Arbuscular mycorrhizal associations and the major regulators

Li XUE, Ertao WANG

PDF(488 KB)
PDF(488 KB)
Front. Agr. Sci. Eng. ›› 2020, Vol. 7 ›› Issue (3) : 296-306. DOI: 10.15302/J-FASE-2020347
REVIEW
REVIEW

Arbuscular mycorrhizal associations and the major regulators

Author information +
History +

Abstract

Plants growing in natural soils encounter diverse biotic and abiotic stresses and have adapted with sophisticated strategies to deal with complex environments such as changing root system structure, evoking biochemical responses and recruiting microbial partners. Under selection pressure, plants and their associated microorganisms assemble into a functional entity known as a holobiont. The commonest cooperative interaction is between plant roots and arbuscular mycorrhizal (AM) fungi. About 80% of terrestrial plants can form AM symbiosis with the ancient phylum Glomeromycota. A very large network of extraradical and intraradical mycelium of AM fungi connects the underground biota and the nearby carbon and nutrient fluxes. Here, we discuss recent progress on the regulators of AM associations with plants, AM fungi and their surrounding environments, and explore further mechanistic insights.

Keywords

AM symbiosis / signal / regulators / nutrients / phosphate / microbiota

Cite this article

Download citation ▾
Li XUE, Ertao WANG. Arbuscular mycorrhizal associations and the major regulators. Front. Agr. Sci. Eng., 2020, 7(3): 296‒306 https://doi.org/10.15302/J-FASE-2020347

