APPLE SUMO E3 LIGASE MDSIZ1 NEGATIVELY REGULATES DROUGHT TOLERANCE

Baohua CHU, Jia SUN, Huan DANG, Ziqing MA, Shuang ZHAO, Qingmei GUAN, Xuewei LI

PDF(3659 KB)
PDF(3659 KB)
Front. Agr. Sci. Eng. ›› 2021, Vol. 8 ›› Issue (2) : 247-261. DOI: 10.15302/J-FASE-2021388
RESEARCH ARTICLE
RESEARCH ARTICLE

APPLE SUMO E3 LIGASE MDSIZ1 NEGATIVELY REGULATES DROUGHT TOLERANCE

Author information +
History +

Highlights

MdSIZ1 RNAi transgenic apple trees are drought tolerance than wild type—GL-3.

MdSIZ1 RNAi plants get enhanced ability to keep water and scavenge ROS under drought conditions.

•MdSIZ1 may participate in apple drought tolerance by affecting ABA biosynthesis.

Abstract

Drought stress typically causes heavy losses in apple production and uncovering the mechanisms by which apple tolerates drought stress is important in apple breeding. MdSIZ1 is a SUMO (small ubiquitin-like modifier) E3 ligase that promotes SUMO binding to substrate proteins. Here, we demonstrate that MdSIZ1 in apple has a negative relationship with drought tolerance. MdSIZ1 RNAi transgenic apple trees had a higher survival rate after drought stress. During drought stress they had higher leaf water potential, reduced ion leakage, lower H2O2 and malondialdehyde contents, and higher catalase activity. In addition, MdSIZ1 RNAi transgenic plants had a higher net photosynthetic rate during the latter period of drought stress. Finally, the transgenic apple trees also altered expression levels of some microRNAs in response to drought stress. Taken together, these results indicate that apple MdSIZ1 negatively regulates drought stress by enhancing leaf water-holding capacity and antioxidant enzyme activity.

Graphical abstract

Keywords

apple / drought tolerance / gene expression / MdSIZ1

Cite this article

Download citation ▾
Baohua CHU, Jia SUN, Huan DANG, Ziqing MA, Shuang ZHAO, Qingmei GUAN, Xuewei LI. APPLE SUMO E3 LIGASE MDSIZ1 NEGATIVELY REGULATES DROUGHT TOLERANCE. Front. Agr. Sci. Eng., 2021, 8(2): 247‒261 https://doi.org/10.15302/J-FASE-2021388

