ANTIVIRAL EFFECTS OF BACTERIOCIN AGAINST ANIMAL-TO-HUMAN TRANSMITTABLE MUTATED SARS-COV-2: A SYSTEMATIC REVIEW

Dipta DEY, Tanzila Ismail EMA, Partha BISWAS, Sharmin AKTAR, Shoeba ISLAM, Urmi Rahman RINIK, Mahmudul FIROZ, Shahlaa Zernaz AHMED, Salauddin AL AZAD, Ahsab RAHMAN, Sadia AFRIN, Rezwan Ahmed MAHEDI, Md. Nasir Uddin BADAL

PDF(1575 KB)
PDF(1575 KB)
Front. Agr. Sci. Eng. ›› 2021, Vol. 8 ›› Issue (4) : 603-622. DOI: 10.15302/J-FASE-2021397
REVIEW
REVIEW

ANTIVIRAL EFFECTS OF BACTERIOCIN AGAINST ANIMAL-TO-HUMAN TRANSMITTABLE MUTATED SARS-COV-2: A SYSTEMATIC REVIEW

Author information +
History +

Highlights

• Identification of bacteriocin sources

• Classification of bacteriocins

• Antiviral pathways of bacteriocins

Abstract

The COVID-19 infections caused by SARS-CoV-2 have resulted in millions of people being infected and thousands of deaths globally since November 2019. To date, no unique therapeutic agent has been developed to slow the progression of this pandemic. Despite possessing antiviral traits the potential of bacteriocins to combat SARS-CoV-2 infection has not been fully investigated. This review summarizes the mechanisms by which bacteriocins can be manipulated and implemented as effective virus entry blockers with infection suppression potential properties to highly transmissible viruses through comprehensive immune modulations that are potentially effective against COVID-19. These antimicrobial peptides have been suggested as effective antiviral therapeutics and therapeutic supplements to prevent rapid virus transmission. This review also provides a new insight into the cellular and molecular alterations which have made SARS-CoV-2 self-modified with diversified infection patterns. In addition, the possible applications of antimicrobial peptides through both natural and induced mechanisms in infection prevention perspectives on changeable virulence cases are comprehensively analyzed. Specific attention is given to the antiviral mechanisms of the molecules along with their integrative use with synthetic biology and nanosensor technology for rapid detection. Novel bacteriocin based therapeutics with cutting-edge technologies might be potential substitutes for existing time-consuming and expensive approaches to fight this newly emerged global threat.

Graphical abstract

Keywords

antimicrobial proteins / antiviral profiling of bacteriocins / antiviral therapeutics / immunomodulation / nanosensor technology / mutated SARS-CoV-2

Cite this article

Download citation ▾
Dipta DEY, Tanzila Ismail EMA, Partha BISWAS, Sharmin AKTAR, Shoeba ISLAM, Urmi Rahman RINIK, Mahmudul FIROZ, Shahlaa Zernaz AHMED, Salauddin AL AZAD, Ahsab RAHMAN, Sadia AFRIN, Rezwan Ahmed MAHEDI, Md. Nasir Uddin BADAL. ANTIVIRAL EFFECTS OF BACTERIOCIN AGAINST ANIMAL-TO-HUMAN TRANSMITTABLE MUTATED SARS-COV-2: A SYSTEMATIC REVIEW. Front. Agr. Sci. Eng., 2021, 8(4): 603‒622 https://doi.org/10.15302/J-FASE-2021397