References

[1]
Smith S E, Smith F A. Fresh perspectives on the roles of arbuscular mycorrhizal fungi in plant nutrition and growth. Mycologia, 2012, 104(1): 1–13
CrossRef Pubmed Google scholar
[2]
Wang W, Shi J, Xie Q, Jiang Y, Yu N, Wang E. Nutrient exchange and regulation in arbuscular mycorrhizal symbiosis. Molecular Plant, 2017, 10(9): 1147–1158
CrossRef Pubmed Google scholar
[3]
Jiang Y, Wang W, Xie Q, Liu N, Liu L, Wang D, Zhang X, Yang C, Chen X, Tang D, Wang E. Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi. Science, 2017, 356(6343): 1172–1175
CrossRef Pubmed Google scholar
[4]
Luginbuehl L H, Menard G N, Kurup S, Van Erp H, Radhakrishnan G V, Breakspear A, Oldroyd G E D, Eastmond P J. Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant. Science, 2017, 356(6343): 1175–1178
CrossRef Pubmed Google scholar
[5]
Keymer A, Pimprikar P, Wewer V, Huber C, Brands M, Bucerius S L, Delaux P M, Klingl V, Röpenack-Lahaye E V, Wang T L, Eisenreich W, Dörmann P, Parniske M, Gutjahr C. Lipid transfer from plants to arbuscular mycorrhiza fungi. eLife, 2017, 6: e29107
CrossRef Pubmed Google scholar
[6]
Gutjahr C, Parniske M. Cell and developmental biology of arbuscular mycorrhiza symbiosis. Annual Review of Cell and Developmental Biology, 2013, 29(1): 593–617
CrossRef Pubmed Google scholar
[7]
Waters M T, Gutjahr C, Bennett T, Nelson D C. Strigolactone signaling and evolution. Annual Review of Plant Biology, 2017, 68(1): 291–322
CrossRef Pubmed Google scholar
[8]
Akiyama K, Matsuzaki K, Hayashi H. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature, 2005, 435(7043): 824–827
CrossRef Pubmed Google scholar
[9]
Besserer A, Puech-Pagès V, Kiefer P, Gomez-Roldan V, Jauneau A, Roy S, Portais J C, Roux C, Bécard G, Séjalon-Delmas N. Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria. PLoS Biology, 2006, 4(7): e226
CrossRef Pubmed Google scholar
[10]
Kobae Y, Kameoka H, Sugimura Y, Saito K, Ohtomo R, Fujiwara T, Kyozuka J. Strigolactone biosynthesis genes of rice arerequired for the punctual entry of arbuscular mycorrhizal fungi into the roots. Plant & Cell Physiology, 2018, 59(3): 544–553
CrossRef Pubmed Google scholar
[11]
Liu W, Kohlen W, Lillo A, Op den Camp R, Ivanov S, Hartog M, Limpens E, Jamil M, Smaczniak C, Kaufmann K, Yang W C, Hooiveld G J E J, Charnikhova T, Bouwmeester H J, Bisseling T, Geurts R. Strigolactone biosynthesis in Medicago truncatula and rice requires the symbiotic GRAS-type transcription factors NSP1 and NSP2. Plant Cell, 2011, 23(10): 3853–3865
CrossRef Pubmed Google scholar
[12]
Genre A, Chabaud M, Balzergue C, Puech-Pagès V, Novero M, Rey T, Fournier J, Rochange S, Bécard G, Bonfante P, Barker D G. Short-chain chitin oligomers from arbuscular mycorrhizal fungi trigger nuclear Ca2+ spiking in Medicago truncatula roots and their production is enhanced by strigolactone. New Phytologist, 2013, 198(1): 190–202
CrossRef Pubmed Google scholar
[13]
Giovannetti M, Mari A, Novero M, Bonfante P. Early Lotus japonicus root transcriptomic responses to symbiotic and pathogenic fungal exudates. Frontiers of Plant Science, 2015, 6: 480
CrossRef Pubmed Google scholar
[14]
Abdel-Lateif K, Bogusz D, Hocher V. The role of flavonoids in the establishment of plant roots endosymbioses with arbuscular mycorrhiza fungi, rhizobia and Frankia bacteria. Plant Signaling & Behavior, 2012, 7(6): 636–641
CrossRef Pubmed Google scholar
[15]
Aguilar J M M, Ashby A M, Richards A J M, Loake G J, Watson M D, Shaw C H. Chemotaxis of Rhizobium leguminosarum towards flavonoid inducers of the symbiotic nodulation genes. Journal of General and Applied Microbiology, 1988, 134(10): 2741–2746
[16]
Dharmatilake A J, Bauer W D. Chemotaxis of Rhizobium meliloti towards nodulation gene-inducing compounds from alfalfa roots. Applied and Environmental Microbiology, 1992, 58(4): 1153–1158
CrossRef Pubmed Google scholar
[17]
Bécard G, Douds D D, Pfeffer P E. Extensive in vitro hyphal growth of vesicular-arbuscular mycorrhizal gungi in the presence of CO2 and flavonols. Applied and Environmental Microbiology, 1992, 58(3): 821–825
CrossRef Pubmed Google scholar
[18]
Nagahashi G, Douds D D Jr. The effects of hydroxy fatty acids on the hyphal branching of germinated spores of AM fungi. Fungal Biology, 2011, 115(4–5): 351–358
CrossRef Pubmed Google scholar
[19]
Fich E A, Segerson N A, Rose J K C. The plant polyester cutin: biosynthesis, structure, and biological roles. Annual Review of Plant Biology, 2016, 67(1): 207–233
CrossRef Pubmed Google scholar
[20]
Wang E, Schornack S, Marsh J F, Gobbato E, Schwessinger B, Eastmond P, Schultze M, Kamoun S, Oldroyd G E D. A common signaling process that promotes mycorrhizal and oomycete colonization of plants. Current Biology, 2012, 22(23): 2242–2246