References

[1]
Bertolino L T, Caine R S, Gray J E. Impact of stomatal density and morphology on Water-Use Efficiency in a changing world. Frontiers in Plant Science, 2019, 10: 225
CrossRef Pubmed Google scholar
[2]
Allen C D, Macalady A K, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears D D, Hogg E H, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim J H, Allard G, Running S W, Semerci A, Cobb N. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 2010, 259(4): 660–684
CrossRef Google scholar
[3]
Geng D, Chen P, Shen X, Zhang Y, Li X, Jiang L, Xie Y, Niu C, Zhang J, Huang X, Ma F, Guan Q. MdMYB88 and MdMYB124 enhance drought tolerance by modulating root vessels and cell walls in apple. Plant Physiology, 2018, 178(3): 1296–1309
CrossRef Pubmed Google scholar
[4]
Sun X, Wang P, Jia X, Huo L, Che R, Ma F. Improvement of drought tolerance by overexpressing MdATG18a is mediated by modified antioxidant system and activated autophagy in transgenic apple. Plant Biotechnology Journal, 2018, 16(2): 545–557
CrossRef Pubmed Google scholar
[5]
Li Y, Tan Y, Shao Y, Li M, Ma F. Comprehensive genomic analysis and expression profiling of diacylglycerol kinase gene family in Malus prunifolia (Willd.) Borkh. Gene, 2015, 561(2): 225–234
CrossRef Pubmed Google scholar
[6]
Li X, Chen P, Xie Y, Yan Y, Wang L, Dang H, Zhang J, Xu L, Ma F, Guan Q. Apple SERRATE negatively mediates drought resistance by regulating MdMYB88 and MdMYB124 and microRNA biogenesis. Horticulture Research, 2020, 7: 98
CrossRef Pubmed Google scholar
[7]
Lim C W, Baek W, Jung J, Kim J H, Lee S C. Function of ABA in stomatal defense against biotic and drought stresses. International Journal of Molecular Sciences, 2015, 16(7): 15251–15270
CrossRef Pubmed Google scholar
[8]
Acharya B R, Assmann S M. Hormone interactions in stomatal function. Plant Molecular Biology, 2009, 69(4): 451–462
CrossRef Pubmed Google scholar
[9]
Miura K, Okamoto H, Okuma E, Shiba H, Kamada H, Hasegawa P M, Murata Y. SIZ1 deficiency causes reduced stomatal aperture and enhanced drought tolerance via controlling salicylic acid-induced accumulation of reactive oxygen species in Arabidopsis. Plant Journal, 2013, 73(1): 91–104
CrossRef Pubmed Google scholar
[10]
Geng D, Shen X, Xie Y, Yang Y, Bian R, Gao Y, Li P, Sun L, Feng H, Ma F, Guan Q. Regulation of phenylpropanoid biosynthesis by MdMYB88 and MdMYB124 contributes to pathogen and drought resistance in apple. Horticulture Research, 2020, 7(1): 102
CrossRef Pubmed Google scholar
[11]
Fischer J J, Beatty P H, Good A G, Muench D G. Manipulation of microRNA expression to improve nitrogen use efficiency. Plant Science, 2013, 210: 70–81
CrossRef Pubmed Google scholar
[12]
Castro P H, Tavares R M, Bejarano E R, Azevedo H. SUMO, a heavyweight player in plant abiotic stress responses. Cellular and Molecular Life Sciences, 2012, 69(19): 3269–3283
CrossRef Pubmed Google scholar
[13]
Gong L, Ji W K, Hu X H, Hu W F, Tang X C, Huang Z X, Li L, Liu M, Xiang S H, Wu E, Woodward Z, Liu Y Z, Nguyen Q D, Li D W. Sumoylation differentially regulates Sp1 to control cell differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(15): 5574–5579
CrossRef Pubmed Google scholar
[14]
Gill G. SUMO and ubiquitin in the nucleus: different functions, similar mechanisms? Genes & Development, 2004, 18(17): 2046–2059
CrossRef Pubmed Google scholar
