ecosystem services such as stabilizing yield and reducing use of chemicals.
• Intercropping benefits are attributed partly to complementarity and selection effects.
• Application of ecological principles is key to sustainable agricultural development.
Intercropping is a traditional farming system that increases crop diversity to strengthen agroecosystem functions while decreasing chemical inputs and minimizing negative environmental effects of crop production. Intercropping is currently considerable interest because of its importance in sustainable agriculture. Here, we synthesize the factors that make intercropping a sustainable means of food production by integrating biodiversity of natural ecosystems and crop diversity. In addition to well-known yield increases, intercropping can also increase yield stability over the long term and increase systemic resistance to plant diseases, pests and other unfavorable factors (e.g. nutrient deficiencies). The efficient use of resources can save mineral fertilizer inputs, reduce environmental pollution risks and greenhouse gas emissions caused by agriculture, thus mitigating global climate change. Intercropping potentially increases above- and below-ground biodiversity of various taxa at field scale, consequently it enhances ecosystem services. Complementarity and selection effects allow a better understanding the mechanisms behind enhanced ecosystem functioning. The development of mechanization is essential for large-scale application of intercropping. Agroecosystem multifunctionality and soil health should be priority topics in future research on intercropping.
agroecosystems / crop diversity / intercropping / interspecific interactions / sustainable agriculture
[1] |
Tilman D, Cassman K G, Matson P A, Naylor R, Polasky S. Agricultural sustainability and intensive production practices. Nature, 2002, 418(6898): 671–677
CrossRef
Pubmed
Google scholar
|
[2] |
Malézieux E, Crozat Y, Dupraz C, Laurans M, Makowski D, Ozier-Lafontaine H, Rapidel B, de Tourdonnet S, Valantin-Morison M. Mixing plant species in cropping systems: concepts, tools and models. A review. Agronomy for Sustainable Development, 2009, 29(1): 43–62
CrossRef
Google scholar
|
[3] |
Chen X, Cui Z, Fan M, Vitousek P, Zhao M, Ma W, Wang Z, Zhang W, Yan X, Yang J, Deng X, Gao Q, Zhang Q, Guo S, Ren J, Li S, Ye Y, Wang Z, Huang J, Tang Q, Sun Y, Peng X, Zhang J, He M, Zhu Y, Xue J, Wang G, Wu L, An N, Wu L, Ma L, Zhang W, Zhang F. Producing more grain with lower environmental costs. Nature, 2014, 514(7523): 486–489
CrossRef
Pubmed
Google scholar
|
[4] |
Guo J H, Liu X J, Zhang Y, Shen J L, Han W X, Zhang W F, Christie P, Goulding K W T, Vitousek P M, Zhang F S. Significant acidification in major Chinese croplands. Science, 2010, 327(5968): 1008–1010
CrossRef
Pubmed
Google scholar
|
[5] |
Davidson E A. The contribution of manure and fertilizer nitrogen to atmospheric nitrous oxide since 1860. Nature Geoscience, 2009, 2(9): 659–662
CrossRef
Google scholar
|
[6] |
Kleijn D, Kohler F, Báldi A, Batáry P, Concepción E D, Clough Y, Díaz M, Gabriel D, Holzschuh A, Knop E, Kovács A, Marshall E J P, Tscharntke T, Verhulst J. On the relationship between farmland biodiversity and land-use intensity in Europe. Proceedings. Biological Sciences, 2009, 276(1658): 903–909
CrossRef
Pubmed
Google scholar
|
[7] |
Zimmerer K S. The compatibility of agricultural intensification in a global hotspot of smallholder agrobiodiversity (Bolivia). Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(8): 2769–2774