CrossRef Pubmed Google scholar
[21]
Wang J Y, Haider I, Jamil M, Fiorilli V, Saito Y, Mi J, Baz L, Kountche B A, Jia K P, Guo X, Balakrishna A, Ntui V O, Reinke B, Volpe V, Gojobori T, Blilou I, Lanfranco L, Bonfante P, Al-Babili S. The apocarotenoid metabolite zaxinone regulates growth and strigolactone biosynthesis in rice. Nature Communications, 2019, 10(1): 810
CrossRef Pubmed Google scholar
[22]
Nelson D C, Flematti G R, Ghisalberti E L, Dixon K W, Smith S M. Regulation of seed germination and seedling growth by chemical signals from burning vegetation. Annual Review of Plant Biology, 2012, 63(1): 107–130
CrossRef Pubmed Google scholar
[23]
Morffy N, Faure L, Nelson D C. Smoke and hormone mirrors: action and evolution of karrikin and strigolactone signaling. Trends in Genetics, 2016, 32(3): 176–188
CrossRef Pubmed Google scholar
[24]
Gutjahr C, Gobbato E, Choi J, Riemann M, Johnston M G, Summers W, Carbonnel S, Mansfield C, Yang S Y, Nadal M, Acosta I, Takano M, Jiao W B, Schneeberger K, Kelly K A, Paszkowski U. Rice perception of symbiotic arbuscular mycorrhizal fungi requires the karrikin receptor complex. Science, 2015, 350(6267): 1521–1524
CrossRef Pubmed Google scholar
[25]
Villaécija-Aguilar J A, Hamon-Josse M, Carbonnel S, Kretschmar A, Schmidt C, Dawid C, Bennett T, Gutjahr C. SMAX1/SMXL2 regulate root and root hair development downstream of KAI2-mediated signalling in Arabidopsis. PLOS Genetics, 2019, 15(8): e1008327
CrossRef Pubmed Google scholar
[26]
McGuiness P N, Reid J B, Foo E. The role of gibberellins and brassinosteroids in nodulation and arbuscular mycorrhizal associations. Frontiers of Plant Science, 2019, 10: 269
CrossRef Pubmed Google scholar
[27]
Jiang C, Gao X, Liao L, Harberd N P, Fu X. Phosphate starvation root architecture and anthocyanin accumulation responses are modulated by the gibberellin-DELLA signaling pathway in Arabidopsis. Plant Physiology, 2007, 145(4): 1460–1470
CrossRef Pubmed Google scholar
[28]
Floss D S, Levy J G, Lévesque-Tremblay V, Pumplin N, Harrison M J. DELLA proteins regulate arbuscule formation in arbuscular mycorrhizal symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(51): E5025–E5034
CrossRef Pubmed Google scholar
[29]
Yu N, Luo D, Zhang X, Liu J, Wang W, Jin Y, Dong W, Liu J, Liu H, Yang W, Zeng L, Li Q, He Z, Oldroyd G E D, Wang E. A DELLA protein complex controls the arbuscular mycorrhizal symbiosis in plants. Cell Research, 2014, 24(1): 130–133
CrossRef Pubmed Google scholar
[30]
Jin Y, Liu H, Luo D, Yu N, Dong W, Wang C, Zhang X, Dai H, Yang J, Wang E. DELLA proteins are common components of symbiotic rhizobial and mycorrhizal signalling pathways. Nature Communications, 2016, 7(1): 12433
CrossRef Pubmed Google scholar
[31]
Pimprikar P, Carbonnel S, Paries M, Katzer K, Klingl V, Bohmer M J, Karl L, Floss D S, Harrison M J, Parniske M, Gutjahr C. A CCaMK-CYCLOPS-DELLA complex activates transcription of RAM1 to regulate arbuscule branching. Current Biology, 2016, 26(8): 987–998
CrossRef Pubmed Google scholar
[32]
Floss D S, Gomez S K, Park H J, MacLean A M, Müller L M, Bhattarai K K, Lévesque-Tremblay V, Maldonado-Mendoza I E, Harrison M J. A transcriptional program for arbuscule degeneration during AM symbiosis is regulated by MYB1. Current Biology, 2017, 27(8): 1206–1212
CrossRef Pubmed Google scholar
[33]
Heck C, Kuhn H, Heidt S, Walter S, Rieger N, Requena N. Symbiotic fungi control plant root cortex development through the novel GRAS transcription factor MIG1. Current Biology, 2016, 26(20): 2770–2778
CrossRef Pubmed Google scholar
[34]
Floss D S, Lévesque-Tremblay V, Park H J, Harrison M J. DELLA proteins regulate expression of a subset of AM symbiosis-induced genes in Medicago truncatula. Plant Signaling & Behavior, 2016, 11(4): e1162369
CrossRef Pubmed Google scholar
[35]
Xue L, Cui H, Buer B, Vijayakumar V, Delaux P M, Junkermann S, Bucher M. Network of GRAS transcription factors involved in the control of arbuscule development in Lotus japonicus. Plant Physiology, 2015, 167(3): 854–871
CrossRef Pubmed Google scholar
[36]
Hirsch S, Kim J, Muñoz A, Heckmann A B, Downie J A, Oldroyd G E D. GRAS proteins form a DNA binding complex to induce gene expression during nodulation signaling in Medicago truncatula. Plant Cell, 2009, 21(2): 545–557
CrossRef Pubmed Google scholar
[37]
Gobbato E, Marsh J F, Vernié T, Wang E, Maillet F, Kim J, Miller J B, Sun J, Bano S A, Ratet P, Mysore K S, Dénarié J, Schultze M, Oldroyd G E D. A GRAS-type transcription factor with a specific function in mycorrhizal signaling. Current Biology, 2012, 22(23): 2236–2241
CrossRef Pubmed Google scholar
[38]
Liaqat F, Eltem R. Chitooligosaccharides and their biological activities: a comprehensive review. Carbohydrate Polymers, 2018, 184: 243–259