[15]
Wang Y, Ladunga I, Miller A R, Horken K M, Plucinak T, Weeks D P, Bailey C P. The small ubiquitin-like modifier (SUMO) and SUMO-conjugating system of Chlamydomonas reinhardtii. Genetics, 2008, 179(1): 177–192
CrossRef Pubmed Google scholar
[16]
Liu Y, Liu D, Shen C, Dong S, Hu X, Lin M, Zhang X, Xu C, Zhong J, Xie Y, Zhang C, Wang D, Liu X. Construction and characterization of a class-specific single-chain variable fragment against pyrethroid metabolites. Applied Microbiology and Biotechnology, 2020, 104(17): 7345–7354
CrossRef Pubmed Google scholar
[17]
Zhou L J, Zhang C L, Zhang R F, Wang G L, Li Y Y, Hao Y J. The SUMO E3 ligase MdSIZ1 targets MdbHLH104 to regulate plasma membrane H+-ATPase activity and iron homeostasis. Plant Physiology, 2019, 179(1): 88–106
CrossRef Pubmed Google scholar
[18]
Lin X L, Niu D, Hu Z L, Kim D H, Jin Y H, Cai B, Liu P, Miura K, Yun D J, Kim W Y, Lin R, Jin J B. An Arabidopsis SUMO E3 ligase, SIZ1, negatively regulates photomorphogenesis by promoting COP1 activity. PLOS Genetics, 2016, 12(4): e1006016
CrossRef Pubmed Google scholar
[19]
Niu D, Lin X L, Kong X, Qu G P, Cai B, Lee J, Jin J B. SIZ1-Mediated SUMOylation of TPR1 suppresses plant immunity in Arabidopsis. Molecular Plant, 2019, 12(2): 215–228
CrossRef Pubmed Google scholar
[20]
Liu Y, Lai J, Yu M, Wang F, Zhang J, Jiang J, Hu H, Wu Q, Lu G, Xu P, Yang C. The Arabidopsis SUMO E3 ligase AtMMS21 dissociates the E2Fa/DPa complex in cell cycle regulation. Plant Cell, 2016, 28(9): 2225–2237
CrossRef Pubmed Google scholar
[21]
Ishida T, Yoshimura M, Miura K, Sugimoto K. MMS21/HPY2 and SIZ1, two Arabidopsis SUMO E3 ligases, have distinct functions in development. PLoS One, 2012, 7(10): e46897
CrossRef Pubmed Google scholar
[22]
Cheong M S, Park H C, Hong M J, Lee J, Choi W, Jin J B, Bohnert H J, Lee S Y, Bressan R A, Yun D J. Specific domain structures control abscisic acid-, salicylic acid-, and stress-mediated SIZ1 phenotypes. Plant Physiology, 2009, 151(4): 1930–1942
CrossRef Pubmed Google scholar
[23]
Hammoudi V, Fokkens L, Beerens B, Vlachakis G, Chatterjee S, Arroyo-Mateos M, Wackers P F K, Jonker M J, van den Burg H A. The Arabidopsis SUMO E3 ligase SIZ1 mediates the temperature dependent trade-off between plant immunity and growth. PLOS Genetics, 2018, 14(1): e1007157
CrossRef Pubmed Google scholar
[24]
Rytz T C, Miller M J, McLoughlin F, Augustine R C, Marshall R S, Juan Y T, Charng Y Y, Scalf M, Smith L M, Vierstra R D. SUMOylome profiling reveals a diverse array of nuclear targets modified by the SUMO ligase SIZ1 during heat stress. Plant Cell, 2018, 30(5): 1077–1099
CrossRef Pubmed Google scholar
[25]
Wang H, Sun R, Cao Y, Pei W, Sun Y, Zhou H, Wu X, Zhang F, Luo L, Shen Q, Xu G, Sun S. OsSIZ1, a SUMO E3 ligase gene, is involved in the regulation of the responses to phosphate and nitrogen in rice. Plant & Cell Physiology, 2015, 56(12): 2381–2395
CrossRef Pubmed Google scholar
[26]
Chen C C, Chen Y Y, Tang I C, Liang H M, Lai C C, Chiou J M, Yeh K C. Arabidopsis SUMO E3 ligase SIZ1 is involved in excess copper tolerance. Plant Physiology, 2011, 156(4): 2225–2234
CrossRef Pubmed Google scholar
[27]
Catala R, Ouyang J, Abreu I A, Hu Y, Seo H, Zhang X, Chua N H. The Arabidopsis E3 SUMO ligase SIZ1 regulates plant growth and drought responses. Plant Cell, 2007, 19(9): 2952–2966
CrossRef Pubmed Google scholar