CrossRef
Pubmed
Google scholar
|
[8] |
Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime J P, Hector A, Hooper D U, Huston M A, Raffaelli D, Schmid B, Tilman D, Wardle D A. Biodiversity and ecosystem functioning: current knowledge and future challenges. Science, 2001, 294(5543): 804–808
CrossRef
Pubmed
Google scholar
|
[9] |
He H M, Liu L N, Munir S, Bashir N H, Wang Y, Yang J, Li C Y. Crop diversity and pest management in susctainable agriculture. Journal of Integrative Agriculture, 2019, 18(9): 1945–1952
CrossRef
Google scholar
|
[10] |
Li L, Zhang L Z, Zhang F S. Crop Mixtures and the Mechanisms of Overyielding. Encyclopedia of Biodiversity, second edition. Academic Press (Elsevier), 2013, 2: 382–395
|
[11] |
Li C, Hoffland E, Kuyper T W, Yu Y, Zhang C, Li H, Zhang F, van der Werf W. Syndromes of production in intercropping impact yield gains. Nature Plants, 2020, 6(6): 653–660
CrossRef
Pubmed
Google scholar
|
[12] |
Agegnehu G, Ghizaw A, Sinebo W. Yield potential and land-use efficiency of wheat and faba bean mixed intercropping. Agronomy for Sustainable Development, 2008, 28(2): 257–263
CrossRef
Google scholar
|
[13] |
Snapp S S, Blackie M J, Gilbert R A, Bezner-Kerr R, Kanyama-Phiri G Y. Biodiversity can support a greener revolution in Africa. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(48): 20840–20845
CrossRef
Pubmed
Google scholar
|
[14] |
Oroka F O, Omoregie A U. Competition in a rice-cowpea intercrop as affected by nitrogen fertilizer and plant population. Scientia Agrícola, 2007, 64(6): 621–629
CrossRef
Google scholar
|
[15] |
Mao L L, Zhang L Z, Li W Q, van der Werf W, Sun J H, Spiertz H, Li L. Yield advantage and water saving in maize/pea intercrop. Field Crops Research, 2012, 138: 11–20
CrossRef
Google scholar
|
[16] |
Liu Y X, Zhang W P, Sun J H, Li X F, Christie P, Li L. High morphological and physiological plasticity of wheat roots is conducive to higher competitive ability of wheat than maize in intercropping systems. Plant and Soil, 2015, 397(1–2): 387–399
CrossRef
Google scholar
|
[17] |
Chen P, Song C, Liu X M, Zhou L, Yang H, Zhang X, Zhou Y, Du Q, Pang T, Fu Z D, Wang X C, Liu W G, Yang F, Shu K, Du J, Liu J, Yang W, Yong T. Yield advantage and nitrogen fate in an additive maize-soybean relay intercropping system. Science of the Total Environment, 2019, 657: 987–999
CrossRef
Pubmed
Google scholar
|
[18] |
Xia H Y, Wang Z G, Zhao J H, Sun J H, Bao X G, Christie P, Zhang F S, Li L. Contribution of interspecific interactions and phosphorus application to sustainable and productive intercropping systems. Field Crops Research, 2013, 154: 53–64
CrossRef
Google scholar
|
[19] |
Banik P, Sharma R C. Yield and resource utilization efficiency in baby cornlegume-intercropping system in the Eastern Plateau of India. Journal of Sustainable Agriculture, 2009, 33(4): 379–395
CrossRef
Google scholar
|
[20] |
Sarkar R, Malik G, Pal P. Effect of intercropping lentil (Lens culinaris) and linseed (Linum usitatissimum) under varying plant density and row arrangement on productivity and advantages in system under rainfed upland. Indian Journal of Agronomy, 2004, 49: 241–243
|
[21] |
Hamzei J, Seyyedi M. Energy use and input-output costs for sunflower production in sole and intercropping with soybean under different tillage systems. Soil & Tillage Research, 2016, 157: 73–82
CrossRef
Google scholar
|
[22] |
Barker S, Dennett M D. Effect of density, cultivar and irrigation on spring sown monocrops and intercrops of wheat (Triticum aestivum L.) and faba beans (Vicia faba L.). European Journal of Agronomy, 2013, 51: 108–116