References

[1]
World Health Organization (WHO). Emergency: coronavirus disease (COVID19) pandemic. Coronavirus Disease (COVID-19) Situation Dashboard. Available at WHO website on November 17, 2020
[2]
Kim D, Lee J Y, Yang J S, Kim J W, Kim V N, Chang H. The architecture of SARS-CoV-2 transcriptome. Cell, 2020, 181(4): 914–921.e10
CrossRef Pubmed Google scholar
[3]
Shereen M A, Khan S, Kazmi A, Bashir N, Siddique R. COVID-19 infection: origin, transmission, and characteristics of human coronaviruses. Journal of Advanced Research, 2020, 24: 91–98
CrossRef Pubmed Google scholar
[4]
Uddin M, Mustafa F, Rizvi T A, Loney T, Al Suwaidi H, Al-Marzouqi A H H, Kamal Eldin A, Alsabeeha N, Adrian T E, Stefanini C, Nowotny N, Alsheikh-Ali A, Senok A C. SARS-CoV-2/COVID-19: viral genomics, epidemiology, vaccines, and therapeutic interventions. Viruses, 2020, 12(5): 526
CrossRef Pubmed Google scholar
[5]
Zhou P, Yang X L, Wang X G, Hu B, Zhang L, Zhang W, Si H R, Zhu Y, Li B, Huang C L, Chen H D, Chen J, Luo Y, Guo H, Jiang R D, Liu M Q, Chen Y, Shen X R, Wang X, Zheng X S, Zhao K, Chen Q J, Deng F, Liu L L, Yan B, Zhan F X, Wang Y Y, Xiao G F, Shi Z L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, 579(7798): 270–273
CrossRef Pubmed Google scholar
[6]
Wu A, Peng Y, Huang B, Ding X, Wang X, Niu P, Meng J, Zhu Z, Zhang Z, Wang J, Sheng J, Quan L, Xia Z, Tan W, Cheng G, Jiang T. Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host & Microbe, 2020, 27(3): 325–328
CrossRef Pubmed Google scholar
[7]
Lopetuso L R, Giorgio M E, Saviano A, Scaldaferri F, Gasbarrini A, Cammarota G. Bacteriocins and bacteriophages: therapeutic weapons for gastrointestinal diseases? International Journal of Molecular Sciences, 2019, 20(1): 183
CrossRef Pubmed Google scholar
[8]
Zheng J, Gänzle M G, Lin X B, Ruan L, Sun M. Diversity and dynamics of bacteriocins from human microbiome. Environmental Microbiology, 2015, 17(6): 2133–2143
CrossRef Pubmed Google scholar
[9]
Dicks L M T, Dreyer L, Smith C, van Staden A D. A review: the fate of bacteriocins in the human gastro-intestinal tract: do they cross the gut–blood barrier? Frontiers in Microbiology, 2018, 9: 2297
CrossRef Pubmed Google scholar
[10]
Hols P, Ledesma-García L, Gabant P, Mignolet J. Mobilization of microbiota commensals and their bacteriocins for therapeutics. Trends in Microbiology, 2019, 27(8): 690–702
CrossRef Pubmed Google scholar
[11]
Newstead L L, Varjonen K, Nuttall T, Paterson G K. Staphylococcal-produced bacteriocins and antimicrobial peptides: their potential as alternative treatments for Staphylococcus aureus infections. Antibiotics, 2020, 9(2): 40
CrossRef Pubmed Google scholar
[12]
Al Kassaa I, Hober D, Hamze M, Chihib N E, Drider D. Antiviral potential of lactic acid bacteria and their bacteriocins. Probiotics and Antimicrobial Proteins, 2014, 6(3-4): 177–185
CrossRef Pubmed Google scholar
[13]
Zhang J, Zhong J. The journey of nisin development in China, a natural-green food preservative. Protein & Cell, 2015, 6(10): 709–711
CrossRef Pubmed Google scholar
[14]
Antunes Filho S, dos Santos O A L, dos Santos M S, Backx B P. Exploiting nanotechnology to target viruses. Journal of Nanotechnology and Nanomaterials, 2020, 1(1)
CrossRef Google scholar
[15]
Mahajan S D, Aalinkeel R, Law W C, Reynolds J L, Nair B B, Sykes D E, Yong K T, Roy I, Prasad P N, Schwartz S A. Anti-HIV-1 nanotherapeutics: promises and challenges for the future. International Journal of Nanomedicine, 2012, 7: 5301–5314
CrossRef Pubmed Google scholar
[16]
Ahmad V, Khan M S, Jamal Q M S, Alzohairy M A, Al Karaawi M A, Siddiqui M U. Antimicrobial potential of bacteriocins: in therapy, agriculture and food preservation. International Journal of Antimicrobial Agents, 2017, 49(1): 1–11
CrossRef Pubmed Google scholar
[17]
Saylan Y, Denizli A. Virus detection using nanosensors. In: Han B, Tomer V K, Nguyen T A, Farmani A, Singh P K, eds. Micro and Nano Technologies, Nanosensors for Smart Cities. Elsevier, 2020, 501–511
[18]
Zaffiri L, Gardner J, Toledo-Pereyra L H. History of antibiotics. From salvarsan to cephalosporins. Journal of Investigative Surgery, 2012, 25(2): 67–77
CrossRef Pubmed Google scholar
[19]
Benmechernene Z, Fernandez-No I, Kihal M, Böhme K, Calo-Mata P, Barros-Velazquez J. Recent patents on bacteriocins: food and biomedical applications. Recent Patents on DNA & Gene Sequences (Discontinued), 2013, 7(1): 66–73
CrossRef Pubmed Google scholar
[20]
Baquero F, Lanza V F, Baquero M R, Del Campo R, Bravo-Vázquez D A. Microcins in Enterobacteriaceae: peptide antimicrobials in the eco-active intestinal chemosphere. Frontiers in Microbiology, 2019, 10: 2261
CrossRef Pubmed Google scholar
[21]
Tan S Y, Tatsumura Y. Alexander Fleming (1881–1955): discoverer of penicillin. Singapore Medical Journal, 2015, 56(7): 366–367
CrossRef Pubmed Google scholar
[22]
Persidis A. Antibacterial and antifungal drug discovery. Nature Biotechnology, 1999, 17(11): 1141–1142
CrossRef Pubmed Google scholar
[23]
Conover L H. Discovery of drugs from microbiological sources. Advances in Chemistry, 1971, 108(3): 33–80
CrossRef Google scholar
[24]
Nes I F, Diep D B, Holo H. Bacteriocin diversity in Streptococcus and Enterococcus. Journal of Bacteriology, 2007, 189(4): 1189–1198
CrossRef Pubmed Google scholar
[25]
Nguyen C, Nguyen V D. Discovery of azurin-like anticancer bacteriocins from human gut microbiome through homology modeling and molecular docking against the tumor suppressor p53. BioMed Research International, 2016, 2016: 8490482
CrossRef Pubmed Google scholar
[26]
Chatterjee C, Paul M, Xie L, van der Donk W A. Biosynthesis and mode of action of lantibiotics. Chemical Reviews, 2005, 105(2): 633–684
CrossRef Pubmed Google scholar
[27]
Silver L L. Challenges of antibacterial discovery. Clinical Microbiology Reviews, 2011, 24(1): 71–109
CrossRef Pubmed Google scholar
[28]
Delves-Broughton J, Blackburn P, Evans R J, Hugenholtz J. Applications of the bacteriocin, nisin. Antonie van Leeuwenhoek, 1996, 69(2): 193–202
CrossRef Pubmed Google scholar
[29]