CrossRef Pubmed Google scholar
[39]
Cao Y, Halane M K, Gassmann W, Stacey G. The role of plant innate immunity in the legume-rhizobium symbiosis. Annual Review of Plant Biology, 2017, 68(1): 535–561
CrossRef Pubmed Google scholar
[40]
Maillet F, Poinsot V, André O, Puech-Pagès V, Haouy A, Gueunier M, Cromer L, Giraudet D, Formey D, Niebel A, Martinez E A, Driguez H, Bécard G, Dénarié J. Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature, 2011, 469(7328): 58–63
CrossRef Pubmed Google scholar
[41]
Feng F, Sun J, Radhakrishnan G V, Lee T, Bozsóki Z, Fort S, Gavrin A, Gysel K, Thygesen M B, Andersen K R, Radutoiu S, Stougaard J, Oldroyd G E D. A combination of chitooligosaccharide and lipochitooligosaccharide recognition promotes arbuscular mycorrhizal associations in Medicago truncatula. Nature Communications, 2019, 10(1): 5047
CrossRef Pubmed Google scholar
[42]
Dénarié J, Debellé F, Promé J C. Rhizobium lipo-chitooligosaccharide nodulation factors: signaling molecules mediating recognition and morphogenesis. Annual Review of Biochemistry, 1996, 65(1): 503–535
CrossRef Pubmed Google scholar
[43]
Zipfel C, Oldroyd G E D. Plant signalling in symbiosis and immunity. Nature, 2017, 543(7645): 328–336
CrossRef Pubmed Google scholar
[44]
Madsen E B, Madsen L H, Radutoiu S, Olbryt M, Rakwalska M, Szczyglowski K, Sato S, Kaneko T, Tabata S, Sandal N, Stougaard J. A receptor kinase gene of the LysM type is involved in legume perception of rhizobial signals. Nature, 2003, 425(6958): 637–640
CrossRef Pubmed Google scholar
[45]
Radutoiu S, Madsen L H, Madsen E B, Felle H H, Umehara Y, Grønlund M, Sato S, Nakamura Y, Tabata S, Sandal N, Stougaard J. Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases. Nature, 2003, 425(6958): 585–592
CrossRef Pubmed Google scholar
[46]
Cao Y, Liang Y, Tanaka K, Nguyen C T, Jedrzejczak R P, Joachimiak A, Stacey G. The kinase LYK5 is a major chitin receptor in Arabidopsis and forms a chitin-induced complex with related kinase CERK1. eLife, 2014, 3: e03766
CrossRef Pubmed Google scholar
[47]
Hayafune M, Berisio R, Marchetti R, Silipo A, Kayama M, Desaki Y, Arima S, Squeglia F, Ruggiero A, Tokuyasu K, Molinaro A, Kaku H, Shibuya N. Chitin-induced activation of immune signaling by the rice receptor CEBiP relies on a unique sandwich-type dimerization. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(3): E404–E413
CrossRef Pubmed Google scholar
[48]
Zhang X, Dong W, Sun J, Feng F, Deng Y, He Z, Oldroyd G E D, Wang E. The receptor kinase CERK1 has dual functions in symbiosis and immunity signalling. Plant Journal, 2015, 81(2): 258–267
CrossRef Pubmed Google scholar
[49]
Miyata K, Kozaki T, Kouzai Y, Ozawa K, Ishii K, Asamizu E, Okabe Y, Umehara Y, Miyamoto A, Kobae Y, Akiyama K, Kaku H, Nishizawa Y, Shibuya N, Nakagawa T. The bifunctional plant receptor, OsCERK1, regulates both chitin-triggered immunity and arbuscular mycorrhizal symbiosis in rice. Plant & Cell Physiology, 2014, 55(11): 1864–1872
CrossRef Pubmed Google scholar
[50]
Sun J, Miller J B, Granqvist E, Wiley-Kalil A, Gobbato E, Maillet F, Cottaz S, Samain E, Venkateshwaran M, Fort S, Morris R J, Ané J M, Dénarié J, Oldroyd G E D. Activation of symbiosis signaling by arbuscular mycorrhizal fungi in legumes and rice. Plant Cell, 2015, 27(3): 823–838
CrossRef Pubmed Google scholar
[51]
He J, Zhang C, Dai H, Liu H, Zhang X, Yang J, Chen X, Zhu Y, Wang D, Qi X, Li W, Wang Z, An G, Yu N, He Z, Wang Y F, Xiao Y, Zhang P, Wang E. A LysM receptor heteromer mediates perception of arbuscular mycorrhizal symbiotic signal in rice. Molecular Plant, 2019, 12(12): 1561–1576
CrossRef Pubmed Google scholar
[52]
Huang R, Li Z, Mao C, Zhang H, Sun Z, Li H, Huang C, Feng Y, Shen X, Bucher M, Zhang Z, Lin Y, Cao Y, Duanmu D. Natural variation at OsCERK1 regulates arbuscular mycorrhizal symbiosis in rice. New Phytologist, 2020, 225(4): 1762–1776
CrossRef Pubmed Google scholar
[53]
Girardin A, Wang T M, Ding Y, Keller J, Buendia L, Gaston M, Ribeyre C, Gasciolli V, Auriac M C, Vernie T, Bendahmane A, Ried M K, Parniske M, Morel P, Vandenbussche M, Schorderet M, Reinhardt D, Delaux P M, Bono J J, Lefebvre B.LCO receptors involved in arbuscular mycorrhiza are functional for rhizobia perception in legumes. Current Biology, 2019, 29(24): 4249–4259. e5
[54]
Kobae Y, Kawachi M, Saito K, Kikuchi Y, Ezawa T, Maeshima M, Hata S, Fujiwara T. Up-regulation of genes involved in N-acetylglucosamine uptake and metabolism suggests a recycling mode of chitin in intraradical mycelium of arbuscular mycorrhizal fungi. Mycorrhiza, 2015, 25(5): 411–417
CrossRef Pubmed Google scholar
[55]