CrossRef
Google scholar
|
[23] |
Amossé C, Jeuffroy M H, David C. Relay intercropping of legume cover crops in organic winter wheat: effects on performance and resource availability. Field Crops Research, 2013, 145: 78–87
CrossRef
Google scholar
|
[24] |
Giambalvo D, Ruisi P, Di Miceli G, Frenda A S, Amato G. Forage production, N uptake, N2 fixation, and N recovery of berseem clover grown in pure stand and in mixture with annual ryegrass under different managements. Plant and Soil, 2011, 342(1–2): 379–391
CrossRef
Google scholar
|
[25] |
Kwabiah A B. Biological efficiency and economic benefits of pea-barley and pea-oat intercrops. Journal of Sustainable Agriculture, 2005, 25(1): 117–128
CrossRef
Google scholar
|
[26] |
Blaser B C, Singer J W, Gibson L R. Winter cereal canopy effect on cereal and interseeded legume productivity. Agronomy Journal, 2011, 103(4): 1180–1185
CrossRef
Google scholar
|
[27] |
Jahansooz M R, Yunusa I A M, Coventry D R, Palmer A R, Eamus D. Radiation- and water-use associated with growth and yields of wheat and chickpea in sole and mixed crops. European Journal of Agronomy, 2007, 26(3): 275–282
CrossRef
Google scholar
|
[28] |
Chaves A P, Bezerra Neto F, Lima J S S, Silva J N, Nunes R L C, Barros Júnior A P, Lima G K L, Santos E C. Cowpea and beet intercropping agro-economic dynamics under spatial arrangement and cowpea population density. Horticultura Brasileira, 2020, 38(2): 192–203
CrossRef
Google scholar
|
[29] |
Brooker R W, Bennett A E, Cong W F, Daniell T J, George T S, Hallett P D, Hawes C, Iannetta P P M, Jones H G, Karley A J, Li L, McKenzie B M, Pakeman R J, Paterson E, Schöb C, Shen J, Squire G, Watson C A, Zhang C, Zhang F, Zhang J, White P J. Improving intercropping: a synthesis of research in agronomy, plant physiology and ecology. New Phytologist, 2015, 206(1): 107–117
CrossRef
Google scholar
|
[30] |
Himmelstein J, Ares A, Gallagher D, Myers J. A meta-analysis of intercropping in Africa: impacts on crop yield, farmer income, and integrated pest management effects. International Journal of Agricultural Sustainability, 2017, 15(1): 1–10
CrossRef
Google scholar
|
[31] |
Li L. Intercropping enhances agroecosystem services and functioning: current knowledge and perspectives. Chinese Journal of Eco-Agriculture, 2016, 24(4): 403–415 (in Chinese)
|
[32] |
Hong Y, Heerink N, Jin S Q, Berentsen P, Zhang L Z, van der Werf W. Intercropping and agroforestry in China—current state and trends. Agriculture, Ecosystems & Environment, 2017, 244: 52–61
CrossRef
Google scholar
|
[33] |
Alignier A, Solé-Senan X O, Robleño I, Baraibar B, Fahrig L, Giralt D, Gross N, Martin J L, Recasens J, Sirami C, Siriwardena G, Bosem Baillod A, Bertrand C, Carrié R, Hass A, Henckel L, Miguet P, Badenhausser I, Baudry J, Bota G, Bretagnolle V, Brotons L, Burel F, Calatayud F, Clough Y, Georges R, Gibon A, Girard J, Lindsay K, Minano J, Mitchell S, Patry N, Poulin B, Tscharntke T, Vialatte A, Violle C, Yaverscovski N, Batáry P. Configurational crop heterogeneity increases within-field plant diversity. Journal of Applied Ecology, 2020, 57(4): 654–663
CrossRef
Google scholar
|
[34] |
Tscharntke T, Klein A M, Kruess A, Steffan-Dewenter I, Thies C. Landscape perspectives on agricultural intensification and biodiversity–ecosystem service management. Ecology Letters, 2005, 8(8): 857–874
CrossRef
Google scholar
|
[35] |