Diep D B, Skaugen M, Salehian Z, Holo H, Nes I F. Common mechanisms of target cell recognition and immunity for class II bacteriocins. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(7): 2384–2389
CrossRef Pubmed Google scholar
[30]
Nes I F, Yoon S S, Diep D B. Ribosomally synthesiszed antimicrobial peptides (bacteriocins) in lactic acid bacteria: a review. Food Science and Biotechnology, 2007, 16(5): 675–690
[31]
Nettles C G, Barefoot S F. Biochemical and genetic characteristics of bacteriocins of food-associated lactic acid bacteria. Journal of Food Protection, 1993, 56(4): 338–356
CrossRef Pubmed Google scholar
[32]
Ben Lagha A, Haas B, Gottschalk M, Grenier D. Antimicrobial potential of bacteriocins in poultry and swine production. Veterinary Research, 2017, 48(1): 22
CrossRef Pubmed Google scholar
[33]
Lee H, Kim H Y. Lantibiotics, class I bacteriocins from the genus Bacillus. Journal of Microbiology and Biotechnology, 2011, 21(3): 229–235
CrossRef Pubmed Google scholar
[34]
Collins F W J, O’Connor P M, O’Sullivan O, Rea M C, Hill C, Ross R P. Formicin—a novel broad-spectrum two-component lantibiotic produced by Bacillus paralicheniformis APC 1576. Microbiology, 2016, 162(9): 1662–1671
CrossRef Pubmed Google scholar
[35]
Heng N C K, Wescombe P A, Burton J P, Jack R W, Tagg J R. The diversity of bacteriocins in Gram-positive bacteria. In: Riley M A, Chavan M A, eds. Bacteriocins. Springer, 2007, 45–92
[36]
Sharma R, Sanodiya B S, Bagrodia D, Pandey M, Sharma A, Bisen P S. Efficacy and potential of lactic acid bacteria modulating human health. International Journal of Pharma and Bio Sciences, 2012, 3(4): 935–948
[37]
Nes I F, Holo H. Class II antimicrobial peptides from lactic acid bacteria. Peptide Science, 2000, 55(1): 50–61
CrossRef Pubmed Google scholar
[38]
Gálvez A, Lopez R L, Abriouel H, Valdivia E, Omar N B. Application of bacteriocins in the control of foodborne pathogenic and spoilage bacteria. Critical Reviews in Biotechnology, 2008, 28(2): 125–152
CrossRef Pubmed Google scholar
[39]
Bagley C P. Potential role of synthetic antimicrobial peptides in animal health to combat growing concerns of antibiotic resistance-a review. Wyno Academic Journal of Agricultural Sciences, 2014, 2(2): 19–28
[40]
Nissen-Meyer J, Rogne P, Oppegård C, Haugen H S, Kristiansen P E. Structure-function relationships of the non-lanthionine-containing peptide (class II) bacteriocins produced by gram-positive bacteria. Current Pharmaceutical Biotechnology, 2009, 10(1): 19–37
CrossRef Pubmed Google scholar
[41]
Derré-Bobillot A, Cortes-Perez N G, Yamamoto Y, Kharrat P, Couvé E, Da Cunha V, Decker P, Boissier M C, Escartin F, Cesselin B, Langella P, Bermúdez-Humarán L G, Gaudu P. Nuclease A (Gbs0661), an extracellular nuclease of Streptococcus agalactiae, attacks the neutrophil extracellular traps and is needed for full virulence. Molecular Microbiology, 2013, 89(3): 518–531
CrossRef Pubmed Google scholar
[42]
Van Staden A D. In vitro and in vivo characterization of amyloliquecidin, a novel two-component lantibiotic produced by Bacillus amyloliquefaciens. Dissertation for the Doctoral Degree. Stellenbosch, South Africa: Stellenbosch University, 2015
[43]
Cao L T, Wu J Q, Xie F, Hu S H, Mo Y. Efficacy of nisin in treatment of clinical mastitis in lactating dairy cows. Journal of Dairy Science, 2007, 90(8): 3980–3985
CrossRef Pubmed Google scholar
[44]
Minahk C J, Dupuy F, Morero R D. Enhancement of antibiotic activity by sub-lethal concentrations of enterocin CRL35. Journal of Antimicrobial Chemotherapy, 2004, 53(2): 240–246
CrossRef Pubmed Google scholar
[45]
Smaoui S, Elleuch L, Bejar W, Karray-Rebai I, Ayadi I, Jaouadi B, Mathieu F, Chouayekh H, Bejar S, Mellouli L. Inhibition of fungi and gram-negative bacteria by bacteriocin BacTN635 produced by Lactobacillus plantarum sp. TN635. Applied Biochemistry and Biotechnology, 2010, 162(4): 1132–1146
CrossRef Pubmed Google scholar
[46]
Johnson J E, Gonzales R A, Olson S J, Wright P F, Graham B S. The histopathology of fatal untreated human respiratory syncytial virus infection. Modern Pathology, 2007, 20(1): 108–119
CrossRef Pubmed Google scholar
[47]
Lai S, Qin Y, Cowling B J, Ren X, Wardrop N A, Gilbert M, Tsang T K, Wu P, Feng L, Jiang H, Peng Z, Zheng J, Liao Q, Li S, Horby P W, Farrar J J, Gao G F, Tatem A J, Yu H. Global epidemiology of avian influenza A H5N1 virus infection in humans, 1997–2015: a systematic review of individual case data. Lancet: Infectious Diseases, 2016, 16(7): e108–e118
CrossRef Pubmed Google scholar
[48]
Rehermann B, Nascimbeni M. Immunology of hepatitis B virus and hepatitis C virus infection. Nature Reviews: Immunology, 2005, 5(3): 215–229
CrossRef Pubmed Google scholar
[49]
Dobson A, Cotter P D, Ross R P, Hill C. Bacteriocin production: a probiotic trait? Applied and Environmental Microbiology, 2012, 78(1): 1–6
CrossRef Pubmed Google scholar
[50]
Al-Mamun M, Hasan M J, Al Azad S, Uddin M G, Shahriyar S, Mondal K J. Evaluation of potential probiotic characteristics of isolated lactic acid bacteria from goat milk. British Biotechnology Journal, 2016, 14(2): 1–7
CrossRef Google scholar
[51]
Oscáriz J C, Lasa I Ã, Pisabarro A G. Detection and characterization of cerein 7, a new bacteriocin produced by Bacillus cereus with a broad spectrum of activity. FEMS Microbiology Letters, 1999, 178(2): 337–341
CrossRef Pubmed Google scholar
[52]
Al Azad S, Moazzem Hossain K, Rahman S M M, Al Mazid M F, Barai P, Gazi M S. In ovo inoculation of duck embryos with different strains of Bacillus cereus to analyse their synergistic post-hatch anti-allergic potentialities. Veterinary Medicine and Science, 2020, 6(4): 992–999
CrossRef Pubmed Google scholar
[53]
McAuliffe O, Ross R P, Hill C. Lantibiotics: structure, biosynthesis and mode of action. FEMS Microbiology Reviews, 2001, 25(3): 285–308
CrossRef Pubmed Google scholar
[54]
Parisot J, Carey S, Breukink E, Chan W C, Narbad A, Bonev B. Molecular mechanism of target recognition by subtilin, a class I lanthionine antibiotic. Antimicrobial Agents and Chemotherapy, 2008, 52(2): 612–618
CrossRef Pubmed Google scholar
[55]