Nadal M, Sawers R, Naseem S, Bassin B, Kulicke C, Sharman A, An G, An K, Ahern K R, Romag A, Brutnell T P, Gutjahr C, Geldner N, Roux C, Martinoia E, Konopka J B, Paszkowski U. An N-acetylglucosamine transporter required for arbuscular mycorrhizal symbioses in rice and maize. Nature Plants, 2017, 3(6): 17073
CrossRef Pubmed Google scholar
[56]
Kamel L, Tang N, Malbreil M, San Clemente H, Le Marquer M, Roux C, Frei Dit Frey N. The comparison of expressed candidate secreted proteins from two arbuscular mycorrhizal fungi unravels common and specific molecular tools to invade different host plants. Frontiers of Plant Science, 2017, 8: 124
CrossRef Pubmed Google scholar
[57]
Le Marquer M, San Clemente H, Roux C, Savelli B, Frei Dit Frey N. Identification of new signalling peptides through a genome-wide survey of 250 fungal secretomes. BMC Genomics, 2019, 20(1): 64
CrossRef Pubmed Google scholar
[58]
Sędzielewska Toro K, Brachmann A. The effector candidate repertoire of the arbuscular mycorrhizal fungus Rhizophagus clarus. BMC Genomics, 2016, 17(1): 101
CrossRef Pubmed Google scholar
[59]
Zeng T, Holmer R, Hontelez J, Te Lintel-Hekkert B, Marufu L, de Zeeuw T, Wu F, Schijlen E, Bisseling T, Limpens E. Host- and stage-dependent secretome of the arbuscular mycorrhizal fungus Rhizophagus irregularis. Plant Journal, 2018, 94(3): 411–425
CrossRef Pubmed Google scholar
[60]
Kloppholz S, Kuhn H, Requena N. A secreted fungal effector of Glomus intraradices promotes symbiotic biotrophy. Current Biology, 2011, 21(14): 1204–1209
CrossRef Pubmed Google scholar
[61]
Voß S, Betz R, Heidt S, Corradi N, Requena N. RiCRN1, a crinkler effector from the arbuscular mycorrhizal fungus Rhizophagus irregularis, functions in arbuscule development. Frontiers in Microbiology, 2018, 9: 2068
CrossRef Pubmed Google scholar
[62]
Tsuzuki S, Handa Y, Takeda N, Kawaguchi M. Strigolactone-induced putative secreted protein 1 is required for the establishment of symbiosis by the arbuscular mycorrhizal fungus Rhizophagus irregularis. Molecular Plant-Microbe Interactions, 2016, 29(4): 277–286
CrossRef Pubmed Google scholar
[63]
Zeng T, Rodriguez-Moreno L, Mansurkhodzaev A, Wang P, van den Berg W, Gasciolli V, Cottaz S, Fort S, Thomma B P H J, Bono J J, Bisseling T, Limpens E. A lysin motif effector subverts chitin-triggered immunity to facilitate arbuscular mycorrhizal symbiosis. New Phytologist, 2020, 225(1): 448–460
CrossRef Pubmed Google scholar
[64]
Schmitz A M, Pawlowska T E, Harrison M J. A short LysM protein with high molecular diversity from an arbuscular mycorrhizal fungus, Rhizophagus irregularis. Mycoscience, 2019, 60(1): 63–70
CrossRef Google scholar
[65]
Smith S E, Smith F A. Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annual Review of Plant Biology, 2011, 62(1): 227–250
CrossRef Pubmed Google scholar
[66]
Santi C, Bogusz D, Franche C. Biological nitrogen fixation in non-legume plants. Annals of Botany, 2013, 111(5): 743–767
CrossRef Pubmed Google scholar
[67]
Ferguson B J, Mens C, Hastwell A H, Zhang M, Su H, Jones C H, Chu X, Gresshoff P M. Legume nodulation: the host controls the party. Plant, Cell & Environment, 2019, 42(1): 41–51
CrossRef Pubmed Google scholar
[68]
Smith S E, Smith F A, Jakobsen I. Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiology, 2003, 133(1): 16–20
CrossRef Pubmed Google scholar
[69]
Smith S E, Smith F A, Jakobsen I. Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. New Phytologist, 2004, 162(2): 511–524
CrossRef Google scholar
[70]
Nussaume L, Kanno S, Javot H, Marin E, Pochon N, Ayadi A, Nakanishi T M, Thibaud M C. Phosphate import in plants: focus on the PHT1 transporters. Frontiers of Plant Science, 2011, 2: 83
CrossRef Pubmed Google scholar
[71]
Bucher M. Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. New Phytologist, 2007, 173(1): 11–26
CrossRef Pubmed Google scholar
[72]
Loth-Pereda V, Orsini E, Courty P E, Lota F, Kohler A, Diss L, Blaudez D, Chalot M, Nehls U, Bucher M, Martin F. Structure and expression profile of the phosphate Pht1 transporter gene family in mycorrhizal Populus trichocarpa. Plant Physiology, 2011, 156(4): 2141–2154
CrossRef Pubmed Google scholar
[73]
Walder F, Brulé D, Koegel S, Wiemken A, Boller T, Courty P E. Plant phosphorus acquisition in a common mycorrhizal network: regulation of phosphate transporter genes of the Pht1 family in sorghum and flax. New Phytologist, 2015, 205(4): 1632–1645
CrossRef Pubmed Google scholar
[74]
Rausch C, Bucher M. Molecular mechanisms of phosphate transport in plants. Planta, 2002, 216(1): 23–37
CrossRef Pubmed Google scholar
[75]
Karandashov V, Bucher M. Symbiotic phosphate transport in arbuscular mycorrhizas. Trends in Plant Science, 2005, 10(1): 22–29
CrossRef Pubmed Google scholar
[76]
Javot H, Penmetsa R V, Terzaghi N, Cook D R, Harrison M J. A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(5): 1720–1725
CrossRef Pubmed Google scholar