Hauggaard-Nielsen H, Jensen E S. Evaluating pea and barley cultivars for complementarity in intercropping at different levels of soil N availability. Field Crops Research, 2001, 72(3): 185–196
CrossRef
Google scholar
|
[36] |
Yu Y, Stomph T J, Makowski D, Zhang L Z, van der Werf W. A meta-analysis of relative crop yields in cereal/legume mixtures suggests options for management. Field Crops Research, 2016, 198: 269–279
CrossRef
Google scholar
|
[37] |
Martin-Guay M O, Paquette A, Dupras J, Rivest D. The new Green Revolution: sustainable intensification of agriculture by intercropping. Science of the Total Environment, 2018, 615: 767–772
CrossRef
Pubmed
Google scholar
|
[38] |
Agegnehu G, Ghizaw A, Sinebo W. Yield performance and land-use efficiency of barley and faba bean mixed cropping in Ethiopian highlands. European Journal of Agronomy, 2006, 25(3): 202–207
CrossRef
Google scholar
|
[39] |
Nassary E K, Baijukya F, Ndakidemi P A. Productivity of intercropping with maize and common bean over five cropping seasons on smallholder farms of Tanzania. European Journal of Agronomy, 2020, 113: 125964
CrossRef
Google scholar
|
[40] |
Khan Z R, Midega C A O, Hassanali A, Pickett J A, Wadhams L J, Wanjoya A. Management of witchweed, Striga hermonthica, and stemborers in sorghum, Sorghum bicolor, through intercropping with greenleaf desmodium, Desmodium intortum. International Journal of Pest Management, 2006, 52(4): 297–302
CrossRef
Google scholar
|
[41] |
Ghosh P K, Mohanty M, Bandyopadhyay K K, Painuli D K, Misra A K. Growth, competition, yield advantage and economics in soybean/pigeonpea intercropping system in semi-arid tropics of India. Field Crops Research, 2006, 96(1): 80–89
CrossRef
Google scholar
|
[42] |
Tilman D, Isbell F, Cowles J M. Biodiversity and ecosystem functioning. Annual Review of Ecology, Evolution, and Systematics, 2014, 45(1): 471–493
CrossRef
Google scholar
|
[43] |
Xie J, Hu L, Tang J, Wu X, Li N, Yuan Y, Yang H, Zhang J, Luo S, Chen X. Ecological mechanisms underlying the sustainability of the agricultural heritage rice-fish coculture system. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(50): E1381–E1387
CrossRef
Pubmed
Google scholar
|
[44] |
Rao M R, Willey R W. Evaluation of yield stability in intercropping-studies on sorghum-pigeonpea. Experimental Agriculture, 1980, 16(2): 105–116
CrossRef
Google scholar
|
[45] |
Raseduzzaman M, Jensen E S. Does intercropping enhance yield stability in arable crop production? A meta-analysis. European Journal of Agronomy, 2017, 91: 25–33
CrossRef
Google scholar
|
[46] |
Han D, Currell M J, Cao G. Deep challenges for China’s war on water pollution. Environmental Pollution, 2016, 218: 1222–1233
CrossRef
Pubmed
Google scholar
|
[47] |
Ding Y, Huang X, Li Y, Liu H Y, Zhang Q C, Liu X M, Xu J M, Di H J. Nitrate leaching losses mitigated with intercropping of deep-rooted and shallow-rooted plants. Journal of Soils and Sediments, 2021, 21(1): 364–375
CrossRef
Google scholar
|
[48] |
Xu Z, Li C J, Zhang C C, Yu Y, van der Werf W, Zhang F S. Intercropping maize and soybean increases efficiency of land and fertilizer nitrogen use; A meta-analysis. Field Crops Research, 2020, 246: 107661
CrossRef
Google scholar
|
[49] |
Lehmann J, Bossio D A, Kögel-Knabner I, Rillig M C. The concept and future prospects of soil health. Nature Reviews Earth & Environment, 2020, 1(10): 544–553
CrossRef
Pubmed
Google scholar
|
[50] |
Ma W, Ma L, Li J, Wang F, Sisák I, Zhang F. Phosphorus flows and use efficiencies in production and consumption of wheat, rice, and maize in China. Chemosphere, 2011, 84(6): 814–821