[28]
Kim J Y, Song J T, Seo H S. Post-translational modifications of Arabidopsis E3 SUMO ligase AtSIZ1 are controlled by environmental conditions. FEBS Open Bio, 2017, 7(10): 1622–1634
CrossRef Pubmed Google scholar
[29]
Miura K, Lee J, Jin J B, Yoo C Y, Miura T, Hasegawa P M. Sumoylation of ABI5 by the Arabidopsis SUMO E3 ligase SIZ1 negatively regulates abscisic acid signaling. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(13): 5418–5423
CrossRef Pubmed Google scholar
[30]
Jin J B, Jin Y H, Lee J, Miura K, Yoo C Y, Kim W Y, Van Oosten M, Hyun Y, Somers D E, Lee I, Yun D J, Bressan R A, Hasegawa P M. The SUMO E3 ligase, AtSIZ1, regulates flowering by controlling a salicylic acid-mediated floral promotion pathway and through affects on FLC chromatin structure. Plant Journal, 2008, 53(3): 530–540
CrossRef Pubmed Google scholar
[31]
Lee J, Nam J, Park H C, Na G, Miura K, Jin J B, Yoo C Y, Baek D, Kim D H, Jeong J C, Kim D, Lee S Y, Salt D E, Mengiste T, Gong Q, Ma S, Bohnert H J, Kwak S S, Bressan R A, Hasegawa P M, Yun D J. Salicylic acid-mediated innate immunity in Arabidopsis is regulated by SIZ1 SUMO E3 ligase. Plant Journal, 2007, 49(1): 79–90
CrossRef Pubmed Google scholar
[32]
Zhang S, Zhuang K, Wang S, Lv J, Ma N, Meng Q. A novel tomato SUMO E3 ligase, SlSIZ1, confers drought tolerance in transgenic tobacco. Journal of Integrative Plant Biology, 2017, 59(2): 102–117
CrossRef Pubmed Google scholar
[33]
Esmaeili N, Yang X, Cai Y, Sun L, Zhu X, Shen G, Payton P, Fang W, Zhang H. Co-overexpression of AVP1 and OsSIZ1 in Arabidopsis substantially enhances plant tolerance to drought, salt, and heat stresses. Scientific Reports, 2019, 9(1): 7642
CrossRef Pubmed Google scholar
[34]
Mishra N, Sun L, Zhu X, Smith J, Prakash Srivastava A, Yang X, Pehlivan N, Esmaeili N, Luo H, Shen G, Jones D, Auld D, Burke J, Payton P, Zhang H. Overexpression of the Rice SUMO E3 ligase gene OsSIZ1 in cotton enhances drought and heat tolerance, and substantially improves fiber yields in the field under reduced irrigation and rainfed conditions. Plant & Cell Physiology, 2017, 58(4): 735–746
CrossRef Pubmed Google scholar
[35]
Zhang R F, Guo Y, Li Y Y, Zhou L J, Hao Y J, You C X. Functional identification of MdSIZ1 as a SUMO E3 ligase in apple. Journal of Plant Physiology, 2016, 198: 69–80
CrossRef Pubmed Google scholar
[36]
Xie Y, Chen P, Yan Y, Bao C, Li X, Wang L, Shen X, Li H, Liu X, Niu C, Zhu C, Fang N, Shao Y, Zhao T, Yu J, Zhu J, Xu L, van Nocker S, Ma F, Guan Q. An atypical R2R3 MYB transcription factor increases cold hardiness by CBF-dependent and CBF-independent pathways in apple. New Phytologist, 2018, 218(1): 201–218
CrossRef Pubmed Google scholar
[37]
Thordal-Christensen H, Zhang Z G, Wei Y D, Collinge D B. Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley—powdery mildew interaction. Plant Journal, 1997, 11(6): 1187–1194
CrossRef Google scholar
[38]
Wang S, Liang D, Li C, Hao Y, Ma F, Shu H. Influence of drought stress on the cellular ultrastructure and antioxidant system in leaves of drought-tolerant and drought-sensitive apple rootstocks. Plant Physiology and Biochemistry, 2012, 51: 81–89
CrossRef Pubmed Google scholar
[39]
Xie Y, Bao C, Chen P, Cao F, Liu X, Geng D, Li Z, Li X, Hou N, Zhi F, Niu C, Zhou S, Zhan X, Ma F, Guan Q. Abscisic acid homeostasis is mediated by feedback regulation of MdMYB88 and MdMYB124. Journal of Experimental Botany, 2021, 72(2): 592–607