Meade E, Slattery M A, Garvey M. Bacteriocins, potent antimicrobial peptides and the fight against multi drug resistant species: resistance is futile? Antibiotics, 2020, 9(1): 32
CrossRef Pubmed Google scholar
[56]
Le Blay G, Hammami R, Lacroix C, Fliss I. Stability and inhibitory activity of pediocin PA-1 against Listeria sp. in simulated physiological conditions of the human terminal ileum. Probiotics and Antimicrobial Proteins, 2012, 4(4): 250–258
CrossRef Pubmed Google scholar
[57]
Mokoena M P. Lactic acid bacteria and their bacteriocins: classification, biosynthesis and applications against uropathogens: a mini-review. Molecules, 2017, 22(8): 1255
CrossRef Pubmed Google scholar
[58]
Allison G E, Ahn C, Stiles M E, Klaenhammer T R. Utilization of the leucocin A export system in Leuconostoc gelidum for production of a Lactobacillus bacteriocin. FEMS Microbiology Letters, 1995, 131(1): 87–93
CrossRef Pubmed Google scholar
[59]
Wirawan R E, Swanson K M, Kleffmann T, Jack R W, Tagg J R. Uberolysin: a novel cyclic bacteriocin produced by Streptococcus uberis. Microbiology, 2007, 153(5): 1619–1630
CrossRef Pubmed Google scholar
[60]
Ermolenko E I, Desheva Y A, Kolobov A A, Kotyleva M P, Sychev I A, Suvorov A N. Anti-influenza activity of enterocin B in vitro and protective effect of bacteriocinogenic enterococcal probiotic strain on influenza infection in mouse model. Probiotics and Antimicrobial Proteins, 2019, 11(2): 705–712
CrossRef Pubmed Google scholar
[61]
Koehl J L, Muthaiyan A, Jayaswal R K, Ehlert K, Labischinski H, Wilkinson B J. Cell wall composition and decreased autolytic activity and lysostaphin susceptibility of glycopeptide-intermediate Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 2004, 48(10): 3749–3757
CrossRef Pubmed Google scholar
[62]
Lai A C Y, Tran S, Simmonds R S. Functional characterization of domains found within a lytic enzyme produced by Streptococcus equi subsp. zooepidemicus. FEMS Microbiology Letters, 2002, 215(1): 133–138
CrossRef Pubmed Google scholar
[63]
Ramnath M, Beukes M, Tamura K, Hastings J W. Absence of a putative mannose-specific phosphotransferase system enzyme IIAB component in a leucocin A-resistant strain of Listeria monocytogenes, as shown by two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Applied and Environmental Microbiology, 2000, 66(7): 3098–3101
CrossRef Pubmed Google scholar
[64]
Nilsen T, Nes I F, Holo H. Enterolysin A, a cell wall-degrading bacteriocin from Enterococcus faecalis LMG 2333. Applied and Environmental Microbiology, 2003, 69(5): 2975–2984
CrossRef Pubmed Google scholar
[65]
Miescher S, Stierli M P, Teuber M, Meile L. Propionicin SM1, a bacteriocin from Propionibacterium jensenii DF1: isolation and characterization of the protein and its gene. Systematic and Applied Microbiology, 2000, 23(2): 174–184
CrossRef Pubmed Google scholar
[66]
Chen J, Stevenson D M, Weimer P J. Albusin B, a bacteriocin from the ruminal bacterium Ruminococcus albus 7 that inhibits growth of Ruminococcus flavefaciens. Applied and Environmental Microbiology, 2004, 70(5): 3167–3170
CrossRef Pubmed Google scholar
[67]
Kawai Y, Saito T, Kitazawa H, Itoh T. Gassericin A; an uncommon cyclic bacteriocin produced by Lactobacillus gasseri LA39 linked at N- and C-terminal ends. Bioscience, Biotechnology, and Biochemistry, 1998, 62(12): 2438–2440
CrossRef Pubmed Google scholar
[68]
Toba T, Samant S K, Yoshioka E, Itoh T. Reutericin 6, a new bacteriocin produced by Lactobacillus reuteri LA 6. Letters in Applied Microbiology, 1991, 13(6): 281–286
CrossRef Google scholar
[69]
Nomura M. Colicins and related bacteriocins. Annual Review of Microbiology, 1967, 21(1): 257–284
CrossRef Pubmed Google scholar
[70]
Wachsman M B, Castilla V, de Ruiz Holgado A P, de Torres R A, Sesma F, Coto C E. Enterocin CRL35 inhibits late stages of HSV-1 and HSV-2 replication in vitro. Antiviral Research, 2003, 58(1): 17–24
CrossRef Pubmed Google scholar
[71]
Maryam H, Maqsood S, Farooq U. Bacteriocins: a novel weapon against emerging resistance. Saudi Journal of Pathology and Microbiology, 2017, 2(7): 220–227
[72]
Férir G, Petrova M I, Andrei G, Huskens D, Hoorelbeke B, Snoeck R, Vanderleyden J, Balzarini J, Bartoschek S, Brönstrup M, Süssmuth R D, Schols D. The lantibiotic peptide labyrinthopeptin A1 demonstrates broad anti-HIV and anti-HSV activity with potential for microbicidal applications. PLoS One, 2013, 8(5): e64010
CrossRef Pubmed Google scholar
[73]
Torres M J, Brandan C P, Petroselli G, Erra-Balsells R, Audisio M C. Antagonistic effects of Bacillus subtilis subsp. subtilis and B. amyloliquefaciens against Macrophomina phaseolina: SEM study of fungal changes and UV-MALDI-TOF MS analysis of their bioactive compounds. Microbiological Research, 2016, 182: 31–39
CrossRef Pubmed Google scholar
[74]
Todorov S D, Wachsman M B, Knoetze H, Meincken M, Dicks L M T. An antibacterial and antiviral peptide produced by Enterococcus mundtii ST4V isolated from soya beans. International Journal of Antimicrobial Agents, 2005, 25(6): 508–513
CrossRef Pubmed Google scholar
[75]
Hernandez J M, Singam H, Babu A, Aslam S, Lakshmi S. SARS-CoV-2 infection (COVID-19) and herpes simplex virus-1 conjunctivitis: concurrent viral infections or a cause-effect result? Cureus, 2021, 13(1): e12592
Pubmed
[76]
Holmes E C. The phylogeography of human viruses. Molecular Ecology, 2004, 13(4): 745–756
CrossRef Pubmed Google scholar
[77]
Shao W, Li X, Goraya M U, Wang S, Chen J L. Evolution of influenza a virus by mutation and re-assortment. International Journal of Molecular Sciences, 2017, 18(8): 1650
CrossRef Pubmed Google scholar
[78]
Voskarides K. Animal-to-human viral transitions: is SARS-CoV-2 an evolutionarily successful one? Journal of Molecular Evolution, 2020, 88(5): 421–423
CrossRef Pubmed Google scholar
[79]
Plauzolles A, Lucas M, Gaudieri S. Influence of host resistance on viral adaptation: hepatitis C virus as a case study. Infection and Drug Resistance, 2015, 8: 63–74
Pubmed
[80]
Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z, Yu T, Xia J, Wei Y, Wu W, Xie X, Yin W, Li H, Liu M, Xiao Y, Gao H, Guo L, Xie J, Wang G, Jiang R, Gao Z, Jin Q, Wang J, Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020, 395(10223): 497–506
CrossRef Pubmed Google scholar
[81]
Ye Z W, Yuan S, Yuen K S, Fung S Y, Chan C P, Jin D Y. Zoonotic origins of human coronaviruses. International Journal of Biological Sciences, 2020, 16(10): 1686–1697
CrossRef Pubmed Google scholar
[82]
Vijaykrishna D, Smith G J D, Zhang J X, Peiris J S M, Chen H, Guan Y. Evolutionary insights into the ecology of coronaviruses. Journal of Virology, 2007, 81(8): 4012–4020
CrossRef Pubmed Google scholar
[83]
Fehr A R, Perlman S. Coronaviruses: an overview of their replication and pathogenesis. Methods in Molecular Biology, 2015, 1282: 1–23
CrossRef Pubmed Google scholar
[84]
Abd El-Aziz T M, Stockand J D. Recent progress and challenges in drug development against COVID-19 coronavirus (SARS-CoV-2)-an update on the status. Infection, genetics and evolution, 2020, 83: 104327
[85]
Soufi G J, Hekmatnia A, Nasrollahzadeh M, Shafiei N, Sajjadi M, Iravani P, Fallah S, Iravani S, Varma R S. SARS-CoV-2 (COVID-19): new discoveries and current challenges. Applied Sciences, 2020, 10(10): 3641
CrossRef Google scholar
[86]
Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S, Zhang Q, Shi X, Wang Q, Zhang L, Wang X. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature, 2020, 581(7807): 215–220
CrossRef Pubmed Google scholar
[87]
Khandia R, Munjal A, Dhama K, Karthik K, Tiwari R, Malik Y S, Singh R K, Chaicumpa W. Modulation of dengue/zika virus pathogenicity by antibody-dependent enhancement and strategies to protect against enhancement in zika virus infection. Frontiers in Immunology, 2018, 9: 597
CrossRef Pubmed Google scholar
[88]
Tetro J A. Is COVID-19 receiving ADE from other coronaviruses? Microbes and Infection, 2020, 22(2): 72–73
CrossRef Pubmed Google scholar
[89]
Guabiraba R, Ryffel B. Dengue virus infection: current concepts in immune mechanisms and lessons from murine models. Immunology, 2014, 141(2): 143–156
CrossRef Pubmed Google scholar
[90]
Tseng C T, Sbrana E, Iwata-Yoshikawa N, Newman P C, Garron T, Atmar R L, Peters C J, Couch R B. Immunization with SARS coronavirus vaccines leads to pulmonary immunopathology on challenge with the SARS virus. PLoS One, 2012, 7(4): e35421
CrossRef Pubmed Google scholar
[91]
Hotez P J, Bottazzi M E, Corry D B. The potential role of Th17 immune responses in coronavirus immunopathology and vaccine-induced immune enhancement. Microbes and Infection, 2020, 22(4–5): 165–167
CrossRef Pubmed Google scholar
[92]
Keely S, Foster P S. Stop press: eosinophils drafted to join the Th17 team. Immunity, 2015, 43(1): 7–9
CrossRef Pubmed Google scholar
[93]
Yu J, Tostanoski L H, Peter L, Mercado N B, McMahan K, Mahrokhian S H, Nkolola J P, Liu J, Li Z, Chandrashekar A, Martinez D R, Loos C, Atyeo C, Fischinger S, Burke J S, Slein M D, Chen Y, Zuiani A, Lelis F J N, Travers M, Habibi S, Pessaint L, Van Ry A, Blade K, Brown R, Cook A, Finneyfrock B, Dodson A, Teow E, Velasco J, Zahn R, Wegmann F, Bondzie E A, Dagotto G, Gebre M S, He X, Jacob-Dolan C, Kirilova M, Kordana N, Lin Z, Maxfield L F, Nampanya F, Nityanandam R, Ventura J D, Wan H, Cai Y, Chen B, Schmidt A G, Wesemann D R, Baric R S, Alter G, Andersen H, Lewis M G, Barouch D H. DNA vaccine protection against SARS-CoV-2 in rhesus macaques. Science, 2020, 369(6505): 806–811
CrossRef Pubmed Google scholar
[94]
Duffy S. Why are RNA virus mutation rates so damn high? PLoS Biology, 2018, 16(8): e3000003
CrossRef Pubmed Google scholar
[95]
Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science, 2020, 367(6485): 1444–1448
CrossRef Pubmed Google scholar
[96]
Wu F, Zhao S, Yu B, Chen Y M, Wang W, Song Z G, Hu Y, Tao Z W, Tian J H, Pei Y Y, Yuan M L, Zhang Y L, Dai F H, Liu Y, Wang Q M, Zheng J J, Xu L, Holmes E C, Zhang Y Z. A new coronavirus associated with human respiratory disease in China. Nature, 2020, 579(7798): 265–269
CrossRef Pubmed Google scholar
[97]
Cai H Y, Cai A. SARS-CoV-2 spike protein gene variants with N501T and G142D mutation dominated infections in minks in the US. medRix, 2021 doi: 10.1101/2021.03.18.21253734
CrossRef Pubmed Google scholar
[98]
Ou J, Zhou Z, Dai R, Zhao S, Wu X, Zhang J, Lan W, Cui L, Wu J, Seto D, Chodosh J, Zhang G, Zhang Q. Emergence of RBD mutations in circulating SARS-CoV-2 strains enhancing the structural stability and human ACE2 receptor affinity of the spike protein. bioRxiv, 2020
CrossRef Google scholar
[99]
Laamarti M, Alouane T, Kartti S, Chemao-Elfihri M W, Hakmi M, Essabbar A, Laamarti M, Hlali H, Bendani H, Boumajdi N, Benhrif O, Allam L, El Hafidi N, El Jaoudi R, Allali I, Marchoudi N, Fekkak J, Benrahma H, Nejjari C, Amzazi S, Belyamani L, Ibrahimi A. Large scale genomic analysis of 3067 SARS-CoV-2 genomes reveals a clonal geo-distribution and a rich genetic variations of hotspots mutations. PLoS One, 2020, 15(11): e0240345
CrossRef Pubmed Google scholar
[100]
Zhang H, Penninger J M, Li Y, Zhong N, Slutsky A S. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Medicine, 2020, 46(4): 586–590
CrossRef Pubmed Google scholar
[101]
Shang J, Wan Y, Luo C, Ye G, Geng Q, Auerbach A, Li F. Cell entry mechanisms of SARS-CoV-2. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(21): 11727–11734
CrossRef Pubmed Google scholar
[102]
Shang J, Ye G, Shi K, Wan Y, Luo C, Aihara H, Geng Q, Auerbach A, Li F. Structural basis of receptor recognition by SARS-CoV-2. Nature, 2020, 581(7807): 221–224
CrossRef Pubmed Google scholar
[103]
Bajaj A, Purohit H J. Understanding SARS-CoV-2: genetic diversity, transmission and cure in human. Indian Journal of Microbiology, 2020, 60(3): 398–401
CrossRef Pubmed Google scholar
[104]
Phan T. Genetic diversity and evolution of SARS-CoV-2. Infection, Genetics and Evolution, 2020, 81: 104260
CrossRef Pubmed Google scholar
[105]
van Dorp L, Acman M, Richard D, Shaw L P, Ford C E, Ormond L, Owen C J, Pang J, Tan C C S, Boshier F A T, Ortiz A T, Balloux F. Emergence of genomic diversity and recurrent mutations in SARS-CoV-2. Infection, Genetics and Evolution, 2020, 83: 104351
CrossRef Pubmed Google scholar
[106]