CrossRef
Pubmed
Google scholar
|
[51] |
Mei P P, Gui L G, Wang P, Huang J C, Long H Y, Christie P, Li L. Maize/faba bean intercropping with rhizobia inoculation enhances productivity and recovery of fertilizer P in a reclaimed desert soil. Field Crops Research, 2012, 130: 19–27
CrossRef
Google scholar
|
[52] |
Tooker J F, Frank S D. Genotypically diverse cultivar mixtures for insect pest management and increased crop yields. Journal of Applied Ecology, 2012, 49(5): 974–985
CrossRef
Google scholar
|
[53] |
Letourneau D K, Armbrecht I, Rivera B S, Lerma J M, Carmona E J, Daza M C, Escobar S, Galindo V, Gutiérrez C, López S D, Mejía J L, Rangel A M A, Rangel J H, Rivera L, Saavedra C A, Torres A M, Trujillo A R. Does plant diversity benefit agroecosystems? A synthetic review. Ecological Applications, 2011, 21(1): 9–21
CrossRef
Pubmed
Google scholar
|
[54] |
Hailu G, Niassy S, Zeyaur K R, Ochatum N, Subramanian S. Maize-legume intercropping and push-pull for management of fall armyworm, stemborers, and striga in Uganda. Agronomy Journal, 2018, 110(6): 2513–2522
CrossRef
Google scholar
|
[55] |
Zhu Y, Chen H, Fan J, Wang Y, Li Y, Chen J, Fan J, Yang S, Hu L, Leung H, Mew T W, Teng P S, Wang Z, Mundt C C. Genetic diversity and disease control in rice. Nature, 2000, 406(6797): 718–722
CrossRef
Pubmed
Google scholar
|
[56] |
Zheng Y Q, Zhang L M, Chen B, Yan N S, Gui F R, Zan Q A, Du G Z, He S, Li Z Y, Gao Y L, Xiao G L. Potato/Maize intercropping reduces infestation of potato tuber moth, Phthorimaea operculella (Zeller) by the enhancement of natural enemies. Journal of Integrative Agriculture, 2020, 19(2): 394–405
CrossRef
Google scholar
|
[57] |
Li C, He X, Zhu S, Zhou H, Wang Y, Li Y, Yang J, Fan J, Yang J, Wang G, Long Y, Xu J, Tang Y, Zhao G, Yang J, Liu L, Sun Y, Xie Y, Wang H, Zhu Y. Crop diversity for yield increase. PLoS One, 2009, 4(11): e8049
CrossRef
Pubmed
Google scholar
|
[58] |
Lal R. Soil carbon sequestration impacts on global climate change and food security. Science, 2004, 304(5677): 1623–1627
CrossRef
Pubmed
Google scholar
|
[59] |
Yang Y, Tilman D, Lehman C, Trost J J. Sustainable intensification of high-diversity biomass production for optimal biofuel benefits. Nature Sustainability, 2018, 1(11): 686–692
CrossRef
Google scholar
|
[60] |
Wang Z G, Jin X, Bao X G, Li X F, Zhao J H, Sun J H, Christie P, Li L. Intercropping enhances productivity and maintains the most soil fertility properties relative to sole cropping. PLoS One, 2014, 9(12): e113984
CrossRef
Pubmed
Google scholar
|
[61] |
Wang Z G, Bao X G, Li X F, Jin X, Zhao J H, Sun J H, Christie P, Li L. Intercropping maintains soil fertility in terms of chemical properties and enzyme activities on a timescale of one decade. Plant and Soil, 2015, 391(1–2): 265–282
CrossRef
Google scholar
|
[62] |
Cong W F, Hoffland E, Li L, Six J, Sun J H, Bao X G, Zhang F S, Van Der Werf W. Intercropping enhances soil carbon and nitrogen. Global Change Biology, 2015, 21(4): 1715–1726
CrossRef
Pubmed
Google scholar
|
[63] |
Hu F L, Chai Q, Yu A Z, Yin W, Cui H Y, Gan Y T. Less carbon emissions of wheat-maize intercropping under reduced tillage in arid areas. Agronomy for Sustainable Development, 2015, 35(2): 701–711
CrossRef
Google scholar
|
[64] |
Samarappuli D, Berti M T. Intercropping forage sorghum with maize is a promising alternative to maize silage for biogas production. Journal of Cleaner Production, 2018, 194: 515–524
CrossRef
Google scholar
|
[65] |
