LAND-USE INTENSIFICATION TRENDS IN THE RIO DE LA PLATA REGION OF SOUTH AMERICA: TOWARD SPECIALIZATION OR RECOUPLING CROP AND LIVESTOCK PRODUCTION
Paulo César DE FACCIO CARVALHO, Jean Víctor SAVIAN, Tomas DELLA CHIESA, William DE SOUZA FILHO, José Alfredo TERRA, Priscila PINTO, Amanda POSSELT MARTINS, Sebastian VILLARINO, Júlio Kuhn DA TRINDADE, Pedro Arthur DE ALBUQUERQUE NUNES, Gervasio PIÑEIRO
LAND-USE INTENSIFICATION TRENDS IN THE RIO DE LA PLATA REGION OF SOUTH AMERICA: TOWARD SPECIALIZATION OR RECOUPLING CROP AND LIVESTOCK PRODUCTION
• Current intensification trends in the Rio de la Plata need urgent re-direction.
•Integrated crop-livestock systems reconcile food production with ecosystem services.
•Case studies validate recoupling as a sustainable way to ecological intensification.
The Rio de la Plata region comprises central Argentina, Uruguay, and southern Brazil. Modern agriculture developed around 1900 with recent decades being characterized by the advance of cropping areas over native grasslands. Highly specialized agriculture has decoupled crop and livestock production but has succeeded in intensifying yields. However, significant losses of ecosystem services have been reported. Thus, questions have been raised on the sustainability of this pathway. A glance at world regions that have experienced similar trends suggests that an urgent course correction is needed. A major concern has been the lack of diversity in regions with highly specialized agriculture, promoting renewed interest in integrated crop-livestock systems (ICLS), not only because ICLS are more diverse than specialized systems, but also because they are rare examples of reconciliation between agroecosystem intensification and environmental quality. Consequently, this paper discusses alternatives to redesign multifunctional landscapes based on ICLS. Recent data provide evidence that recoupling crop and animal production increases the resilience of nutrient cycling functions and economic indicators to external stressors, enabling these systems to face climate-market uncertainty and reconcile food production with the provision of diverse ecosystem services. Finally, these concepts are exemplified in case studies where this perspective has been successfully applied.
grazing / integrated crop-livestock systems / mixed crops-livestock / Pampa
[1] |
Baeza S, Paruelo J M. Land use/land cover change (2000–2014) in the Rio de la Plata grasslands: an analysis based on MODIS NDVI time series. Remote Sensing, 2020, 12(3): 381
CrossRef
Google scholar
|
[2] |
Nabinger C, Ferreira E T, Freitas A K, Carvalho P C F. Sant’Anna, Menezes D. Produção animal com base no campo nativo: aplicação de resultados de pesquisa. In: Pillar, V P, Ed. Campos Sulinos–conservação e uso sustentável da biodiversidade. Brasil: Ministério do Meio Ambiente,175–198(in Portuguese)
|
[3] |
Mastrangelo M E, Weyland F, Herrera L P, Villarino S H, Barral M P, Auer A D. Ecosystem services research in contrasting socio-ecological contexts of Argentina: critical assessment and future directions. Ecosystem Services, 2015, 16: 63–73
CrossRef
Google scholar
|
[4] |
Modernel P, Rossing W A H, Corbeels M, Dogliotti S, Picasso V, Tittonell P. Land use change and ecosystem service provision in Pampas and Campos grasslands of southern South America. Environmental Research Letters, 2016, 11(11): 113002
CrossRef
Google scholar
|
[5] |
Hall A J, Rebella C M, Ghersa C M, Culot J P. Field-crop systems of the Pampas. Ecosystems of the World, 1992, 18: 413–450
|
[6] |
Soriano A, León R J C, Sala O E, Lavado R S, Deregibus V A, Cauhepe M A, Lemcoff J H. Río de la Plata Grasslands. In: Ecosystems of the world. Natural grasslands. Introduction and Western Hemisphere, eds. RT Coupland, 1991, 367–407
|
[7] |
Villarino S H, Studdert G A, Laterra P, Cendoya M G. Agricultural impact on soil organic carbon content: Testing the IPCC carbon accounting method for evaluations at county scale. Agriculture, Ecosystems & Environment, 2014, 185: 118–132
CrossRef
Google scholar
|
[8] |
Manuel-Navarrete D, Gallopín G C, Blanco M, Díaz-Zorita M, Ferraro D O, Herzer H, Laterra P, Murmis M R, Podestá G P, Rabinovich J, Satorre E H, Torres F, Viglizzo E F. Multi-causal and integrated assessment of sustainability: the case of agriculturalization in the Argentine Pampas. Environment, Development and Sustainability, 2009, 11(3): 621–638
CrossRef
Google scholar
|
[9] |
Dirección de Estadísticas A; DIEA. Anuario Estadístico Agropecuario. Oficina de Estadísticas Agropecuarias, Ministerio de Ganadería, Agricultura y Pesca, Uruguay, 2020 Available at the DIEA website on November 1, 2020 (in Spanish)
|
[10] |
Molfino J H. Potencial Agrícola, algunos cálculos para agricultura en secano. Cangue, 2013, 33: 14–18 (in Spanish)
|
[11] |
Arbeletche P, Ernst O, Hoffman E. La Agricultura en Uruguay y su Evolución. In: II Simposio Nacional de Agricultura. UdelaR. Facultad de Agronomía, 2011, 149–163 (in Spanish)
|
[12] |
Morón A, Quincke A, Molfino J, Ibañez W, García-Lamothe A. Soil quality assessment of Uruguayan agricultural soils. Agrociencia Uruguay, 2012, 16: 135–143
|
[13] |
García-Préchac F, Ernst O, Siri-Prieto G, Salvo L, Quincke A, Terra J A. Long-term effect of different agricultural soil use and management systems on the organic carbon content of Uruguay Prairie soils. Rome, Italy: Proceedings of the Global Symposium on Soil Organic Carbon, 2017, 449–452
|
[14] |
Ernst O R, Dogliotti S, Cadenazzi M, Kemanian A R. Shifting crop-pasture rotations to no-till annual cropping reduces soil quality and wheat yield. Field Crops Research, 2018, 217: 180–187
CrossRef
Google scholar
|
[15] |
Beretta-Blanco A, Pérez O, Carrasco-Letelier L. Soil quality decrease over 13 years of agricultural production. Nutrient Cycling in Agroecosystems, 2019, 114(1): 45–55
CrossRef
Google scholar
|
[16] |
Pérez-Bidegain M, Hill M, Clérici C, Terra J, Sawchik J, García-Préchac F. Regulatory utilization of USLE/RUSLE erosion estimates in Uruguay: a policy coincident with the UN Sustainable Development Goals. In: Lal R, eds. Catena-Schweizerbart, Stuttgart: Soil and Sustainable Development Goals, 2018, 82–91
|
[17] |
Instituto Brasileiro de Geografia e Estatística (IBGE). Ecosystem Accounting: Land Use in Brazilian Biomes (2000–2018). Available at the IBGE website on November 1, 2020(in Portuguese)
|
[18] |
Gras C. Changing patterns in family farming: the case of the Pampa region, Argentina. Journal of Agrarian Change, 2009, 9(3): 345–364
CrossRef
Google scholar
|
[19] |
Fonseca C R, Guadagnin D L, Emer C, Masciadri S, Germain P, Zalba S M. Invasive alien plants in the Pampas grasslands: a tri-national cooperation challenge. Biological Invasions, 2013, 15(8): 1751–1763
CrossRef
Google scholar
|
[20] |
Overbeck G E, Müller S C, Fidelis A, Pfadenhauer J, Pillar V D, Blanco C C, Boldrini I I, Both R, Forneck E D. Brazil’s neglected biome: the South Brazilian Campos. Perspectives in Plant Ecology, Evolution and Systematics, 2007, 9(2): 101–116
CrossRef
Google scholar
|
[21] |
Gautreau P. Forestación, territorio y ambiente. 25 años de silvicultura transnacional en Uruguay, Brasil y Argentina. Montevideo, Uruguay: TRILCE, 2014
|
[22] |
de Oliveira T E, Freitas D S, Gianezini M, Ruviaro C F, Zago D, Mércio T Z, Dias E A, Lampert V N, Barcellos J O J. Agricultural land use change in the Brazilian Pampa Biome: The reduction of natural grasslands. Land Use Policy, 2017, 63: 394–400
CrossRef
Google scholar
|
[23] |
Monitoramento do desmatamento nos biomas brasileiros por Satélite (MMA-IBAMA). Acordo de cooperação técnica MMA/IBAMA. Monitoramento do bioma. Pampa, 2010, 2002–2008(in Portuguese)
|
[24] |
Companhia Nacional de Abastecimento (CONAB). Acompanhamento da safra brasileira de grãos: Séries históricas. 2020. Available at the IBGE website on November 1, 2020 (in Portuguese)
|
[25] |
Empresa Brasileira de Pesquisa Agropecuária (Embrapa). Integração Lavoura-Pecuária-Floresta em números. 2016. Available at the Embrap website on November 1, 2020 (in Portuguese)
|
[26] |
Ortega L E, Azcuy Ameghino A. Expansión de la frontera agropecuaria, restructuración ganadera y sojización en regiones extrapampeanas. XV Jornadas de Epistemología de las Ciencias Económicas. Facultad de Ciencias Económicas. Universidad de Buenos Aires, 2009(in Portuguese)
|
[27] |
Pinto P, Long M E F, Piñeiro G. Including cover crops during fallow periods for increasing ecosystem services: is it possible in croplands of Southern South America? Agriculture, Ecosystems & Environment, 2017, 248: 48–57
CrossRef
Google scholar
|
[28] |
Caviglia O P, Sadras V O, Andrade F H. Intensification of agriculture in the south-eastern Pampas: I. Capture and efficiency in the use of water and radiation in double-cropped wheat–soybean. Field Crops Research, 87(2–3): 117–129
|
[29] |
Garcia L, Celette F, Gary C, Ripoche A, Valdés-Gómez H, Metay A. Management of service crops for the provision of ecosystem services in vineyards: a review. Agriculture, Ecosystems & Environment, 2018, 251: 158–170
CrossRef
Google scholar
|
[30] |
Alvarez R, Steinbach H S, De Paepe J L. Cover crop effects on soils and subsequent crops in the pampas: a meta-analysis. Soil & Tillage Research, 2017, 170: 53–65
CrossRef
Google scholar
|
[31] |
Gaba S, Lescourret F, Boudsocq S, Enjalbert J, Hinsinger P, Journet E P, Navas M L, Wery J, Louarn G, Malézieux E, Pelzer E, Prudent M, Ozier-Lafontaine H. Multiple cropping systems as drivers for providing multiple ecosystem services: from concepts to design. Agronomy for Sustainable Development, 2015, 35(2): 607–623
CrossRef
Google scholar
|
[32] |
Plaza-Bonilla D, Nolot J M, Passot S, Raffaillac D, Justes E. Grain legume-based rotations managed under conventional tillage need cover crops to mitigate soil organic matter losses. Soil & Tillage Research, 2016, 156: 33–43
CrossRef
Google scholar
|
[33] |
Schipanski M E, Barbercheck M, Douglas M R, Finney D M, Haider K, Kaye J P, Kemanian A R, Mortensen D A, Ryan M R, Tooker J, White C. A framework for evaluating ecosystem services provided by cover crops in agroecosystems. Agricultural Systems, 2014, 125: 12–22
CrossRef
Google scholar
|
[34] |
Lemaire G, Franzluebbers A, Carvalho P C F, Dedieu B. Integrated crop-livestock systems: strategies to achieve synergy between agricultural production and environmental quality. Agriculture, Ecosystems & Environment, 2014, 190: 4–8
CrossRef
Google scholar
|
[35] |
Ryschawy J, Martin G, Moraine M, Duru M, Therond O. Designing crop–livestock integration at different levels: toward new agroecological models? Nutrient Cycling in Agroecosystems, 2017, 108(1): 5–20
CrossRef
Google scholar
|
[36] |
de Moraes A, Carvalho P C F, Anghinoni I, Lustosa S B C, Costa S E V G A, Kunrath T R. Integrated crop-livestock systems in the Brazilian subtropics. European Journal of Agronomy, 2014, 57: 4–9
CrossRef
Google scholar
|
[37] |
da Silva J L S, Towsend C. ILPF: Inovação com integração de lavoura, pecuária e floresta. In: Bungenstab D J, Almeida R G de, Laura V A, Balbino L C, Ferreira A D, eds. Integração lavoura-pecuária em solos hidromórficos no bioma Pampa. Embrapa, Brasília: DF, 2019, 723–730 (in Portuguese)
|
[38] |
Gordon I J, Prins H H T, Squire G R. Food production and nature conservation: conflicts and solutions. Taylor & Francis, 2016
|
[39] |
García-Préchac F, Ernst O, Siri-Prieto G, Terra J A. Integrating no-till into crop-pasture rotations in Uruguay. Soil & Tillage Research, 2004, 77(1): 1–13
CrossRef
Google scholar
|
[40] |
Rovira P, Ayala W, Terra J A, García-Préchac F, Harris P, Lee M R F, Rivero M J. The ‘Palo a Pique’ long-term research platform: first 25 years of a crop–livestock experiment in Uruguay. Agronomy, 2020, 10(441): 1–15
CrossRef
Google scholar
|
[41] |
Pacín F, Oesterheld M. In-farm diversity stabilizes return on capital in Argentine agro-ecosystems. Agricultural Systems, 2014, 124: 51–59
CrossRef
Google scholar
|
[42] |
Szymczak L S, Carvalho P C F, Lurette A, de Moraes A, Nunes P A A, Martins A P, Moulin C H. System diversification and grazing management as resilience-enhancing agricultural practices: the case of crop-livestock integration. Agricultural Systems, 2020, 184: 102904
CrossRef
Google scholar
|
[43] |
Salvo L, Hernández J, Ernst O. Distribution of soil organic carbon in different size fractions under pasture and crop rotations with conventional tillage and no-till systems. Soil & Tillage Research, 2010, 109(2): 116–122
CrossRef
Google scholar
|
[44] |
Grahmann K, Rubio V R, Terra J A, Quincke J A. Long-term observations in contrasting crop-pasture rotations over half a century: statistical analysis of chemical soil properties and implications for soil sampling frequency. Agriculture, Ecosystems & Environment, 2020, 287: 106710
CrossRef
Google scholar
|
[45] |
García-Préchac F, Salvo L, Ernst O, Siri-Prieto G, Quincke A, Terra J A. Long-term effects of different agricultural soil use and management systems on soil degradation in Uruguay. In: Liu L et al., eds. Degradation of soil and water resources. World Association of Soil and Water Conservation and Springer(in Press)
|
[46] |
Pittelkow C M, Zorrilla G, Terra J, Riccetto S, Macedo I, Bonilla C, Roel A. Sustainability of rice intensification in Uruguay from 1993 to 2013. Global Food Security, 2016, 9: 10–18
CrossRef
Google scholar
|
[47] |
Macedo I, Terra J A, Siri-Prieto G, Velazco J I, Carrasco-Letelier L. Rice-pasture agroecosystem intensification affects energy use efficiency. Journal of Cleaner Production, 2021, 278: 123771
CrossRef
Google scholar
|
[48] |
Denardin L G O, Martins A P, Bastos L M, Ciampitti I A, Anghinoni I, Moojen F G, Carvalho P C F, Huang M, Chabbi A. Soybean yield does not rely on mineral fertilizer in rotation with flooded rice under a no-till integrated crop-livestock system. Agronomy, 2020, 10(9): 1371
CrossRef
Google scholar
|
[49] |
Denardin L G O, Martins A P, Carmona F C, Veloso M G, Carmona G I, Carvalho P C F, Anghinoni I. Integrated crop-livestock systems in paddy fields: new strategies for flooded rice nutrition. Agronomy Journal, 2020, 112(3): 2219–2229
CrossRef
Google scholar
|
[50] |
Carvalho P C F, Peterson C A, Nunes P A A, Martins A P, de Souza Filho W, Bertolazi V T, Kunrath T R, de Moraes A, Anghinoni I. Animal production and soil characteristics from integrated crop-livestock systems: toward sustainable intensification. Journal of Animal Science, 2018, 96(8): 3513–3525
CrossRef
Pubmed
Google scholar
|
[51] |
de Souza Filho W, Nunes P A A, Barro R S, Kunrath T R, Almeida G M, Genro T C M, Bayer C, Carvalho P C F. Mitigation of enteric methane emissions through pasture management in integrated crop-livestock systems: trade-offs between animal performance and environmental impacts. Journal of Cleaner Production, 2019, 213: 968–975
CrossRef
Google scholar
|
[52] |
da Silva F D, Amado T J C, Ferreira A O, Assmann J M, Anghinoni I, Carvalho P C F. Soil carbon indices as affected by 10 years of integrated crop-livestock production with different pasture grazing intensities in Southern Brazil. Agriculture, Ecosystems & Environment, 2014, 190: 60–69
CrossRef
Google scholar
|
[53] |
Pontes L S, Barro R S, Savian J V, Berndt A, Moletta J L, Porfírio-Da-Silva V, Bayer C, Carvalho P C F. Performance and methane emissions by beef heifer grazing in temperate pastures and in integrated crop-livestock systems: the effect of shade and nitrogen fertilization. Agriculture, Ecosystems & Environment, 2018, 253: 90–97
CrossRef
Google scholar
|
[54] |
Dominschek R, Deiss L, Lang C R, Moraes A, Pelissari A. High sunflower densities as a weed control strategy in an integrated crop-livestock system. Planta Daninha, 2019, 37: e019177063
CrossRef
Google scholar
|
[55] |
Niles M T, Garrett R D, Walsh D. Ecological and economic benefits of integrating sheep into viticulture production. Agronomy for Sustainable Development, 2018, 38(1): 1–11
CrossRef
Google scholar
|
[56] |
Pravia M V, Kemanian A R, Terra J A, Shi Y N, Macedo I, Goslee S. Soil carbon saturation, productivity, and carbon and nitrogen cycling in crop-pasture rotations. Agricultural Systems, 2019, 171: 13–22
CrossRef
Google scholar
|
[57] |
Garrett R D, Niles M T, Gil J D B, Gaudin A C M, Chaplin-Kramer R, Assmann A, Assmann T S, Brewer K, Carvalho P C F, Cortner O, Dynes R, Garbach K, Kebreab E, Mueller N, Peterson C, Reis J C, Snow V, Valentim J. Social and ecological analysis of commercial integrated crop livestock systems: Current knowledge and remaining uncertainty. Agricultural Systems, 2017, 155: 136–146
CrossRef
Google scholar
|
[58] |
Lazzari H E. Perfil dos adotantes de Sistemas Integrados de Produção Agropecuária no Rio Grande do Sul. Dissertation for Master’s Degree. Porto Alegre: Federal University of Rio Grande do Sul, 2020 (in Portuguese)
|
[59] |
Garrett R D, Ryschawy J, Bell L W, Cortner O, Ferreira J, Garik A V N,Gil J D B, Klerkx L, Moraine M, Peterson C A, dos Rei s J C, Valentim J F. Drivers of decoupling and recoupling of crop and livestock systems at farm and territorial scales. Ecology and Society,2020, 25(1): 24
|
[60] |
Flores J P C, Anghinoni I, Cassol L C, Carvalho P C F, Leite J G D B, Fraga T I. Atributos físicos do solo e rendimento de soja em sistema plantio direto em integração lavoura-pecuária com diferentes pressões de pastejo. Revista Brasileira de Ciência do Solo. Viçosa, MG, 2007, 31(4): 771–780(in Portuguese)
|
[61] |
Conte O, Flores J P C, Cassol L C, Anghinoni I, Carvalho P C F, Levien R, Wesp C D L. Evolução de atributos físicos de solo em sistema de integração lavoura-pecuária.Pesquisa Agropecuária Brasileira, Brasília, DF, 2011, 46(10): 1301–1309(in Portuguese)
CrossRef
Google scholar
|
[62] |
Alves L A, Denardin L G O, Martins A P, Anghinoni I, Carvalho P C F, Tiecher T. Soil acidification and P, K, Ca and Mg budget as affected by sheep grazing and crop rotation in a long-term integrated crop-livestock system in southern Brazil. Geoderma, 2019, 351: 197–208
CrossRef
Google scholar
|
[63] |
Anghinoni I, Carvalho P D F, Costa S D A. Abordagem sistêmica do solo em Sistemas Integrados de Produção Agrícola e Pecuária no subtrópico brasileiro.Tópicos em Ciência do Solo, 2013, 8(2): 325–380 (in Portuguese)
|
[64] |
Franzluebbers A J, Stuedemann J A. Soil physical responses to cattle grazing cover crops under conventional and no tillage in the Southern Piedmont USA. Soil & Tillage Research, 2008, 100(1–2): 141–153
CrossRef
Google scholar
|
[65] |
Peterson C A, Deiss L, Gaudin A C M. Commercial integrated crop-livestock systems achieve comparable crop yields to specialized production systems: A meta-analysis. PLoS One, 2020, 15(5): e0231840
CrossRef
Pubmed
Google scholar
|
[66] |
Tracy B F, Zhang Y. Soil compaction, corn yield response, and soil nutrient pool dynamics within an integrated crop-livestock system in Illinois. Crop Science, 2008, 48(3): 1211–1218
CrossRef
Google scholar
|
[67] |
de Andrade Bonetti J, Anghinoni I, Gubiani P I, Cecagno D, de Moraes M T. Impact of a long-term crop-livestock system on the physical and hydraulic properties of an Oxisol. Soil & Tillage Research, 2019, 186: 280–291
CrossRef
Google scholar
|
[68] |
Peterson C A, Nunes P A A, Martins A P, Bergamaschi H, Anghinoni I, Carvalho P C F, Gaudin A C M. Winter grazing does not affect soybean yield despite lower soil water content in a subtropical crop-livestock system. Agronomy for Sustainable Development, 2019, 39(2): 26
CrossRef
Google scholar
|
[69] |
Kunrath T R, Carvalho P C F, Cadenazzi M, Bredemeier C, Anghinoni I. Grazing management in an integrated crop-livestock system: soybean development and grain yield. Revista Ciência Agronômica, 2015, 46(3): 645–653
CrossRef
Google scholar
|
[70] |
Schmidhuber J, Tubiello F N. Global food security under climate change. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(50): 19703–19708
CrossRef
Pubmed
Google scholar
|
[71] |
Bullock J M, Dhanjal-Adams K L, Milne A, Oliver T H, Todman L C, Whitmore A P, Pywell R F. Resilience and food security: rethinking an ecological concept. Journal of Ecology, 2017, 105(4): 880–884
CrossRef
Google scholar
|
[72] |
Thornton P K. Livestock production: recent trends, future prospects. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 2010, 365(1554): 2853–2867
CrossRef
Pubmed
Google scholar
|
[73] |
da Silva F D, Nunes P A A, Bredemeier C, Cadenazzi M, Amaral L P, Pfeifer F M, Anghinoni I, Carvalho P C F. Spatiotemporal Distribution of Cattle Dung Patches in a Subtropical Soybean-Beef System under Different Grazing Intensities in Winter. Agronomy, 2020, 10: 1423
CrossRef
Google scholar
|
[74] |
Nunes P A A, Bredemeier C, Bremm C, Caetano L A M, de Almeida G M, de Souza Filho W, Anghinoni I, Carvalho P C F. Grazing intensity determines pasture spatial heterogeneity and productivity in an integrated crop-livestock system. Grassland Science, 2019, 65(1): 49–59
CrossRef
Google scholar
|
[75] |
Pontes-Prates A, Carvalho P C F, Laca E A. Mechanisms of Grazing Management in Heterogeneous Swards. Sustainability, 2020, 12(12): 8676
CrossRef
Google scholar
|
[76] |
Farias G D, Dubeux J C B, Savian J V, Duarte L P, Martins A P, Tiecher T, Alves L A, Carvalho P C F, Bremm C. Integrated crop-livestock system with system fertilization approach improves food production and resource-use efficiency in agricultural lands. Agronomy for Sustainable Development, 2020, 40(6): 1–9
CrossRef
Google scholar
|
[77] |
Tilman D, Cassman K G, Matson P A, Naylor R, Polasky S. Agricultural sustainability and intensive production practices. Nature, 2002, 418(6898): 671–677
CrossRef
Pubmed
Google scholar
|
[78] |
Hooper D U, Chapin Iii F S, Ewel J J, Hector A, Inchausti P, Lavorel S, Schmid B. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecological Monographs, 2005, 75(1): 3–35
CrossRef
Google scholar
|
[79] |
Lal R. Managing soil quality for humanity and the planet. Frontiers of Agricultural Science and Engineering, 2020, 7(3): 251–253
CrossRef
Google scholar
|
[80] |
SOSBAI.Arroz irrigado: Recomendações técnicas da pesquisa para o Sul do Brasil. Farroupilha, Rio Grande do Sul, Brazil: SOSBAI, 2018(in Portuguese)
|
[81] |
Cassman K G, De Datta S K, Olk D C, Alcantara J M, Samson M I. Yield decline and the nitrogen economy of long- term experiments on continuous, irrigated rice systems in the trop- ics. In: Lal R, Stewart B A, eds. Soil management: Experimental basis for sustainability and environmental quality Boca Raton, FL: Lewis Publishers, 1995, 181–222
|
[82] |
Boeni M, Anghinoni I, Genro S AJunior, Osório Filho B D. Evolução da fertilidade dos solos cultivados com arroz irrigado no Rio Grande do Sul. Cachoeirinha, Rio Grande do Sul, Brazil: IRGA, 2010 (in Portuguese)
|
[83] |
Comissão de Química e Fertilidade do Solo- RS/SC (CQFS-RS/SC). Manual de adubação e calagem para os Estados do Rio Grande do Sul e Santa Catarina. Porto Alegre: Sociedade Brasileira de Ciência do Solo, 2016 (in Portuguese)
|
[84] |
Arnuti F, Denardin L G O, Nunes P A A, Alves L A, Cecagno D, de Assis J, Schaidhauer W S, Anghinoni I, Chabbi A, Carvalho P C F. Sheep dung composition and phosphorus and potassium release affected by grazing intensity and pasture development stage in an integrated crop-livestock system. Agronomy, 2020, 10(8): 1162
CrossRef
Google scholar
|
[85] |
Studdert G A, Echeverria H E. Crop rotations and nitrogen fertilization to manage soil organic carbon dynamics. Soil Science Society of America Journal, 2000, 64(4): 1496–1503
CrossRef
Google scholar
|
[86] |
Piñeiro G, Pinto P. Aspectos clave del manejo de Cultivos de Servicios. In: Sistemas productivos sostenibles, eds. E. Satorre. Buenos Aires: Ediciones CREA, 2020, 333
|
[87] |
Asociación Argentina de Productores en Siembra Directa (AAPRESID). Red de Cultivos de servicios Aapresid-Basf. Available at the AAPRESID website on November 1, 2020(in Spanish)
|
[88] |
Doré T, Makowski D, Malézieux E, Munier-Jolain N, Tchamitchian M, Tittonell P. Facing up to the paradigm of ecological intensification in agronomy: revisiting methods, concepts and knowledge. European Journal of Agronomy, 2011, 34(4): 197–210
CrossRef
Google scholar
|
[89] |
Giller K E, Andersson J A, Corbeels M, Kirkegaard J, Mortensen D, Erenstein O, Vanlauwe B. Beyond conservation agriculture. Frontiers in Plant Science, 2015, 6(37): 870
Pubmed
|
[90] |
Lipper L, Thornton P, Campbell B M, Baedeker T, Braimoh A, Bwalya M, Hottle R. Climate-smart agriculture for food security. Nature Climate Change, 2014, 4(12): 1068–1072
CrossRef
Google scholar
|
[91] |
Dogliotti S, García M C, Peluffo S, Dieste J P, Pedemonte A J, Bacigalupe G F, Scarlato M, Alliaume F, Alvarez J, Chiappe M, Rossing W A H. Co-innovation of family farm systems: A systems approach to sustainable agriculture. Agricultural Systems, 2014, 126: 76–86
CrossRef
Google scholar
|
[92] |
Savian J V, Schons R M T, de Souza Filho W, Zubieta A S, Kindlein L, Bindelle J, Bayer C, Bremm C, Carvalho P C F. ‘Rotatinuous’ stocking as a climate-smart grazing management strategy for sheep production. Science of the Total Environment, 2021, 753: 141790
CrossRef
Pubmed
Google scholar
|
[93] |
Nettle R, Crawford A, Brightling P. How private-sector farm advisors change their practices: An Australian case study. Journal of Rural Studies, 2018, 58: 20–27
CrossRef
Google scholar
|
[94] |
Food and Agriculture Organization of the United Nations (FAO). Sustainability Assessment of Food and Agricultural System: indicators. Rome: FAO, 2013, 271
|
[95] |
Carvalho P C F. Harry Stobbs Memorial Lecture: Can grazing behavior support innovations in grassland management? Tropical Grasslands-Forrajes Tropicales, 2013, 1(2): 137–155
CrossRef
Google scholar
|
/
〈 | 〉 |