Ren L, Zhang Y, Li J, Xiao Y, Zhang J, Wang Y, Chen L, Paranhos-Baccalà G, Wang J. Genetic drift of human coronavirus OC43 spike gene during adaptive evolution. Scientific Reports, 2015, 5(1): 11451
CrossRef Pubmed Google scholar
[107]
Pickard J M, Zeng M Y, Caruso R, Núñez G. Gut microbiota: role in pathogen colonization, immune responses, and inflammatory disease. Immunological Reviews, 2017, 279(1): 70–89
CrossRef Pubmed Google scholar
[108]
Al Azad S, Shahriyar S, Mondal K J. Opsonin and its mechanism of action in secondary immune. Journal of Molecular Studies and Medicine Research, 2016, 1(2): 48–56
CrossRef Google scholar
[109]
Maiti B K. Potential role of peptide-based antiviral therapy against SARS-CoV-2 infection. ACS Pharmacology & Translational Science, 2020, 3(4): 783–785
CrossRef Pubmed Google scholar
[110]
Kindrachuk J, Jenssen H, Elliott M, Nijnik A, Magrangeas-Janot L, Pasupuleti M, Thorson L, Ma S, Easton D M, Bains M, Finlay B, Breukink E J, Georg-Sahl H, Hancock R E W. Manipulation of innate immunity by a bacterial secreted peptide: lantibiotic nisin Z is selectively immunomodulatory. Innate Immunity, 2013, 19(3): 315–327
CrossRef Pubmed Google scholar
[111]
de Pablo M A, Gaforio J J, Gallego A M, Ortega E, Gálvez A M, Alvarez de Cienfuegos López G. Evaluation of immunomodulatory effects of nisin-containing diets on mice. FEMS Immunology and Medical Microbiology, 1999, 24(1): 35–42
CrossRef Pubmed Google scholar
[112]
Bhattacharya A, Stacy A, Bashey F. Suppression of bacteriocin resistance using live, heterospecific competitors. Evolutionary Applications, 2019, 12(6): 1191–1200
CrossRef Pubmed Google scholar
[113]
Elnagdy S, AlKhazindar M. The potential of antimicrobial peptides as an antiviral therapy against COVID-19. ACS Pharmacology & Translational Science, 2020, 3(4): 780–782
CrossRef Pubmed Google scholar
[114]
Lange-Starke A, Petereit A, Truyen U, Braun P G, Fehlhaber K, Albert T. Antiviral potential of selected starter cultures, bacteriocins and D, L-lactic acid. Food and Environmental Virology, 2014, 6(1): 42–47
CrossRef Pubmed Google scholar
[115]
Serkedjieva J. Antiviral activity of the red marine alga Ceramium rubrum. Phytotherapy Research, 2004, 18(6): 480–483
CrossRef Pubmed Google scholar
[116]
Begde D, Bundale S, Mashitha P, Rudra J, Nashikkar N, Upadhyay A. Immunomodulatory efficacy of nisin—a bacterial lantibiotic peptide. Journal of Peptide Science, 2011, 17(6): 438–444
CrossRef Pubmed Google scholar
[117]
Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss D S, Weinrauch Y, Zychlinsky A. Neutrophil extracellular traps kill bacteria. Science, 2004, 303(5663): 1532–1535
CrossRef Pubmed Google scholar
[118]
Zawrotniak M, Rapala-Kozik M. Neutrophil extracellular traps (NETs)—formation and implications. Acta Biochimica Polonica, 2013, 60(3): 277–284
CrossRef Pubmed Google scholar
[119]
Witko-Sarsat V, Rieu P, Descamps-Latscha B, Lesavre P, Halbwachs-Mecarelli L. Neutrophils: molecules, functions and pathophysiological aspects. Laboratory Investigation, 2000, 80(5): 617–653
CrossRef Pubmed Google scholar
[120]
Azad M A K, Sarker M, Wan D. Immunomodulatory effects of probiotics on cytokine profiles. BioMed Research International, 2018, 2018: 8063647
CrossRef Pubmed Google scholar
[121]
Meijerink M, van Hemert S, Taverne N, Wels M, de Vos P, Bron P A, Savelkoul H F, van Bilsen J, Kleerebezem M, Wells J M. Identification of genetic loci in Lactobacillus plantarum that modulate the immune response of dendritic cells using comparative genome hybridization. PLoS One, 2010, 5(5): e10632
CrossRef Pubmed Google scholar
[122]
van Hemert S, Meijerink M, Molenaar D, Bron P A, de Vos P, Kleerebezem M, Wells J M, Marco M L. Identification of Lactobacillus plantarum genes modulating the cytokine response of human peripheral blood mononuclear cells. BMC Microbiology, 2010, 10(1): 293
CrossRef Pubmed Google scholar
[123]
Quintana V M, Torres N I, Wachsman M B, Sinko P J, Castilla V, Chikindas M. Antiherpes simplex virus type 2 activity of the antimicrobial peptide subtilosin. Journal of Applied Microbiology, 2014, 117(5): 1253–1259
CrossRef Pubmed Google scholar
[124]
Saeed S, Rasool S A, Ahmad S, Zaidi S Z, Rehmani S. Antiviral activity of staphylococcin 188: a purified bacteriocin like inhibitory substance isolated from Staphylococcus aureus AB188. Research. Journal of Microbiology, 2007, 2(11): 796–806
[125]
Nishihira J, Nishimura M, Moriya T, Sakai F, Kabuki T, Kawasaki Y. Lactobacillus gasseri potentiates immune response against influenza virus infection. In: Chatterjee S, Jungraithmayr W, Bagchi D, eds. Immunity and Inflammation in Health and Disease. Academic Press, 2018, 249–255
[126]
Villena J, Oliveira M L S, Ferreira P C D, Salva S, Alvarez S. Lactic acid bacteria in the prevention of pneumococcal respiratory infection: future opportunities and challenges. International Immunopharmacology, 2011, 11(11): 1633–1645
CrossRef Pubmed Google scholar
[127]
Blockus S, Sake S M, Wetzke M, Grethe C, Graalmann T, Pils M, Le Goffic R, Galloux M, Prochnow H, Rox K, Hüttel S, Rupcic Z, Wiegmann B, Dijkman R, Rameix-Welti M A, Eléouët J F, Duprex W P, Thiel V, Hansen G, Brönstrup M, Haid S, Pietschmann T. Labyrinthopeptins as virolytic inhibitors of respiratory syncytial virus cell entry. Antiviral Research, 2020, 177: 104774
CrossRef Pubmed Google scholar
[128]
Tiwari S K, Dicks L M T, Popov I V, Karaseva A, Ermakov A M, Suvorov A, Tagg J R, Weeks R, Chikindas M L. Probiotics at war against viruses: what is missing from the picture? Frontiers in Microbiology, 2020, 11: 1877
CrossRef Pubmed Google scholar
[129]
Prochnow H, Rox K, Birudukota N V S, Weichert L, Hotop S K, Klahn P, Mohr K, Franz S, Banda D H, Blockus S, Schreiber J, Haid S, Oeyen M, Martinez J P, Süssmuth R D, Wink J, Meyerhans A, Goffinet C, Messerle M, Schulz T F, Kröger A, Schols D, Pietschmann T, Brönstrup M. Labyrinthopeptins exert broad-spectrum antiviral activity through lipid-binding-mediated virolysis. Journal of Virology, 2020, 94(2): e01471–19
Pubmed
[130]
Jain N, Lodha R, Kabra S K. Upper respiratory tract infections. Indian Journal of Pediatrics, 2001, 68(12): 1135–1138
CrossRef Pubmed Google scholar
[131]
Shan C, Yao Y F, Yang X L, Zhou Y W, Gao G, Peng Y, Yang L, Hu X, Xiong J, Jiang R D, Zhang H J, Gao X X, Peng C, Min J, Chen Y, Si H R, Wu J, Zhou P, Wang Y Y, Wei H P, Pang W, Hu Z F, Lv L B, Zheng Y T, Shi Z L, Yuan Z M. Infection with novel coronavirus (SARS-CoV-2) causes pneumonia in Rhesus macaques. Cell Research, 2020, 30(8): 670–677
CrossRef Pubmed Google scholar
[132]
Serkedjieva J, Danova S, Ivanova I. Antiinfluenza virus activity of a bacteriocin produced by Lactobacillus delbrueckii. Applied Biochemistry and Biotechnology, 2012, 88(1): 285–298
[133]
Salman J, Mahmood N N, Abdulsattar B O, Abid H A. The effectiveness of probiotics against viral infections: a rapid review with focus on SARS-CoV-2 infection. Open Access Macedonian Journal of Medical Sciences, 2020, 8(T1): 496–508
CrossRef Google scholar
[134]
Anwar F, Altayb H N, Al-Abbasi F A, Al-Malki A L, Kamal M A, Kumar V. Antiviral effects of probiotic metabolites on COVID-19. Journal of Biomolecular Structure & Dynamics, 2020
CrossRef Pubmed Google scholar
[135]
Thanh Le T, Andreadakis Z, Kumar A, Gómez Román R, Tollefsen S, Saville M, Mayhew S. The COVID-19 vaccine development landscape. Nature Reviews: Drug Discovery, 2020, 19(5): 305–306
CrossRef Pubmed Google scholar
[136]
Jackson L A, Anderson E J, Rouphael N G, Roberts P C, Makhene M, Coler R N, McCullough M P, Chappell J D, Denison M R, Stevens L J, Pruijssers A J, McDermott A, Flach B, Doria-Rose N A, Corbett K S, Morabito K M, O’Dell S, Schmidt S D, Swanson P A II, Padilla M, Mascola J R, Neuzil K M, Bennett H, Sun W, Peters E, Makowski M, Albert J, Cross K, Buchanan W, Pikaart-Tautges R, Ledgerwood J E, Graham B S, Beigel J H, for the mRNA-1273 Study Group. An mRNA vaccine against SARS-CoV-2—preliminary report. New England Journal of Medicine, 2020, 383(20): 1920–1931
CrossRef Google scholar
[137]
Peeples L. News Feature: avoiding pitfalls in the pursuit of a COVID-19 vaccine. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(15): 8218–8221
CrossRef Pubmed Google scholar
[138]
Calvo Fernández E, Zhu L Y. Racing to immunity: journey to a COVID-19 vaccine and lessons for the future. British Journal of Clinical Pharmacology, 2020
CrossRef Pubmed Google scholar
[139]
Shoenfeld Y. Corona (COVID-19) time musings: our involvement in COVID-19 pathogenesis, diagnosis, treatment and vaccine planning. Autoimmunity Reviews, 2020, 19(6): 102538
CrossRef Pubmed Google scholar
[140]
Abdelmageed M I, Abdelmoneim A H, Mustafa M I, Elfadol N M, Murshed N S, Shantier S W, Makhawi A M. Design of a multiepitope-based peptide vaccine against the E protein of human COVID-19: an immunoinformatics approach. BioMed Research International, 2020: 2683286
CrossRef Pubmed Google scholar
[141]
Yadav D K, Yadav N, Khurana S M P. Vaccines: present status and applications. In: Verma A S, Singh A, eds. Animal Biotechnology (Second Edition). Academic Press, 2020, 523–542
[142]
Raska M, Turanek J. DNA vaccines for the induction of immune responses in mucosal tissues. In: Mestecky J, Strober W, Russell M W, Kelsall B L, Cheroutre H, Lambrecht B N, eds. Mucosal Immunology (Fourth Edition). Academic Press, 2015, 1307–1335
[143]
Yoon S K, Seo Y B, Im S J, Bae S H, Song M J, You C R, Jang J W, Yang S H, Suh Y S, Song J S, Kim B M, Kim C Y, Jeong S H, Sung Y C. Safety and immunogenicity of therapeutic DNA vaccine with antiviral drug in chronic HBV patients and its immunogenicity in mice. Liver International, 2015, 35(3): 805–815
[144]
Zajac B A, West D J, McAleer W J, Scolnick E M. Overview of clinical studies with hepatitis B vaccine made by recombinant DNA. Journal of Infection, 1986, 13(Suppl A): 39–45
[145]
Zhu L, Yang Q, Huang L, Wang K, Wang X, Chen D, Geng Y, Huang X, Ouyang P, Lai W. Effectivity of oral recombinant DNA vaccine against Streptococcus agalactiae in Nile tilapia. Developmental and Comparative Immunology, 2017, 77: 77–87
CrossRef Pubmed Google scholar
[146]
Adamczyk-Poplawska M, Markowicz S, Jagusztyn-Krynicka E K. Proteomics for development of vaccine. Journal of Proteomics, 2011, 74(12): 2596–2616
CrossRef Pubmed Google scholar
[147]
Galassie A C, Link A J. Proteomic contributions to our understanding of vaccine and immune responses. Proteomics: Clinical Applications, 2015, 9(11–12): 972–989
CrossRef Pubmed Google scholar
[148]
Charlton Hume H K, Vidigal J, Carrondo M J T, Middelberg A P J, Roldão A, Lua L H L. Synthetic biology for bioengineering virus-like particle vaccines. Biotechnology and Bioengineering, 2019, 116(4): 919–935
CrossRef Pubmed Google scholar
[149]
Kitney R I, Bell J, Philp J.Build a Sustainable Vaccines Industry with Synthetic Biology. Trends in Biotechnology, 2021 doi: 10.1016/j.tibtech.2020.12.006
[150]
Mamo T, Poland G A. Nanovaccinology: the next generation of vaccines meets 21st century materials science and engineering. Vaccine, 2012, 30(47): 6609–6611
CrossRef Pubmed Google scholar
[151]
Yadav H K S, Dibi M, Mohammad A, Srouji A E. Nanovaccines formulation and applications—a review. Journal of Drug Delivery Science and Technology, 2018, 44: 380–387
CrossRef Google scholar
[152]
Raffatellu M, Chessa D, Wilson R P, Dusold R, Rubino S, Bäumler A J. The Vi capsular antigen of Salmonella enterica serotype Typhi reduces Toll-like receptor-dependent interleukin-8 expression in the intestinal mucosa. Infection and Immunity, 2005, 73(6): 3367–3374
CrossRef Pubmed Google scholar
[153]
Choy W Y, Lin S G, Chan P K S, Tam J S L, Lo Y M D, Chu I M T, Tsai S N, Zhong M Q, Fung K P, Waye M M Y, Tsui S K W, Ng K O, Shan Z X, Yang M, Wu Y L, Lin Z Y, Ngai S M. Synthetic peptide studies on the severe acute respiratory syndrome (SARS) coronavirus spike glycoprotein: perspective for SARS vaccine development. Clinical Chemistry, 2004, 50(6): 1036–1042
CrossRef Pubmed Google scholar
[154]
McNeil S E. Unique benefits of nanotechnology to drug delivery and diagnostics. In: McNeil S, ed. Characterization of nanoparticles intended for drug delivery. Methods in Molecular Biology (Methods and Protocols). USA: Humana Press, 2011, 3–8
CrossRef Google scholar
[155]
Li Y, Lin Z, Guo M, Xia Y, Zhao M, Wang C, Xu T, Chen T, Zhu B. Inhibitory activity of selenium nanoparticles functionalized with oseltamivir on H1N1 influenza virus. International Journal of Nanomedicine, 2017, 12: 5733–5743
CrossRef Pubmed Google scholar
[156]
Stone J W, Thornburg N J, Blum D L, Kuhn S J, Wright D W, Crowe J E Jr. Gold nanorod vaccine for respiratory syncytial virus. Nanotechnology, 2013, 24(29): 295102
CrossRef Pubmed Google scholar
[157]
Fujimori Y, Sato T, Hayata T, Nagao T, Nakayama M, Nakayama T, Sugamata R, Suzuki K. Novel antiviral characteristics of nanosized copper(I) iodide particles showing inactivation activity against 2009 pandemic H1N1 influenza virus. Applied and Environmental Microbiology, 2012, 78(4): 951–955
CrossRef Pubmed Google scholar
[158]
Vemula S V, Zhao J, Liu J, Wang X, Biswas S, Hewlett I. Current approaches for diagnosis of influenza virus infections in humans. Viruses, 2016, 8(4): 96
CrossRef Pubmed Google scholar
[159]
Elechiguerra J L, Burt J L, Morones J R, Camacho-Bragado A, Gao X, Lara H H, Yacaman M J. Interaction of silver nanoparticles with HIV-1. Journal of Nanobiotechnology, 2005, 3(1): 6
CrossRef Pubmed Google scholar
[160]
Łoczechin A, Séron K, Barras A, Giovanelli E, Belouzard S, Chen Y T, Metzler-Nolte N, Boukherroub R, Dubuisson J, Szunerits S. Functional carbon quantum dots as medical countermeasures to human coronavirus. ACS Applied Materials & Interfaces, 2019, 11(46): 42964–42974
CrossRef Pubmed Google scholar
[161]
Zehbe I, Hacker G W, Su H, Hauser-Kronberger C, Hainfeld J F, Tubbs R. Sensitive in situ hybridization with catalyzed reporter deposition, streptavidin-Nanogold, and silver acetate autometallography: detection of single-copy human papillomavirus. American Journal of Pathology, 1997, 150(5): 1553–1561
Pubmed
[162]
Martínez G‐ M BParedes A, GonzálezGarcía , CostaGarcía . Genosensor for SARS virus detection based on gold nanostructured screen‐printed carbon electrodes. Electroanalysis, 2009, 21(3–5): 379–385
[163]
Babamiri B, Salimi A, Hallaj R. A molecularly imprinted electrochemiluminescence sensor for ultrasensitive HIV-1 gene detection using EuS nanocrystals as luminophore. Biosensors & Bioelectronics, 2018, 117: 332–339
CrossRef Pubmed Google scholar
[164]
Afsahi S, Lerner M B, Goldstein J M, Lee J, Tang X, Bagarozzi D A Jr, Pan D, Locascio L, Walker A, Barron F, Goldsmith B R. Novel graphene-based biosensor for early detection of Zika virus infection. Biosensors & Bioelectronics, 2018, 100: 85–88
CrossRef Pubmed Google scholar
[165]
Shahrajabian M H, Sun W, Shen H, Cheng Q. Chinese herbal medicine for SARS and SARS-CoV-2 treatment and prevention, encouraging using herbal medicine for COVID-19 outbreak. Acta Agriculturæ Scandinavica. Section B: Soil and Plant Science, 2020, 70(5): 437–443
CrossRef Google scholar
[166]
Guan W, Lan W, Zhang J, Zhao S, Ou J, Wu X, Yan Y, Wu J, Zhang Q. COVID-19: antiviral agents, antibody development and traditional Chinese medicine. Virologica Sinica, 2020, 35(6): 685–698
CrossRef Pubmed Google scholar
[167]
Li Y, Li J, Zhong D, Zhang Y, Zhang Y, Guo Y, Clarke M, Jin R. Clinical practice guidelines and experts’ consensuses of traditional Chinese herbal medicine for novel coronavirus (COVID-19): protocol of a systematic review. Systematic Reviews, 2020, 9(1): 170
CrossRef Pubmed Google scholar
[168]
Leung E L H, Pan H D, Huang Y F, Fan X X, Wang W Y, He F, Cai J, Zhou H, Liu L. The scientific foundation of Chinese herbal medicine against COVID-19. Engineering, 2020, 6(10): 1099–1107
CrossRef Pubmed Google scholar
[169]
Wang S X, Wang Y, Lu Y B, Li J Y, Song Y J, Nyamgerelt M, Wang X X. Diagnosis and treatment of novel coronavirus pneumonia based on the theory of traditional Chinese medicine. Journal of Integrative Medicine, 2020, 18(4): 275–283
CrossRef Pubmed Google scholar
[170]
Li J G, Xu H. Chinese medicine in fighting against COVID-19: role and inspiration. Chinese Journal of Integrative Medicine, 2021, 27(1): 3–6
CrossRef Pubmed Google scholar
[171]
Tong T, Wu Y Q, Ni W J, Shen A Z, Liu S. The potential insights of Traditional Chinese Medicine on treatment of COVID-19. Chinese Medicine, 2020, 15(1): 51
CrossRef Pubmed Google scholar
[172]
Pan B, Fang S, Zhang J, Pan Y, Liu H, Wang Y, Li M, Liu L. Chinese herbal compounds against SARS-CoV-2: puerarin and quercetin impair the binding of viral S-protein to ACE2 receptor. Computational and Structural Biotechnology Journal, 2020, 18: 3518–3527
CrossRef Pubmed Google scholar
[173]
Zhao Z, Li Y, Zhou L, Zhou X, Xie B, Zhang W, Sun J. Prevention and treatment of COVID-19 using Traditional Chinese Medicine: a review. Phytomedicine, 2021, 85: 153308
CrossRef Pubmed Google scholar
[174]
Li Q, Wang H, Li X, Zheng Y, Wei Y, Zhang P, Ding Q, Lin J, Tang S, Zhao Y, Zhao L, Tong X. The role played by traditional Chinese medicine in preventing and treating COVID-19 in China. Frontiers of Medicine, 2020, 14(5): 681–688
CrossRef Pubmed Google scholar

Acknowledgements

We thank the authority of Research Publication Guardians (RPG, Government License No. 05-060-06021) for providing logistic support and suggestions which were important to the successful completion of this review. Mohammad Faysal Al Mazid, Korea Institute of Science and Technology (South Korea), helped in similarity checking and manuscript formatting.

Compliance with ethics guidelines

Dipta Dey, Tanzila Ismail Ema, Partha Biswas, Sharmin Aktar, Shoeba Islam, Urmi Rahman Rinik, Mahmudul Firoz, Shahlaa Zernaz Ahmed, Salauddin Al Azad, Ahsab Rahman, Sadia Afrin, Rezwan Ahmed Mahedi, and Nasir Uddin Badal declare that they have no conflicts of interest or financial conflicts to disclose. This article is a review and does not contain any studies with human or animal subjects performed by any of the authors.

RIGHTS & PERMISSIONS

The Author(s) 2021. Published by Higher Education Press. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0)
AI Summary AI Mindmap
PDF(1575 KB)

Accesses

Citations

Detail

Sections
Recommended

/