Adesodun J K, Atayese M O, Agbaje T A, Osadiaye B A, Mafe O F, Soretire A A. Phytoremediation potentials of sunflowers (Tithonia diversifolia and Helianthus annuus) for metalsin soils contaminated with zinc and lead nitrates. Water, Air, and Soil Pollution, 2010, 207(1–4): 195–201
CrossRef
Google scholar
|
[66] |
Tang L, Hamid Y, Zehra A, Sahito Z A, He Z L, Beri W T, Khan M B, Yang X E. Fava bean intercropping with Sedum alfredii inoculated with endophytes enhances phytoremediation of cadmium and lead co-contaminated field. Environmental Pollution, 2020, 265(Part A): 114861
|
[67] |
Rader R, Bartomeus I, Garibaldi L A, Garratt M P D, Howlett B G, Winfree R, Cunningham S A, Mayfield M M, Arthur A D, Andersson G K S, Bommarco R, Brittain C, Carvalheiro L G, Chacoff N P, Entling M H, Foully B, Freitas B M, Gemmill-Herren B, Ghazoul J, Griffin S R, Gross C L, Herbertsson L, Herzog F, Hipólito J, Jaggar S, Jauker F, Klein A M, Kleijn D, Krishnan S, Lemos C Q, Lindström S A M, Mandelik Y, Monteiro V M, Nelson W, Nilsson L, Pattemore D E, de O. Pereira N, Pisanty G, Potts S G, Reemer M, Rundlöf M, Sheffield C S, Scheper J, Schüepp C, Smith H G, Stanley D A, Stout J C, Szentgyörgyi H, Taki H, Vergara C H, Viana B F, Woyciechowski M. Non-bee insects are important contributors to global crop pollination. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(1): 146–151
CrossRef
Pubmed
Google scholar
|
[68] |
Isbell F, Adler P R, Eisenhauer N, Fornara D, Kimmel K, Kremen C, Letourneau D K, Liebman M, Polley H W, Quijas S, Scherer-Lorenzen M. Benefits of increasing plant diversity in sustainable agroecosystems. Journal of Ecology, 2017, 105(4): 871–879
CrossRef
Google scholar
|
[69] |
Orford K A, Murray P J, Vaughan I P, Memmott J. Modest enhancements to conventional grassland diversity improve the provision of pollination services. Journal of Applied Ecology, 2016, 53(3): 906–915
CrossRef
Pubmed
Google scholar
|
[70] |
Korboulewsky N, Perez G, Chauvat M. How tree diversity affects soil fauna diversity: a review. Soil Biology & Biochemistry, 2016, 94: 94–106
CrossRef
Google scholar
|
[71] |
Hooper D U, Bignell D, Brown V K, Brussard L, Mark Dangerfield J, Wall D H, Wardle D A, Coleman D C, Giller K, Lavelle P, Van Der Putten W H, De Ruiter P C, Rusek J, Silver W L, Tiedje J M, Wolters V. Interactions between aboveground and belowground biodiversity in terrestrial ecosystems: patterns, mechanisms, and feedbacks. Bioscience, 2000, 50(12): 1049–1061
CrossRef
Google scholar
|
[72] |
Schmidt O, Clements R O, Donaldson G. Why do cereal-legume intercrops support large earthworm populations? Applied Soil Ecology, 2003, 22(2): 181–190
CrossRef
Google scholar
|
[73] |
Tian X L, Wang C B, Bao X G, Wang P, Li X F, Yang S C, Ding G C, Christie P, Li L. Crop diversity facilitates soil aggregation in relation to soil microbial community composition driven by intercropping. Plant and Soil, 2019, 436(1–2): 173–192
CrossRef
Google scholar
|
[74] |
Fargione J, Tilman D, Dybzinski R, Lambers J H, Clark C, Harpole W S, Knops J M H, Reich P B, Loreau M. From selection to complementarity: shifts in the causes of biodiversity-productivity relationships in a long-term biodiversity experiment. Proceedings of the Royal Society B: Biological Sciences, 2007, 274(1611): 871–876
CrossRef
Pubmed
Google scholar
|
[75] |
Li B, Li Y Y, Wu H M, Zhang F F, Li C J, Li X X, Lambers H, Li L. Root exudates drive interspecific facilitation by enhancing nodulation and N2 fixation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(23): 6496–6501
CrossRef
Pubmed
Google scholar
|
[76] |