[77]
Yang S Y, Grønlund M, Jakobsen I, Grotemeyer M S, Rentsch D, Miyao A, Hirochika H, Kumar C S, Sundaresan V, Salamin N, Catausan S, Mattes N, Heuer S, Paszkowski U. Nonredundant regulation of rice arbuscular mycorrhizal symbiosis by two members of the phosphate transporter1 gene family. Plant Cell, 2012, 24(10): 4236–4251
CrossRef Pubmed Google scholar
[78]
Willmann M, Gerlach N, Buer B, Polatajko A, Nagy R, Koebke E, Jansa J, Flisch R, Bucher M. Mycorrhizal phosphate uptake pathway in maize: vital for growth and cob development on nutrient poor agricultural and greenhouse soils. Frontiers of Plant Science, 2013, 4: 533
CrossRef Pubmed Google scholar
[79]
Xue L, Klinnawee L, Zhou Y, Saridis G, Vijayakumar V, Brands M, Dörmann P, Gigolashvili T, Turck F, Bucher M. AP2 transcription factor CBX1 with a specific function in symbiotic exchange of nutrients in mycorrhizal Lotus japonicus. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(39): E9239–E9246
CrossRef Pubmed Google scholar
[80]
Jiang Y, Xie Q, Wang W, Yang J, Zhang X, Yu N, Zhou Y, Wang E. Medicago AP2-domain transcription factor WRI5a is a master regulator of lipid biosynthesis and transfer during mycorrhizal symbiosis. Molecular Plant, 2018, 11(11): 1344–1359
CrossRef Pubmed Google scholar
[81]
Krajinski F, Courty P E, Sieh D, Franken P, Zhang H, Bucher M, Gerlach N, Kryvoruchko I, Zoeller D, Udvardi M, Hause B. The H+-ATPase HA1 of Medicago truncatula is essential for phosphate transport and plant growth during arbuscular mycorrhizal symbiosis. Plant Cell, 2014, 26(4): 1808–1817
CrossRef Pubmed Google scholar
[82]
Wang E, Yu N, Bano S A, Liu C, Miller A J, Cousins D, Zhang X, Ratet P, Tadege M, Mysore K S, Downie J A, Murray J D, Oldroyd G E D, Schultze M. A H+-ATPase that energizes nutrient uptake during mycorrhizal symbioses in rice and Medicago truncatula. Plant Cell, 2014, 26(4): 1818–1830
CrossRef Pubmed Google scholar
[83]
Liu J, Chen J, Xie K, Tian Y, Yan A, Liu J, Huang Y, Wang S, Zhu Y, Chen A, Xu G. A mycorrhiza-specific H+-ATPase is essential for arbuscule development and symbiotic phosphate and nitrogen uptake. Plant, Cell & Environment, 2020, 43(4): 1069–1083
CrossRef Pubmed Google scholar
[84]
Govindarajulu M, Pfeffer P E, Jin H, Abubaker J, Douds D D, Allen J W, Bücking H, Lammers P J, Shachar-Hill Y. Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature, 2005, 435(7043): 819–823
CrossRef Pubmed Google scholar
[85]
Wipf D, Krajinski F, van Tuinen D, Recorbet G, Courty P E. Trading on the arbuscular mycorrhiza market: from arbuscules to common mycorrhizal networks. New Phytologist, 2019, 223(3): 1127–1142
CrossRef Pubmed Google scholar
[86]
Guether M, Balestrini R, Hannah M, He J, Udvardi M K, Bonfante P. Genome-wide reprogramming of regulatory networks, transport, cell wall and membrane biogenesis during arbuscular mycorrhizal symbiosis in Lotus japonicus. New Phytologist, 2009, 182(1): 200–212
CrossRef Pubmed Google scholar
[87]
Handa Y, Nishide H, Takeda N, Suzuki Y, Kawaguchi M, Saito K. RNA-seq transcriptional profiling of an arbuscular mycorrhiza provides insights into regulated and coordinated gene expression in Lotus japonicus and Rhizophagus irregularis. Plant & Cell Physiology, 2015, 56(8): 1490–1511
CrossRef Pubmed Google scholar
[88]
Sugimura Y, Saito K. Comparative transcriptome analysis between Solanum lycopersicum L. and Lotus japonicus L. during arbuscular mycorrhizal development. Soil Science and Plant Nutrition, 2017, 63(2): 127–136
CrossRef Google scholar
[89]
Liu J, Liu J, Liu J, Cui M, Huang Y, Tian Y, Chen A, Xu G. The potassium transporter SlHAK10 is involved in mycorrhizal potassium uptake. Plant Physiology, 2019, 180(1): 465–479
CrossRef Pubmed Google scholar
[90]
Nouri E, Breuillin-Sessoms F, Feller U, Reinhardt D. Phosphorus and nitrogen regulate arbuscular mycorrhizal symbiosis in Petunia hybrida. PLoS One, 2014, 9(6): e90841
CrossRef Pubmed Google scholar
[91]
Breuillin F, Schramm J, Hajirezaei M, Ahkami A, Favre P, Druege U, Hause B, Bucher M, Kretzschmar T, Bossolini E, Kuhlemeier C, Martinoia E, Franken P, Scholz U, Reinhardt D. Phosphate systemically inhibits development of arbuscular mycorrhiza in Petunia hybrida and represses genes involved in mycorrhizal functioning. Plant Journal, 2010, 64(6): 1002–1017
CrossRef Pubmed Google scholar
[92]
Blanke V, Renker C, Wagner M, Füllner K, Held M, Kuhn A J, Buscot F. Nitrogen supply affects arbuscular mycorrhizal colonization of Artemisia vulgaris in a phosphate-polluted field site. New Phytologist, 2005, 166(3): 981–992
CrossRef Pubmed Google scholar
[93]