CrossRef Pubmed Google scholar
[40]
Sakuma Y, Maruyama K, Osakabe Y, Qin F, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Cell, 2006, 18(5): 1292–1309
CrossRef Pubmed Google scholar
[41]
Dubouzet J G, Sakuma Y, Ito Y, Kasuga M, Dubouzet E G, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant Journal, 2003, 33(4): 751–763
CrossRef Pubmed Google scholar
[42]
Chini A, Grant J J, Seki M, Shinozaki K, Loake G J. Drought tolerance established by enhanced expression of the CC-NBS-LRR gene, ADR1, requires salicylic acid, EDS1 and ABI1. Plant Journal, 2004, 38(5): 810–822
CrossRef Pubmed Google scholar
[43]
Li X, Wang X, Yang Y, Li R, He Q, Fang X, Luu D T, Maurel C, Lin J. Single-molecule analysis of PIP2;1 dynamics and partitioning reveals multiple modes of Arabidopsis plasma membrane aquaporin regulation. Plant Cell, 2011, 23(10): 3780–3797
CrossRef Pubmed Google scholar
[44]
Li W, Cui X, Meng Z, Huang X, Xie Q, Wu H, Jin H, Zhang D, Liang W. Transcriptional regulation of Arabidopsis MIR168a and argonaute1 homeostasis in abscisic acid and abiotic stress responses. Plant Physiology, 2012, 158(3): 1279–1292
CrossRef Pubmed Google scholar
[45]
Li W, Wang T, Zhang Y, Li Y. Overexpression of soybean miR172c confers tolerance to water deficit and salt stress, but increases ABA sensitivity in transgenic Arabidopsis thaliana. Journal of Experimental Botany, 2017, 68(16): 4727–4729
Pubmed
[46]
Xia K, Wang R, Ou X, Fang Z, Tian C, Duan J, Wang Y, Zhang M. OsTIR1 and OsAFB2 downregulation via OsmiR393 overexpression leads to more tillers, early flowering and less tolerance to salt and drought in rice. PLoS One, 2012, 7(1): e30039
CrossRef Pubmed Google scholar
[47]
Ma C, Burd S, Lers A. miR408 is involved in abiotic stress responses in Arabidopsis. Plant Journal, 2015, 84(1): 169–187
CrossRef Pubmed Google scholar
[48]
Augustine R C, Vierstra R D. SUMOylation: re-wiring the plant nucleus during stress and development. Current Opinion in Plant Biology, 2018, 15(Part A): 143–154
CrossRef Pubmed Google scholar
[49]
Srivastava A K, Zhang C, Yates G, Bailey M, Brown A, Sadanandom A. SUMO is a critical regulator of salt stress responses in rice. Plant Physiology, 2016, 170(4): 2378–2391
CrossRef Pubmed Google scholar
[50]
Miller M J, Barrett-Wilt G A, Hua Z, Vierstra R D. Proteomic analyses identify a diverse array of nuclear processes affected by small ubiquitin-like modifier conjugation in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(38): 16512–16517
CrossRef Pubmed Google scholar
[51]
Tempé D, Piechaczyk M, Bossis G. SUMO under stress. Biochemical Society Transactions, 2008, 36(Pt 5): 874–878
CrossRef Pubmed Google scholar
[52]
Zhang S, Qi Y, Liu M, Yang C. SUMO E3 ligase AtMMS21 regulates drought tolerance in Arabidopsisthaliana. Journal of Integrative Plant Biology, 2013, 55(1): 83–95
CrossRef Pubmed Google scholar
[53]
Zhang R F, Zhou L J, Li Y Y, You C X, Sha G L, Hao Y J. Apple SUMO E3 ligase MdSIZ1 is involved in the response to phosphate deficiency. Journal of Plant Physiology, 2019, 232: 216–225
CrossRef Pubmed Google scholar
[54]
Zhou L J, Li Y Y, Zhang R F, Zhang C L, Xie X B, Zhao C, Hao Y J. The small ubiquitin-like modifier E3 ligase MdSIZ1 promotes anthocyanin accumulation by sumoylating MdMYB1 under low-temperature conditions in apple. Plant, Cell & Environment, 2017, 40(10): 2068–2080
CrossRef Pubmed Google scholar
[55]
Miura K, Renhu N, Suzaki T. The PHD finger of Arabidopsis SIZ1 recognizes trimethylated histone H3K4 mediating SIZ1 function and abiotic stress response. Communications Biology, 2020, 3(1): 23
CrossRef Pubmed Google scholar
[56]
Yin L H, Zou Y J, Li M J, Ke X W, Li C Y, Liang D, Ma F W. Resistance of Malus plants to diplocarpon mali infection is associated with the antioxidant system and defense signaling pathways. Physiological and Molecular Plant Pathology, 2013, 84: 146–152
CrossRef Google scholar
[57]
Dong Q L, Liu D D, An X H, Hu D G, Yao Y X, Hao Y J. MdVHP1 encodes an apple vacuolar H+-PPase and enhances stress tolerance in transgenic apple callus and tomato. Journal of Plant Physiology, 2011, 168(17): 2124–2133
CrossRef Pubmed Google scholar
[58]
Zhou S, Li M, Guan Q, Liu F, Zhang S, Chen W, Yin L, Qin Y, Ma F. Physiological and proteome analysis suggest critical roles for the photosynthetic system for high water-use efficiency under drought stress in Malus. Plant Science, 2015, 236: 44–60
CrossRef Pubmed Google scholar
[59]
Kasukabe Y, He L, Nada K, Misawa S, Ihara I, Tachibana S. Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress-regulated genes in transgenic Arabidopsis thaliana. Plant & Cell Physiology, 2004, 45(6): 712–722
CrossRef Pubmed Google scholar
[60]
Kim D S, Kim J B, Goh E J, Kim W J, Kim S H, Seo Y W, Jang C S, Kang S Y. Antioxidant response of Arabidopsis plants to gamma irradiation: genome-wide expression profiling of the ROS scavenging and signal transduction pathways. Journal of Plant Physiology, 2011, 168(16): 1960–1971
CrossRef Pubmed Google scholar
[61]
Rahikainen M, Pascual J, Alegre S, Durian G, Kangasjärvi S. PP2A Phosphatase as a regulator of ROS signaling in Plants. Antioxidants, 2016, 5(1): 8
CrossRef Pubmed Google scholar
[62]
Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell, 1998, 10(8): 1391–1406
CrossRef Pubmed Google scholar
[63]
Brugière N, Zhang W, Xu Q, Scolaro E J, Lu C, Kahsay R Y, Kise R, Trecker L, Williams R W, Hakimi S, Niu X, Lafitte R, Habben J E. Overexpression of RING domain E3 ligase ZmXerico1 confers drought tolerance through regulation of ABA homeostasis. Plant Physiology, 2017, 175(3): 1350–1369
CrossRef Pubmed Google scholar
[64]
Grigg S P, Canales C, Hay A, Tsiantis M. SERRATE coordinates shoot meristem function and leaf axial patterning in Arabidopsis. Nature, 2005, 437(7061): 1022–1026
CrossRef Pubmed Google scholar

Acknowledgements

We thank Dr. Zhihong Zhang of Shenyang Agricultural University for providing tissue-cultured GL-3 plants. This work was funded by the National Natural Science Foundation of China (31872080) and the Start-up Funds of Northwest A&F university to Xuewei Li (2452020216).

Compliance with ethics guidelines

Baohua Chu, Jia Sun, Huan Dang, Ziqing Ma, Shuang Zhao, Qingmei Guan, and Xuewei Li declare that they have no conflicts of interest or financial conflicts to disclose. This article does not contain any studies with human or animal subjects performed by any of the authors.

RIGHTS & PERMISSIONS

The Author(s) 2021. Published by Higher Education Press. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0)
AI Summary AI Mindmap
PDF(3659 KB)

Accesses

Citations

Detail

Sections
Recommended

/