Isbell F, Cowles J, Dee L E, Loreau M, Reich P B, Gonzalez A, Hector A, Schmid B. Quantifying effects of biodiversity on ecosystem functioning across times and places. Ecology Letters, 2018, 21(6): 763–778
CrossRef
Pubmed
Google scholar
|
[77] |
Niklaus P A, Baruffol M, He J S, Ma K, Schmid B. Can niche plasticity promote biodiversity-productivity relationships through increased complementarity? Ecology, 2017, 98(4): 1104–1116
CrossRef
Pubmed
Google scholar
|
[78] |
Guderle M, Bachmann D, Milcu A, Gockele A, Bechmann M, Fischer C, Roscher C, Landais D, Ravel O, Devidal S, Roy J, Gessler A, Buchmann N, Weigelt A, Hildebrandt A. Dynamic niche partitioning in root water uptake facilitates efficient water use in more diverse grassland plant communities. Functional Ecology, 2018, 32(1): 214–227
CrossRef
Google scholar
|
[79] |
Barry K E, Mommer L, van Ruijven J, Wirth C, Wright A J, Bai Y, Connolly J, De Deyn G B, de Kroon H, Isbell F, Milcu A, Roscher C, Scherer-Lorenzen M, Schmid B, Weigelt A. The future of complementarity: disentangling causes from consequences. Trends in Ecology & Evolution, 2019, 34(2): 167–180
CrossRef
Pubmed
Google scholar
|
[80] |
Yu R P, Li X X, Xiao Z H, Lambers H, Li L. Phosphorus facilitation and covariation of root traits in steppe species. New Phytologist, 2020, 226(5): 1285–1298
CrossRef
Pubmed
Google scholar
|
[81] |
Navarro-Cano J A, Horner B, Goberna M, Verdú M. Additive effects of nurse and facilitated plants on ecosystem functions. Journal of Ecology, 2019, 107(6): 2587–2597
CrossRef
Google scholar
|
[82] |
Li L, Tilman D, Lambers H, Zhang F S. Plant diversity and overyielding: insights from belowground facilitation of intercropping in agriculture. New Phytologist, 2014, 203(1): 63–69
CrossRef
Pubmed
Google scholar
|
[83] |
Prieto I, Armas C, Pugnaire F I. Water release through plant roots: new insights into its consequences at the plant and ecosystem level. New Phytologist, 2012, 193(4): 830–841
CrossRef
Pubmed
Google scholar
|
[84] |
Fan Z L, Chai Q, Huang G B, Yu A Z, Huang P, Yang C H, Tao Z Q, Liu H L. Yield and water consumption characteristics of wheat/maize intercropping with reduced tillage in an Oasis region. European Journal of Agronomy, 2013, 45: 52–58
CrossRef
Google scholar
|
[85] |
Ledgard S F, Steele K W. Biological nitrogen-fixation in mixed legume grass pastures. Plant and Soil, 1992, 141(1–2): 137–153
CrossRef
Google scholar
|
[86] |
Sekiya N, Araki H, Yano K. Applying hydraulic lift in an agroecosystem: forage plants with shoots removed supply water to neighboring vegetable crops. Plant and Soil, 2011, 341(1–2): 39–50
CrossRef
Google scholar
|
[87] |
Zang H, Yang X, Feng X, Qian X, Hu Y, Ren C, Zeng Z. Rhizodeposition of nitrogen and carbon by mungbean (Vigna radiata L.) and its contribution to intercropped oats (Avena nuda L.). PLoS One, 2015, 10(3): e0121132
CrossRef
Pubmed
Google scholar
|
[88] |
Li L, Li S M, Sun J H, Zhou L L, Bao X G, Zhang H G, Zhang F S. Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(27): 11192–11196
CrossRef
Pubmed
Google scholar
|
[89] |
Xue Y, Xia H, Christie P, Zhang Z, Li L, Tang C. Crop acquisition of phosphorus, iron and zinc from soil in cereal/legume intercropping systems: a critical review. Annals of Botany, 2016, 117(3): 363–377
CrossRef
Pubmed
Google scholar
|
[90] |
Zhang D, Zhang C, Tang X, Li H, Zhang F, Rengel Z, Whalley W R, Davies W J, Shen J. Increased soil phosphorus availability induced by faba bean root exudation stimulates root growth and phosphorus uptake in neighbouring maize. New Phytologist, 2016, 209(2): 823–831