Breuillin-Sessoms F, Floss D S, Gomez S K, Pumplin N, Ding Y, Levesque-Tremblay V, Noar R D, Daniels D A, Bravo A, Eaglesham J B, Benedito V A, Udvardi M K, Harrison M J. Suppression of arbuscule degeneration in Medicago truncatula phosphate transporter4 mutants is dependent on the ammonium transporter 2 family protein AMT2;3. Plant Cell, 2015, 27(4): 1352–1366
CrossRef Pubmed Google scholar
[94]
Dong J, Ma G, Sui L, Wei M, Satheesh V, Zhang R, Ge S, Li J, Zhang T E, Wittwer C, Jessen H J, Zhang H, An G Y, Chao D Y, Liu D, Lei M. Inositol pyrophosphate InsP8 acts as an intracellular phosphate signal in Arabidopsis. Molecular Plant, 2019, 12(11): 1463–1473
CrossRef Pubmed Google scholar
[95]
Ho C H, Lin S H, Hu H C, Tsay Y F. CHL1 functions as a nitrate sensor in plants. Cell, 2009, 138(6): 1184–1194
CrossRef Pubmed Google scholar
[96]
Liu K H, Huang C Y, Tsay Y F. CHL1 is a dual-affinity nitrate transporter of Arabidopsis involved in multiple phases of nitrate uptake. Plant Cell, 1999, 11(5): 865–874
CrossRef Pubmed Google scholar
[97]
Tsay Y F, Schroeder J I, Feldmann K A, Crawford N M. The herbicide sensitivity gene CHL1 of Arabidopsis encodes a nitrate-inducible nitrate transporter. Cell, 1993, 72(5): 705–713
CrossRef Pubmed Google scholar
[98]
Garcia K, Chasman D, Roy S, Ané J M. Physiological responses and gene co-expression network of mycorrhizal roots under K+ deprivation. Plant Physiology, 2017, 173(3): 1811–1823
CrossRef Pubmed Google scholar
[99]
Briat J F, Rouached H, Tissot N, Gaymard F, Dubos C. Integration of P, S, Fe, and Zn nutrition signals in Arabidopsis thaliana: potential involvement of PHOSPHATE STARVATION RESPONSE 1 (PHR1). Frontiers of Plant Science, 2015, 6: 290
CrossRef Pubmed Google scholar
[100]
Xie X, Hu W, Fan X, Chen H, Tang M. Interactions between phosphorus, zinc, and iron homeostasis in nonmycorrhizal and mycorrhizal plants. Frontiers of Plant Science, 2019, 10: 1172
CrossRef Pubmed Google scholar
[101]
Hirakawa Y, Sawa S. Diverse function of plant peptide hormones in local signaling and development. Current Opinion in Plant Biology, 2019, 51: 81–87
CrossRef Pubmed Google scholar
[102]
de Bang T C, Lundquist P K, Dai X, Boschiero C, Zhuang Z, Pant P, Torres-Jerez I, Roy S, Nogales J, Veerappan V, Dickstein R, Udvardi M K, Zhao P X, Scheible W R. Genome-wide identification of Medicago peptides involved in macronutrient responses and nodulation. Plant Physiology, 2017, 175(4): 1669–1689
CrossRef Pubmed Google scholar
[103]
Mortier V, Den Herder G, Whitford R, Van de Velde W, Rombauts S, D’Haeseleer K, Holsters M, Goormachtig S. CLE peptides control Medicago truncatula nodulation locally and systemically. Plant Physiology, 2010, 153(1): 222–237
CrossRef Pubmed Google scholar
[104]
Tsikou D, Yan Z, Holt D B, Abel N B, Reid D E, Madsen L H, Bhasin H, Sexauer M, Stougaard J, Markmann K. Systemic control of legume susceptibility to rhizobial infection by a mobile microRNA. Science, 2018, 362(6411): 233–236
CrossRef Pubmed Google scholar
[105]
Sasaki T, Suzaki T, Soyano T, Kojima M, Sakakibara H, Kawaguchi M. Shoot-derived cytokinins systemically regulate root nodulation. Nature Communications, 2014, 5(1): 4983
CrossRef Pubmed Google scholar
[106]
Morandi D, Sagan M, Prado-Vivant E, Duc G. Influence of genes determining supernodulation on root colonization by the mycorrhizal fungus Glomus mosseae in Pisum sativum and Medicago truncatula mutants. Mycorrhiza, 2000, 10(1): 37–42
CrossRef Google scholar
[107]
Solaiman M Z, Senoo K, Kawaguchi M, Imaizumi-Anraku H, Akao S, Tanaka A, Obata H. Characterization of mycorrhizas fglomus sp. on roots of hypernodulating mutants of Lotus japonicus. Journal of Plant Research, 2000, 113(4): 443–448
CrossRef Google scholar
[108]
Sakamoto K, Nohara Y. Soybean (Glycine max [L.] Merr.) shoots systemically control arbuscule formation in mycorrhizal symbiosis. Soil Science and Plant Nutrition, 2009, 55(2): 252–257
CrossRef Google scholar
[109]
Müller L M, Flokova K, Schnabel E, Sun X, Fei Z, Frugoli J, Bouwmeester H J, Harrison M J. A CLE-SUNN module regulates strigolactone content and fungal colonization in arbuscular mycorrhiza. Nature Plants, 2019, 5(9): 933–939
CrossRef Pubmed Google scholar
[110]
Le Marquer M, Bécard G, Frei Dit Frey N. Arbuscular mycorrhizal fungi possess a CLAVATA3/embryo surrounding region-related gene that positively regulates symbiosis. New Phytologist, 2019, 222(2): 1030–1042
CrossRef Pubmed Google scholar
[111]
Vorholt J A, Vogel C, Carlström C I, Müller D B. Establishing causality: opportunities of synthetic communities for plant microbiome research. Cell Host & Microbe, 2017, 22(2): 142–155
CrossRef Pubmed Google scholar
[112]
Thiergart T, Zgadzaj R, Bozsóki Z, Garrido-Oter R, Radutoiu S, Schulze-Lefert P. Lotus japonicus symbiosis genes impact microbial interactions between symbionts and multikingdom commensal communities. mBio, 2019, 10(5): e01833-19
CrossRef Pubmed Google scholar
[113]
Xue L, Almario J, Fabiańska I, Saridis G, Bucher M. Dysfunction in the arbuscular mycorrhizal symbiosis has consistent but small effects on the establishment of the fungal microbiota in Lotus japonicus. New Phytologist, 2019, 224(1): 409–420
CrossRef Pubmed Google scholar
[114]
Wang E, Schornack S, Marsh J F, Gobbato E, Schwessinger B, Eastmond P, Schultze M, Kamoun S, Oldroyd G E D. A common signaling process that promotes mycorrhizal and oomycete colonization of plants. Current Biology, 2012, 22(23): 2242–2246
CrossRef Pubmed Google scholar
[115]
Banhara A, Ding Y, Kühner R, Zuccaro A, Parniske M. Colonization of root cells and plant growth promotion by Piriformospora indica occurs independently of plant common symbiosis genes. Frontiers of Plant Science, 2015, 6: 667
CrossRef Pubmed Google scholar
[116]
Huisman R, Bouwmeester K, Brattinga M, Govers F, Bisseling T, Limpens E. Haustorium formation in Medicago truncatula roots infected by Phytophthora palmivora does not involve the common endosymbiotic program shared by arbuscular mycorrhizal fungi and rhizobia. Molecular Plant-Microbe Interactions, 2015, 28(12): 1271–1280
CrossRef Pubmed Google scholar
[117]
Rey T, Chatterjee A, Buttay M, Toulotte J, Schornack S. Medicago truncatula symbiosis mutants affected in the interaction with a biotrophic root pathogen. New Phytologist, 2015, 206(2): 497–500
CrossRef Pubmed Google scholar
[118]
Wang X L, Wang M X, Xie X G, Guo S Y, Zhou Y, Zhang X B, Yu N, Wang E T. An amplification-selection model for quantified rhizosphere microbiota assembly. Science Bulletin, 2020, 65(12): 983–986
CrossRef Google scholar
[119]
Fabiańska I, Gerlach N, Almario J, Bucher M. Plant-mediated effects of soil phosphorus on the root-associated fungal microbiota in Arabidopsis thaliana. New Phytologist, 2019, 221(4): 2123–2137
CrossRef Pubmed Google scholar
[120]
López-Ráez J A, Shirasu K, Foo E. Strigolactones in plant interactions with beneficial and detrimental organisms: the Yin and Yang. Trends in Plant Science, 2017, 22(6): 527–537
CrossRef Pubmed Google scholar
[121]
Fabiańska I, Sosa-Lopez E, Bucher M. The role of nutrient balance in shaping plant root-fungal interactions: facts and speculation. Current Opinion in Microbiology, 2019, 49: 90–96
CrossRef Pubmed Google scholar
[122]
Castrillo G, Teixeira P J P L, Paredes S H, Law T F, de Lorenzo L, Feltcher M E, Finkel O M, Breakfield N W, Mieczkowski P, Jones C D, Paz-Ares J, Dangl J L. Root microbiota drive direct integration of phosphate stress and immunity. Nature, 2017, 543(7646): 513–518
CrossRef Pubmed Google scholar
[123]
Almario J, Jeena G, Wunder J, Langen G, Zuccaro A, Coupland G, Bucher M. Root-associated fungal microbiota of nonmycorrhizal Arabis alpina and its contribution to plant phosphorus nutrition. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(44): E9403–E9412
CrossRef Pubmed Google scholar
[124]
Hiruma K, Gerlach N, Sacristán S, Nakano R T, Hacquard S, Kracher B, Neumann U, Ramírez D, Bucher M, O’Connell R J, Schulze-Lefert P. Root endophyte Colletotrichum tofieldiae confers plant fitness benefits that are phosphate status dependent. Cell, 2016, 165(2): 464–474
CrossRef Pubmed Google scholar
[125]
Bakshi M, Vahabi K, Bhattacharya S, Sherameti I, Varma A, Yeh K W, Baldwin I, Johri A K, Oelmüller R. WRKY6 restricts Piriformospora indica-stimulated and phosphate-induced root development in Arabidopsis. BMC Plant Biology, 2015, 15(1): 305
CrossRef Pubmed Google scholar
[126]
Frey-Klett P, Garbaye J, Tarkka M. The mycorrhiza helper bacteria revisited. New Phytologist, 2007, 176(1): 22–36
CrossRef Pubmed Google scholar
[127]
Salvioli A, Ghignone S, Novero M, Navazio L, Venice F, Bagnaresi P, Bonfante P. Symbiosis with an endobacterium increases the fitness of a mycorrhizal fungus, raising its bioenergetic potential. ISME Journal, 2016, 10(1): 130–144
CrossRef Pubmed Google scholar

Acknowledgements

We thank Ke Yu (Henan University, China) and Qiujin Xie (CAS Center for Excellence in Molecular Plant Sciences, China) for comments on the manuscript. This work was supported by the National Natural Science Foundation of China (31730103, 31825003 and 31970268). We apologize that it was not possible to cite all the work of our colleagues.

Compliance with ethics guidelines

Xue Li and Ertao Wang declare that they have no conflicts of interest or financial conflicts to disclose.
This article does not contain any studies with human or animal subjects performed by any of the authors.

RIGHTS & PERMISSIONS

The Author(s) 2020. Published by Higher Education Press. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0)
AI Summary AI Mindmap
PDF(488 KB)

Accesses

Citations

Detail

Sections
Recommended

/