CrossRef
Pubmed
Google scholar
|
[91] |
Zuo Y M, Zhang F S, Li X L, Cao Y P. Studies on the improvement in iron nutrition of peanut by intercropping with maize on a calcareous soil. Plant and Soil, 2000, 220(1/2): 13–25
CrossRef
Google scholar
|
[92] |
Xiong H, Kakei Y, Kobayashi T, Guo X, Nakazono M, Takahashi H, Nakanishi H, Shen H, Zhang F, Nishizawa N K, Zuo Y. Molecular evidence for phytosiderophore-induced improvement of iron nutrition of peanut intercropped with maize in calcareous soil. Plant, Cell & Environment, 2013, 36(10): 1888–1902
CrossRef
Pubmed
Google scholar
|
[93] |
Zuo Y M, Zhang F S. Iron and zinc biofortification strategies in dicot plants by intercropping with gramineous species. A review. Agronomy for Sustainable Development, 2009, 29(1): 63–71
CrossRef
Google scholar
|
[94] |
Yu Y, Stomph T J, Makowski D, van der Werf W. Temporal niche differentiation increases the land equivalent ratio of annual intercrops: a meta-analysis. Field Crops Research, 2015, 184: 133–144
CrossRef
Google scholar
|
[95] |
Li C J, Hoffland E, Kuyper T W, Yu Y, Li H G, Zhang C C, Zhang F S, van der Werf W. Yield gain, complementarity and competitive dominance in intercropping in China: a meta-analysis of drivers of yield gain using additive partitioning. European Journal of Agronomy, 2020, 113: 125987
CrossRef
Google scholar
|
[96] |
Zhang W P, Liu G C, Sun J H, Fornara D, Zhang L Z, Zhang F F, Li L. Temporal dynamics of nutrient uptake by neighbouring plant species: evidence from intercropping. Functional Ecology, 2017, 31(2): 469–479
CrossRef
Google scholar
|
[97] |
Dong N, Tang M M, Zhang W P, Bao X G, Wang Y, Christie P, Li L. Temporal differentiation of crop growth as one of the drivers of intercropping yield advantage. Scientific Reports, 2018, 8(1): 3110
CrossRef
Pubmed
Google scholar
|
[98] |
Ahmed S, Raza M A, Yuan X Q, Du Y L, Iqbal N, Chachar Q, Soomro A A, Ibrahim F, Hussain S, Wang X C, Liu W G, Yang W Y. Optimized planting time and co-growth duration reduce the yield difference between intercropped and sole soybean by enhancing soybean resilience toward size-asymmetric competition. Food and Energy Security, 2020, 9(3): e226
CrossRef
Google scholar
|
[99] |
Zhang L Z, Van der Werf W, Bastiaans L, Zhang S, Li B, Spiertz J H J. Light interception and utilization in relay intercrops of wheat and cotton. Field Crops Research, 2008, 107(1): 29–42
CrossRef
Google scholar
|
[100] |
Gao Y, Duan A W, Qiu X Q, Sun J S, Zhang J P, Liu H, Wang H Z. Distribution and use efficiency of photosynthetically active radiation in strip intercropping of maize and soybean. Agronomy Journal, 2010, 102(4): 1149–1157
CrossRef
Google scholar
|
[101] |
Mommer L, Van Ruijven J, De Caluwe H, Smit-Tiekstra A E, Wagemaker C A M, Joop Ouborg N, Bögemann G M, Van Der Weerden G M, Berendse F, De Kroon H. Unveiling below-ground species abundance in a biodiversity experiment: a test of vertical niche differentiation among grassland species. Journal of Ecology, 2010, 98(5): 1117–1127
CrossRef
Google scholar
|
[102] |
Li L, Sun J, Zhang F, Guo T, Bao X, Smith F A, Smith S E. Root distribution and interactions between intercropped species. Oecologia, 2006, 147(2): 280–290
CrossRef
Pubmed
Google scholar
|
[103] |
Manning P, van der Plas F, Soliveres S, Allan E, Maestre F T, Mace G, Whittingham M J, Fischer M. Redefining ecosystem multifunctionality. Nature Ecology & Evolution, 2018, 2(3): 427–436
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |